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ABSTRACT 

This paper introduces a hybrid methodology for enhancing breast cancer detection using thermographic images. The 

approach combines DeepLab v3+ semantic segmentation with advanced feature extraction techniques, improving 

classification accuracy. DeepLab v3+ isolates regions of interest (ROIs) from thermograms, focusing on areas likely 

indicating cancerous lesions. Feature extraction methods like morphological statistical features, Discrete Wavelet Transform 

(DWT), Local Binary Patterns (LBP), and Enhanced Marine Predator Optimization (EMPO)-Optimized Dual-Tree Complex 

Wavelet Transform (DTCWT) capture diverse thermal patterns indicative of breast cancer. Principal Component Analysis 

(PCA) is used for dimensionality reduction, enhancing computational efficiency while preserving important information. 

The extracted features are classified using a Cuckoo Search-Optimized Neural Network (CSA-NN), which optimizes neural 

network parameters and addresses class imbalance and feature redundancy. Experimental results demonstrate that this hybrid 

methodology outperforms traditional techniques, achieving high accuracy, sensitivity, specificity, and precision across breast 

cancer thermography datasets. The proposed method highlights the potential of combining advanced image processing and 

machine learning for reliable breast cancer detection. 
 

Keywords: CSA-NN, DTCWT, DWT, EMPO, LBP, PCA. 

 

1. INTRODUCTION 

Breast cancer continues to be one of the most prevalent and life-threatening diseases affecting women globally, making its 

early and accurate diagnosis a critical aspect of healthcare. Traditional diagnostic approaches such as mammography and 

ultrasound, though widely employed, face significant challenges in terms of their sensitivity and specificity. These challenges 

are particularly pronounced in dense breast tissues or in resource-constrained settings where access to advanced diagnostic 

tools may be limited. Consequently, there is a growing need for innovative solutions that combine advanced imaging 

techniques with modern computational methodologies to improve diagnostic accuracy and accessibility. 

In recent years, the integration of thermographic imaging with artificial intelligence (AI)-based analytical frameworks has 

gained considerable attention as a promising alternative for breast cancer detection. Thermography provides a non-invasive, 

radiation-free imaging modality that detects subtle temperature variations on the skin's surface, which may indicate 

underlying abnormalities. However, to effectively harness the potential of thermography, robust image processing and 

classification techniques are essential. Semantic segmentation algorithms, such as DeepLab v3+, and optimized neural 

networks have emerged as key components in this domain, enabling precise identification of regions of interest (ROI) and 

accurate classification of breast abnormalities. 
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This research explores a novel system for breast cancer detection and classification that integrates thermographic imaging 

with advanced AI techniques. The proposed methodology incorporates state-of-the-art semantic segmentation for precise 

ROI extraction, comprehensive feature extraction processes for enhanced data representation, and an optimized classification 

framework powered by neural networks. By addressing the limitations of existing diagnostic methods and introducing 

innovative computational approaches, the proposed system aims to enhance both the accuracy and efficiency of breast cancer 

diagnosis. 

The motivation for this work stems from the limitations of conventional diagnostic techniques and the underexplored 

potential of AI-driven thermographic analysis. Traditional imaging methods often struggle with high false-positive rates and 

reduced efficacy in certain patient populations, leading to unnecessary biopsies and delays in treatment. In contrast, 

thermography offers the potential for early anomaly detection by capturing functional changes before structural abnormalities 

are evident. However, its effectiveness depends on advanced segmentation and classification methods to analyze the 

thermograms accurately. 

The key contributions of this paper are as follows: 

• DeepLab v3+ for Semantic Segmentation: This paper employs DeepLab v3+ to address challenges in accurately 

segmenting regions of interest (ROI) from breast thermographic images. The model’s capability to process multi-

scale features ensures high precision in detecting tumor regions, even in complex cases. 

• Hybrid Feature Extraction: A unique combination of feature extraction methods, including Discrete Wavelet 

Transform (DWT), Local Binary Patterns (LBP), and EMPO-optimized Dual-Tree Complex Wavelet Transform 

(DTCWT), is proposed for a holistic representation of the data. These features encompass statistical, textural, and 

frequency-domain information critical for accurate classification. 

• Feature Fusion and Dimensionality Reduction: To ensure computational efficiency and reduce feature redundancy, 

PCA is utilized to fuse and reduce the dimensionality of extracted features while retaining the most significant 

information. 

• Cuckoo Search-Optimized Neural Network: A neural network classifier optimized by the Cuckoo Search Algorithm 

(CSA) is implemented to achieve superior classification accuracy. This optimization ensures efficient parameter 

tuning, resulting in robust performance in diverse datasets. 

Through this work, we aim to contribute to the field of computer-aided diagnosis by presenting a system that balances 

innovation, accuracy, and practicality. The proposed methodology leverages accessible imaging techniques, cutting-edge AI 

algorithms, and rigorous optimization strategies to address current gaps in breast cancer diagnosis, with the ultimate goal of 

improving patient outcomes and advancing the state of research in this vital area. 

The rest of the paper is structured as follows: Section II reviews the literature on breast cancer detection and diagnosis. 

Section III outlines the materials and methods used in the paper. Section IV presents the proposed methodology. Section V 

discusses results and analysis, including performance evaluation on multiple datasets. Finally, Section VI concludes with the 

findings and potential future directions. 

2. LITERATURE REVIEW 

The study of breast thermography for detecting lesions has gained significant importance in recent years. Although it is not 

considered a replacement for current diagnostic techniques, the literature suggests that thermography is a valuable tool for 

early detection and research into breast lesions. For instance, in a study by [1], the authors compared the accuracy of breast 

thermography with mammography, involving 132 women aged 24 to 75 at the Tehran Cancer Institute in Iran. Thermograms 

were categorized using the Marseille system, and analyses were conducted on thermal differences in the images. The study 

revealed that mammography had a higher accuracy (76%) compared to thermography (69.7%), but they acknowledged the 

study’s limitation due to the small sample size and the inclusion of extreme cases unfavorable for thermography. 

In another study [2], thermography was compared with PET-CT. The authors analyzed full-body PET and thermographic 

images and used K-means clustering to segment different temperature profiles in thermograms, helping to assess breast 

cancer detection. They concluded that an asymmetric temperature profile in thermograms could be a valuable method for 

identifying breast cancer. 

A separate study [3] focused on 92 patients advised to undergo biopsy after mammography or ultrasound. The study 

incorporated three scores—general risk, clinical data, and a score based on artificial neural network analysis. This approach 

successfully identified 58 out of 60 malignant lesions with a 97% sensitivity, 44% specificity, and 82% negative predictive 

value. The authors concluded that infrared thermography is a beneficial supplementary study for mammography and 

ultrasound, especially for women with dense breast tissue. 

Thermal asymmetry analysis between the left and right breasts has been another method for identifying abnormalities. A 

study by [4] introduced two classification algorithms using unsupervised learning with K-means and supervised learning 
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with KNN, based on feature extraction. The authors highlighted the significance of feature extraction in studying breast 

thermal asymmetry. 

Other approaches, such as independent component analysis, have also been applied to breast thermography for automatic 

cancer detection. For example, [5] used a public database of breast thermograms and applied methods like PCA and Otsu 

binarization to isolate areas of malignant tissue in thermograms. 

In statistical analysis, [6] focused on using image moments and co-occurrence matrices to extract features like energy, 

homogeneity, and contrast. They applied fuzzy logic to classify thermograms, achieving 80% classification accuracy on a 

dataset of 150 cases. Additionally, [7] proposed a parametric estimation approach for tumor characteristics, including depth 

and size, by simulating thermograms and solving the Pennes heat equation using genetic algorithms and finite element 

methods. 

Cancer, being the second leading cause of death globally, with breast cancer constituting a significant portion of cases, 

demands ongoing research for early detection. In this context, [8] applied artificial neural networks to extract features from 

breast cancer cell images, achieving 90% classification accuracy. Machine learning, particularly for cancer detection, has 

proven to be an essential tool in early diagnosis and prediction. The authors of [9] and [10] demonstrated the effectiveness 

of algorithms like Logistic Regression, Decision Trees, and Support Vector Machines (SVM) for predicting breast cancer 

recurrence and performing diagnostic classification tasks. 

The authors of [11], focused on applying machine learning models to mammogram images and breast cancer datasets. 

Algorithms like SVM, Decision Trees, Naive Bayes, and Random Forest have shown varying levels of performance in terms 

of accuracy and classification. In particular, [12] highlighted deep learning’s superior performance over traditional machine 

learning methods, achieving a 94.3% accuracy with convolutional neural networks. 

Moreover, [13] used various machine learning methods to predict breast cancer recurrence, where the SVM method provided 

the highest accuracy. The authors of [14] applied SVM and other methods on mammogram images and found that Support 

Vector Machines outperformed others with a high accuracy rate of 97.13%. The authors of [15] also worked on early breast 

cancer diagnosis by applying machine learning techniques to the Wisconsin breast cancer dataset and found that Bayesian 

Network showed the best performance in terms of sensitivity and precision. 

The use of deep learning in breast cancer detection was explored by [16], who achieved a high accuracy rate of 96.44% using 

convolutional neural networks, outperforming traditional machine learning techniques. In another study, [17] applied various 

machine learning methods on microarray datasets and achieved high accuracy with SVM, further demonstrating the 

effectiveness of machine learning models for breast cancer classification. Similarly, [18] worked with microarray datasets to 

classify cancer data and found that SVM was the most effective model in comparison to others. 

Additionally, [19] used tree-based classification models and miRNA expression datasets to determine biomarkers for breast 

cancer. Their study provided crucial insights into important microRNAs in breast cancer classification, contributing to the 

development of early detection biomarkers. 

• Research Gap: While significant progress has been made in using thermography and machine learning techniques for 

breast cancer detection, there is a need for more robust and integrated methodologies that combine the strengths of 

different imaging techniques with advanced machine learning models. Current approaches often rely on limited 

datasets or single-modality analyses, which may not fully capture the complexity of breast cancer. Our proposed 

methodology aims to bridge this gap by integrating thermographic data with advanced machine learning models for 

more accurate and reliable early diagnosis of breast cancer, thus improving detection rates and reducing false 

positives/negatives in clinical settings. 

3. MATERIALS AND METHODS 

3.1 Image Decomposition Using Optimized DTCWT 

The Dual-Tree Complex Wavelet Transform (DTCWT) is utilized as a key step in the image processing pipeline for breast 

cancer detection. It effectively decomposes input images into low and high-frequency components, allowing detailed analysis 

of both structural and textural patterns. This decomposition aids in preserving critical spatial details and minimizing artifacts. 

The input images, denoted as 𝑀𝑀1 and 𝑀𝑀2, are processed using an optimized DTCWT configuration. The optimization, 

achieved through the Enhanced Marine Predator Optimization (EMPO) algorithm, ensures an optimal number of 

decomposition levels, balancing computational efficiency and feature extraction precision. 

Mathematically, the decomposition of an image 𝑔(𝑠) involves convolving it with a low-pass scaling function Φ(𝑠) and a 

band-pass wavelet 𝜓(𝑠). The resulting decomposition can be expressed as: 

𝑔(𝑠) = ∑ 𝑑(𝑚)Φ(𝑠 − 𝑚)∞
𝑚=−∞ + ∑ ∑ 𝑒(𝑘,𝑚)2

𝑘

2𝜓(2𝑘𝑠 − 𝑚)∞
𝑚=−∞

∞
𝑘=0    (1) 



Vishakha Dubey, Dr. Shanti Rathore, Dr. Rahul Gedam 
 

pg. 963 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 1s 
 

Where, 

• 𝑑(𝑚): Scaling coefficients, capturing the low-frequency content of the image, calculated as: 

𝑑(𝑚) = ∫
−∞

∞
𝑔(𝑠)Φ(𝑠 − 𝑚)𝑑𝑠             (2) 

• 𝑒(𝑘,𝑚): Wavelet coefficients, representing the high-frequency details of the image, determined by: 

𝑒(𝑘,𝑚) = 2
𝑘

2∫
−∞

∞
𝑔(𝑠)𝜓(2𝑘𝑠 − 𝑚)𝑑𝑠    (3) 

In this process, the DTCWT employs low-pass filters (𝜙0(𝑠)) and high-pass filters (𝜓1(𝑠)) in both real and imaginary filter 

banks. These filters separate the image into its low-frequency components (𝑀𝑀11
𝑙𝑜𝑤  and 𝑀𝑀12

𝑙𝑜𝑤) and high-frequency 

components (𝑀𝑀11
ℎ𝑖𝑔ℎ

 and 𝑀𝑀12
ℎ𝑖𝑔ℎ

). The low-frequency components contain the coarse structural details, while the high-

frequency components capture fine-grained textural features. 

This decomposition stage is pivotal in the hybrid feature extraction process. By isolating significant spatial and textural 

information, it ensures that the subsequent analysis stages focus on the most relevant characteristics of the input images. 

Furthermore, the EMPO-based optimization enhances the effectiveness of the DTCWT, ensuring precise and 

computationally efficient feature extraction for breast cancer detection. 

3.2 Low-Frequency Coefficient Fusion Using Max Rule 

The Max Rule-based fusion of low-frequency coefficients is a critical step in combining the structural information from the 

decomposed images. In this process, the low-frequency components of the input images, 𝑀𝑀11
𝑙𝑜𝑤  and 𝑀𝑀12

𝑙𝑜𝑤 , are merged 

by selecting the maximum intensity value for corresponding pixels. This approach ensures that the fused image retains the 

most significant features from both inputs while minimizing information loss. 

The fusion process is mathematically defined as: 

𝐹𝑀1𝑚𝑎𝑥_ 𝑟𝑢𝑙𝑒
𝑙𝑜𝑤 = ∑ ∑ 𝑀𝑎𝑥 (𝑀𝑀11

𝑙𝑜𝑤(𝑝, 𝑞) + 𝑀𝑀12
𝑙𝑜𝑤(𝑝, 𝑞))𝑄

𝑞=0
𝑃
𝑝=0   (4) 

Where: 

• 𝑀𝑀11
𝑙𝑜𝑤(𝑝, 𝑞) and 𝑀𝑀12

𝑙𝑜𝑤(𝑝, 𝑞) are the low-frequency coefficient values of the input images at pixel position (𝑝, 𝑞). 

• 𝐹𝑀1𝑚𝑎𝑥_ 𝑟𝑢𝑙𝑒
𝑙𝑜𝑤  is the resultant fused image in the low-frequency domain. 

• 𝑃 and 𝑄 represent the dimensions of the images. 

This fusion ensures that for each pixel, the highest intensity value from the two input images is preserved, capturing the most 

relevant structural details. 

The schematic representation of this fusion model highlights its simplicity and effectiveness in integrating information from 

the input images, emphasizing areas with significant low-frequency content while preparing the data for subsequent stages 

in the image processing pipeline. 

3.3 Image Reconstruction by Inverse Optimal DTCWT 

The image reconstruction process utilizes the Inverse Optimized DTCWT (𝐼𝑛𝑣_𝑂𝑝𝑡𝐷𝑇𝐶𝑊𝑇) to rebuild the fused image 

from its decomposed high and low-frequency components. The reconstruction process is mathematically represented by: 

𝐼𝑅1(𝑅𝑀1ℎ𝑖𝑔ℎ , 𝑅𝑀1𝑙𝑜𝑤) = 𝐼𝑛𝑣_𝑂𝑝𝑡𝐷𝑇𝐶𝑊𝑇(𝐹𝑀1𝑓𝑢𝑧𝑧𝑦
ℎ𝑖𝑔ℎ

, 𝐹𝑀1𝑚𝑎𝑥_ 𝑟𝑢𝑙𝑒
𝑙𝑜𝑤 )  (5) 

Where: 

• 𝐼𝑅1 is the reconstructed image. 

• 𝑅𝑀1ℎ𝑖𝑔ℎ  and 𝑅𝑀1𝑙𝑜𝑤  represent the high and low-frequency components of the reconstructed image. 

• 𝐹𝑀1𝑓𝑢𝑧𝑧𝑦
ℎ𝑖𝑔ℎ

 and 𝐹𝑀1𝑚𝑎𝑥_ 𝑟𝑢𝑙𝑒
𝑙𝑜𝑤  are the high and low-frequency fused images obtained from the previous stages. 

This process ensures that the final fused image preserves both the detailed high-frequency features and the structural low-

frequency features. 

3.4 Proposed EMPO Algorithm 

The Enhanced Marine Predators Optimization (EMPO) algorithm is introduced to overcome limitations of the conventional 

MPO algorithm, enhancing convergence rates and handling optimization challenges effectively. EMPO is used to optimize 

parameters like the number of decomposition levels in DTCWT and hidden neurons in DNN for better fusion performance. 

The position update of prey in EMPO is computed as: 

𝑅⃗ 𝑖 =
(((𝐹𝑑∗2)+𝑃𝑖)𝑇𝑐)

𝑁𝑝𝑝
                     (6) 
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Where: 

• 𝐹𝑑 = 0.2, 

• 𝑃𝑖  is a predefined random parameter, 

• 𝑁𝑝𝑝  is the population size, 

• 𝑇𝑐  represents the iteration count. 

The algorithm follows a structured process in three main stages: reconnaissance, exploration, and exploitation. 

Stage 1: Exploration Phase (Reconnaissance): In the exploration phase, the prey's position is updated as: 

𝑅⃗ 𝑣
∗ = 𝑅⃗ 𝑣 + 𝑃⃗ 𝑖 ⋅ 𝑅⃗ 𝑖 ⊗ 𝑅⃗ 𝑖𝑢 ⊗ (𝐹 𝑣 − 𝑅⃗ 𝑖𝑢 ⊗ 𝑅⃗ 𝑣), 𝑇𝑐 ≤

𝑇𝑐𝑚𝑎𝑥

3
  (7) 

Where: 

• 𝑅⃗ 𝑣
∗  is the updated prey position, 

• 𝑅⃗ 𝑣 is the current prey position, 

• 𝑅⃗ 𝑖 is a random vector, 

• 𝑅⃗ 𝑖𝑢 is the Brownian motion vector, 

• 𝐹 𝑣 is the position of the top predator, 

• 𝑇𝑐𝑚𝑎𝑥  is the maximum iteration count. 

Stage 2: Exploitation Phase: During exploitation, prey positions are updated as: 

𝑅⃗ 𝑣
∗ = 𝐹 𝑣 + 𝑃⃗ 𝑖 ⋅ 𝐷𝑇𝑐 ⊗ 𝑅⃗ 𝑖𝑦 ⊗ (𝑅⃗ 𝑖𝑦 ⊗ 𝐹 𝑣 − 𝑅⃗ 𝑣), 𝑇𝑐 ≥

𝑇𝑐𝑚𝑎𝑥

3
  (8) 

Where: 

• 𝑅⃗ 𝑖𝑦  is a random vector from the Levy distribution, 

𝐷𝑇𝑐 = (1 −
𝑇𝑐

𝑇𝑐𝑚𝑎𝑥)
(

2𝑇𝑐

𝑇𝑐𝑚𝑎𝑥)

   (9) 

Stage 3: Hunting Mode (Exploitation): In the final stage, the predators engage in faster movement to update prey positions: 

𝑅⃗ 𝑣
∗ = 𝑅⃗ 𝑣 + 𝑃⃗ 𝑖 ⋅ 𝑅⃗ 𝑖 ⊗ 𝑅⃗ 𝑖𝑢 ⊗ (𝐹 𝑣 − 𝑅⃗ 𝑖𝑢 ⊗ 𝑅⃗ 𝑣),𝑚 ≤

𝑆𝑡

2
  (10) 

𝑅⃗ 𝑣
∗ = 𝐹 𝑣 + 𝑃⃗ 𝑖 ⋅ 𝐷𝑇𝑐 ⊗ 𝑅⃗ 𝑖𝑦 ⊗ (𝑅⃗ 𝑖𝑦 ⊗ 𝐹 𝑣 − 𝑅⃗ 𝑣),𝑚 >

𝑆𝑡

2
  (11) 

Where, 𝑆𝑡 is a threshold parameter. 

The algorithm incorporates environmental factors such as fish aggregating effects to optimize the prey's movement and 

update positions. The fitness of the solutions is evaluated at each iteration. 

Algorithm 1: EMPO Algorithm Pseudocode 

1. Initialize population of prey and predators 

2. While (𝑇𝑐 ≤ 𝑇𝑐𝑚𝑎𝑥) 

     a. Perform fitness comparison and create elite matrix 

     b. Update prey position based on conditions: 

         i. If (𝑇𝑐 ≤ 𝑇𝑐𝑚𝑎𝑥/3)  →  Update position using Equation (6) 

         ii. If (𝑇𝑐 ≤ 2𝑇𝑐𝑚𝑎𝑥/3)  →  Update position using Equation (9) and (10) 

         iii. If ((𝑇𝑐 ≤ 2𝑇𝑐𝑚𝑎𝑥/3) →  Update position using Equation (7) 

     c. Save elite solution and update fitness 

3. Return best solution 
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4. PROPOSED METHODOLOGY 
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Figure 1: Block Diagram for the proposed breast cancer detection and classification 

The proposed methodology for breast cancer detection and classification follows a structured pipeline (Figure 1). The process 

starts with acquiring input images from ultrasound, mammography, or thermography modalities. After preprocessing (image 

enhancement and noise reduction), the DeepLab v3+ architecture is applied for semantic segmentation, isolating the Region 

of Interest (ROI). Feature extraction includes morphological, DWT, LBP, DTCWT, statistical, and EMPO features. These 

features capture shape, frequency-domain, texture, and multi-scale information. Principal Component Analysis (PCA) is 

used for dimensionality reduction. Finally, a cuckoo search-optimized neural network classifier is employed for accurate 

classification of benign or malignant cases. This integrated approach combines image processing, feature extraction, and 

machine learning for effective breast cancer diagnosis. 

4.1 Image Acquisition from the Dataset 

Diagnostic images are obtained from datasets containing ultrasound (US), mammography (MG), and thermography (TG) 

images for breast cancer detection. The acquired image data 𝐼 is represented as: 

𝐼𝑛,𝑚,𝑐 ∈ ℝ𝐻×𝑊×𝐶     (12) 

Where 𝐻 and 𝑊 are the image dimensions, and 𝐶 is the number of channels. The images are from various sources: 

• Ultrasound (𝐼𝑈𝑆): Tissue reflectivity with speckle noise. 

• Mammography (𝐼𝑀𝐺): High contrast for dense tissues. 

• Thermography (𝐼𝑇𝐺): Infrared images showing temperature variations. 

4.2 DeepLab v3+ Architecture-based Semantic Segmentation for ROI 

DeepLab v3+ is used for segmenting the region of interest (ROI). The input image 𝐼 is: 

𝐼 ∈ ℝ𝐻×𝑊×𝐶  (13) 

Atrous Convolution helps capture multi-scale features: 

𝑦[𝑖] = ∑ 𝑥[𝑖 + 𝑟 ⋅ 𝑘] ⋅ 𝑤[𝑘]𝐾
𝑘=1   (14) 

Where: 

• 𝑥 is the input feature map. 

• 𝑤 are the convolutional weights. 

• 𝐾 is the filter size. 

• 𝑟 is the dilation rate. 
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Encoder (ASPP) extracts multi-scale features: 

ASPP(𝑓) = {𝑓1, 𝑓2, … , 𝑓𝑛}  (15) 

Where 𝑓𝑖 is the feature map extracted at a specific scale using dilation rate 𝑟𝑖. The combined features are given by: 

𝑓𝐴𝑆𝑃𝑃 = concat(𝑓1, 𝑓2, … , 𝑓𝑛)  (16) 

Decoder refines the segmentation output: 

𝑂 = 𝜎(𝑊 ∗ 𝑓𝐴𝑆𝑃𝑃 + 𝑏)  (17) 

Where: 

• 𝑊 and 𝑏 are the weights and biases. 

• 𝜎 is the softmax activation function applied pixel-wise to produce class probabilities. 

Final Mask for binary segmentation: 

𝑀𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑗) = {
1 𝑖𝑓 𝑃(𝐼(𝑖, 𝑗)) > 𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
  (18) 

Where 𝑃(𝐼(𝑖, 𝑗)) is the predicted probability for pixel (𝑖, 𝑗). 

ROI Extraction: 

𝑅𝑂𝐼(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) ⋅ 𝑀𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑗)  (19) 

DeepLab v3+ enables precise segmentation and ROI extraction for breast cancer detection. 

4.3 Features Extraction 

Feature extraction isolates meaningful information from diagnostic images for accurate classification. It involves statistical, 

frequency-domain, and texture features, with optimization techniques like EMPO improving feature selection for enhanced 

diagnostic performance. 

4.3.1 Morphological Operations-based Statistical Features 

Morphological operations analyze the geometric properties of the ROI. Key features include: 

• Area (𝐴): 

𝐴 = ∑ 1(𝑥,𝑦)∈𝐼𝑅𝑂𝐼
  (20) 

Where (𝑥, 𝑦) are pixels within 𝑅𝑂𝐼. 

• Perimeter (𝑃): 

𝑃 = ∑ 1(𝑥,𝑦)∈𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐼𝑅𝑂𝐼)   (21) 

• Centroid (𝐶): 

𝐶𝑥 =
∑ 𝑥(𝑥,𝑦)∈𝐼𝑅𝑂𝐼

𝐴
, 𝐶𝑦 =

∑ 𝑦(𝑥,𝑦)∈𝐼𝑅𝑂𝐼

𝐴
  (22) 

• Eccentricity (𝐸): 

𝐸 = √1 −
𝑏2

𝑎2  (23) 

Where 𝑎 and 𝑏 are the lengths of the major and minor axes of the ellipse fitting the ROI. 

• Compactness (𝐶𝑝): 

𝐶𝑝 =
𝑃2

4𝜋𝐴
  (24) 

These features form a statistical vector 𝑆: 

𝑆 = [𝐴, 𝑃, 𝐶𝑥 , 𝐶𝑦, 𝐸, 𝐶𝑝]  (25) 

4.3.2 Discrete Wavelet Transform (DWT) Feature Extraction 

DWT decomposes the image into multiple resolution sub-bands, capturing both spatial and frequency-domain information. 

The transformation of image 𝐼 produces sub-bands: approximation (A), horizontal (H), vertical (V), and diagonal (D). The 

2D-DWT is defined as: 

𝑊(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑚, 𝑛) ⋅ 𝜓𝑥,𝑦(𝑚, 𝑛)𝑛−1
𝑛=0

𝑀−1
𝑚=0   (26) 
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At level 𝑙, coefficients are: 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛: 𝐴𝑙 = 𝐿𝑜𝑤𝐻 ∗ 𝐿𝑜𝑤𝑉  

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙: 𝐻𝑙 = 𝐻𝑖𝑔ℎ𝐻 ∗ 𝐿𝑜𝑤𝑉  

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙: 𝑉𝑙 = 𝐿𝑜𝑤𝐻 ∗ 𝐻𝑖𝑔ℎ𝑉  

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙: 𝐷𝑙 = 𝐻𝑖𝑔ℎ𝐻 ∗ 𝐻𝑖𝑔ℎ𝑉   (27) 

Energy, entropy, and mean are computed for each sub-band: 

• Energy: 

𝐸 = ∑ |𝑊(𝑖, 𝑗)|2𝑖,𝑗   (28) 

• Entropy: 

𝐻 = −∑ 𝑃(𝑖, 𝑗) log(𝑃(𝑖, 𝑗))𝑖,𝑗   (29) 

• Mean: 

𝜇 =
∑ 𝑊(𝑖,𝑗)𝑖,𝑗

𝑁
  (30) 

4.3.3 Local Binary Patterns (LBP) Texture Features 

LBP captures local texture patterns by encoding spatial relationships between pixels. For each pixel 𝐼(𝑝) in a neighborhood 

of 𝑃 pixels: 

𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐) = ∑ 𝑠(𝐼(𝑝) − 𝐼𝑐) ⋅ 2𝑝𝑃−1
𝑝=0   (31) 

Where: 

𝑠(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

  (32) 

The LBP histogram 𝐻𝐿𝐵𝑃  is: 

𝐻𝐿𝐵𝑃(𝑘) = ∑ 𝛿(𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐) − 𝑘)(𝑥𝑐,𝑦𝑐)   (33) 

Where 𝛿 is the Kronecker delta function. 

4.3.4 EMPO-Optimized Dual-Tree Complex Wavelet Transform (DTCWT) Features 

DTCWT decomposes the image into real and imaginary parts at different scales and orientations, offering shift-invariance 

and directionality. At level 𝑙, the DTCWT coefficients are: 

𝑊𝑙,𝑜 = 𝑊𝑟𝑒𝑎𝑙,𝑙,𝑜 + 𝑗 ⋅ 𝑊𝑖𝑚𝑎𝑔,𝑙,𝑜  (34) 

The EMPO algorithm optimizes feature selection from DTCWT coefficients. The raw feature vector 𝐹𝑟𝑎𝑤 is: 

𝐹𝑟𝑎𝑤 = [𝑊𝑙,𝑜]  (35) 

EMPO updates the feature weights: 

𝑊𝑘 = 𝑊𝑘 + 𝑃𝑖 ⋅ 𝑅𝑖 ⋅ (𝐹𝑒𝑙𝑖𝑡𝑒 − 𝑊𝑘)  (36) 

Where 𝐹𝑒𝑙𝑖𝑡𝑒  is the best feature vector found. The optimized feature vector FEMPOFEMPO is: 

𝐹𝐸𝑀𝑃𝑂 = [𝑊𝑜𝑝𝑡]  (37) 

4.4 Feature Combination and Dimension Reduction using PCA 

The feature extraction process yields three feature categories: 

• Morphological Operations-based Features 𝐹𝑀𝑂 

• DWT and LBP Features 𝐹𝐷𝑊𝑇+𝐿𝐵𝑃 

• EMPO-Optimized DTCWT Features 𝐹𝐷𝑇𝐶𝑊𝑇 

4.4.1 Feature Fusion for PCA 

The DWT and LBP features are concatenated: 

𝐹𝐷𝑊𝑇+𝐿𝐵𝑃 = [𝐹𝐷𝑊𝑇 , 𝐹𝐿𝐵𝑃]  (38) 

Where 𝐹𝐷𝑊𝑇 ∈ ℝ𝑛1  and 𝐹𝐿𝐵𝑃 ∈ ℝ𝑛2 , resulting in 𝐹𝐷𝑊𝑇+𝐿𝐵𝑃 ∈ ℝ𝑛1+𝑛2 . Here 𝑛1 and 𝑛2 represent the number of features 

extracted from DWT and LBP, respectively. 
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Principal Component Analysis (PCA) reduces the dimensionality of 𝐹𝐷𝑊𝑇+𝐿𝐵𝑃 . The combined feature matrix 𝑋 is: 

𝑋 =

[
 
 
 
 
𝑓1,1

𝑓2,1
.
..

𝑓𝑚,1

  

𝑓1,2

𝑓2,2
.
..

𝑓𝑚,2

  

.

..

.

.

  

.

..

.

.

  

.

..

.

.

  

𝑓1,𝑝

𝑓2,𝑝
.
..

𝑓𝑚,𝑝]
 
 
 
 

   (39) 

The covariance matrix Σ is: 

Σ =
1

M
𝑋𝑇𝑋  (40) 

PCA performs Eigen decomposition: 

Σ𝑣𝑖 = 𝜆𝑖𝑣𝑖  (41) 

Where 𝑣𝑖 are eigenvectors and 𝜆𝑖 are eigenvalues. The data is projected onto the top 𝑘 components: 

𝑍 = 𝑋𝑊𝑘  (42) 

The reduced feature vector is: 

𝐹𝑃𝐶𝐴 = 𝑍  (43) 

4.4.2 Final Feature Combination 

After PCA, the reduced vector 𝐹𝑃𝐶𝐴 is combined with 𝐹𝑀𝑂 and 𝐹𝐷𝑇𝐶𝑊𝑇 to form the final feature vector: 

𝐹𝐹𝑖𝑛𝑎𝑙 = [𝐹𝑀𝑂 , 𝐹𝐷𝑇𝐶𝑊𝑇 , 𝐹𝑃𝐶𝐴]  (44) 

Where: 

• 𝐹𝑀𝑂 ∈ ℝ𝑛𝑀𝑂   contains morphological statistical features. 

• 𝐹𝐷𝑇𝐶𝑊𝑇 ∈ ℝ𝑛𝐷𝑇𝐶𝑊𝑇  contains EMPO-optimized DTCWT features. 

• 𝐹𝑃𝐶𝐴 ∈ ℝ𝑘 contains the dimensionally reduced DWT and LBP features. 

The final feature vector 𝐹𝐹𝑖𝑛𝑎𝑙  is: 

𝐹𝐹𝑖𝑛𝑎𝑙 = [𝑓𝑀𝑂,1, 𝑓𝑀𝑂,2, … , 𝑓𝑀𝑂,𝑛𝑀𝑂
, 𝑓𝐷𝑇𝐶𝑊𝑇,1, … , 𝑓𝐷𝑇𝐶𝑊𝑇,𝑛𝐷𝑇𝐶𝑊𝑇

, 𝑧1, 𝑧2, … , 𝑧𝑘]  (45) 

This vector is the final input to the classification phase. 

4.5 Cuckoo Search-Optimized Neural Network Classifier 

The Cuckoo Search Algorithm (CSA), inspired by cuckoo birds’ parasitism behavior, is used here to optimize a Neural 

Network (NN) classifier for breast cancer diagnosis. CSA tunes NN parameters like weights, biases, and learning rate to 

enhance classification accuracy between benign and malignant cases. 

4.5.1 Neural Network Classifier 

The NN processes the final combined feature vector, 𝐹𝐹𝑖𝑛𝑎𝑙 , and maps it to a binary output. It consists of: 

• Input Layer: The input layer receives the feature vector  𝐹𝐹𝑖𝑛𝑎𝑙 , represented as: 

𝐹𝐹𝑖𝑛𝑎𝑙 = [𝑓1, 𝑓2, … , 𝑓𝑛], 𝐹𝐹𝑖𝑛𝑎𝑙 ∈ ℝ𝑛 

(46) 

Where 𝑛 is the dimensionality of the feature vector. Each element 𝑓𝑖 represents a specific extracted feature. 

• Hidden Layers: These layers process the input using a series of neurons connected via trainable weights and biases. 

The output of a hidden neuron is calculated as: 

ℎ𝑖 = 𝑔(∑ 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑛
𝑗=1 ), 𝑖 = 1,2, … , 𝐻  (47) 

Here: 

▪ 𝑤𝑖𝑗: Weight of the connection between input 𝑥𝑗 and hidden neuron ℎ𝑖. 

▪ 𝑏𝑖: Bias for hidden neuron ℎ𝑖. 

▪ 𝑔(⋅): Activation function (softmax), which introduces non-linearity. 

• Output Layer: The final layer maps the hidden layer output to the probability of each class (benign or malignant). The 

predicted probability for class 𝑘 is given by: 
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𝑦̂𝑘 = 𝜎(∑ 𝑤𝑘𝑖ℎ𝑖 + 𝑏𝑘
𝐻
𝑖=1 ),   𝑘 ∈ {0,1}  (48) 

Where 𝜎(⋅) is the softmax activation function. 

NN training optimizes parameters using gradient-based methods, but these can struggle with local minima and slow 

convergence. CSA is employed for global optimization. 

4.5.2 Optimization Using Cuckoo Search Algorithm (CSA) 

CSA optimizes NN parameters through the following steps: 

• Initialization: Population of candidate solutions 𝑆 = [𝑤𝑖𝑗 , 𝑏𝑖 , 𝜂], with 𝑆 ∈ ℝ𝑑, where 𝑑 is the total number of 

parameters. 

• Fitness Function: Evaluates solution quality based on classification accuracy: 

𝑓(𝑆) =
1

𝑀
∑ 1(𝑦̂𝑖 = 𝑦𝑖)

𝑚
𝑖=1    (49) 

Where 1(⋅) is the indicator function. 

• Levy Flight: Generates new solutions via Levy flight: 

𝑆𝑛𝑒𝑤 = 𝑆𝑜𝑙𝑑 + 𝛼 ⋅ 𝐿(𝑠)   (50) 

Here: 

▪ 𝛼 > 0: Step size scaling factor. 

▪ 𝐿(𝑠): Step size drawn from a Levy distribution: 

𝐿(𝑠) ∼
𝛽Γ(1+𝛽) sin(

𝜋𝛽

2
)

𝑠1+𝛽 ,   1 < 𝛽 ≤ 3    (51) 

• Selection and Abandonment: Retains the better solution: 

𝑆 = {
𝑆𝑛𝑒𝑤 , 𝑖𝑓 𝑓(𝑆𝑛𝑒𝑤) > 𝑓(𝑆𝑜𝑙𝑑)

𝑆𝑜𝑙𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
   (52) 

A fraction 𝑝𝑎 of the worst solutions is abandoned and replaced with new random solutions: 

𝑆𝑛𝑒𝑤 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑆𝑚𝑖𝑛 , 𝑆𝑚𝑎𝑥)  (53) 

• Convergence: CSA iteratively updates solutions until convergence criteria (maximum iterations or target fitness) are 

met. 

Final Optimized Neural Network: The final optimized parameters 𝑆∗are used to train the NN. The classification output for 

a test sample is: 

𝑦̂ = argmax
𝑘

𝑦̂𝑘 ,   𝑘 ∈ {0,1}  (54) 

Where 𝑦̂𝑘 is the probability for class 𝑘. 

5. RESULTS AND DISCUSSION 

5.1 Datasets 

5.1.1 Breast Cancer Thermography Dataset 

The Breast Cancer Thermography Dataset is an essential resource in breast cancer research, utilizing thermal imaging to 

analyze and detect breast-related pathologies. The dataset features thermal images of the female thoracic region, acquired 

under consistent and controlled conditions to ensure reliability and accuracy [20]. 

The imaging process took place in a medical office measuring 3.20 meters in width, 4.14 meters in length, and 2.40 meters 

in height. The environment was regulated with a temperature range of 22–24°C and a relative humidity level of 45–50%. To 

minimize external interference, artificial lighting was avoided. The FLIR A300 thermal camera, positioned 1 meter away 

from the subject, captured the thermal images [20]. 

To maintain quality and adherence to standards, the dataset followed the American Academy of Thermology (AAT) 

guidelines. Patients underwent preparation to eliminate factors that might impact skin thermal distribution. Each individual’s 

thoracic region was captured from three angles—anterior, left oblique, and right oblique—to provide comprehensive 

coverage of the area of interest [20]. 
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Figure 2: Sample Images from Breast Cancer Thermography Dataset [20] 

The dataset includes thermal images of patients aged 18 to 81 years, reflecting a wide spectrum of breast pathologies. This 

diversity allows researchers to explore a range of conditions affecting the breast. Data collection spanned two years (2021–

2022), introducing temporal variability to the dataset. 

This resource is invaluable for researchers exploring breast cancer detection, thermal imaging analysis, and machine learning 

applications in healthcare. It offers significant opportunities to investigate thermography’s potential in clinical diagnostics 

and is publicly available for access via the Mendeley platform. 
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5.1.2 Breast Ultrasound Dataset 

Breast cancer remains one of the leading causes of mortality among women worldwide, highlighting the critical importance 

of early detection to reduce fatalities. The Breast Ultrasound Dataset [21] offers a valuable resource for advancing research 

in breast cancer diagnosis through ultrasound imaging. This dataset is particularly useful for machine learning applications 

aimed at improving the classification, detection, and segmentation of breast cancer. 

The dataset is categorized into three primary classes: normal, benign, and malignant images. These categories allow for a 

comprehensive analysis of breast abnormalities, aiding in the development of algorithms that differentiate between healthy 

and pathological conditions. Breast ultrasound imaging is a non-invasive and effective diagnostic tool, and its use in this 

dataset ensures accessibility for various research applications. 

Data collection occurred in 2018 and involved 600 female patients aged between 25 and 75 years. This diverse age range 

ensures the dataset captures a wide spectrum of breast conditions, contributing to its robustness for both clinical and academic 

studies. The dataset comprises 780 ultrasound images, each with an average resolution of 500x500 pixels, providing 

sufficient detail for machine learning and image processing tasks. All images are stored in PNG format, ensuring high quality 

and compatibility across platforms [21]. 

Each image in the dataset is accompanied by its corresponding ground truth annotations, enabling precise validation of 

classification and segmentation models. These annotations are crucial for supervised learning approaches, where accurate 

labeling is required to train algorithms effectively. The inclusion of ground truth images enhances the dataset's usability for 

tasks that demand detailed analysis of breast tissue structures. 

 

Normal     Benign     Malignant 

Figure 3: Sample Images from Breast Ultrasound Dataset [21] 

This dataset has been extensively described in the publication by the authors of [21], titled Dataset of Breast Ultrasound 

Images, published in Data in Brief. It is a well-documented and peer-reviewed resource that offers a benchmark for 

developing and testing novel algorithms for breast cancer research. The dataset provides an essential foundation for 

researchers aiming to create innovative solutions for breast cancer detection and management using ultrasound imaging and 

machine learning techniques. 

5.1.3 CBIS-DDSM Mammography Dataset 

The CBIS-DDSM (Curated Breast Imaging Subset of DDSM) is an updated and standardized version of the Digital Database 

for Screening Mammography (DDSM) [22]. The original DDSM consists of 2,620 scanned film mammography studies, 

encompassing a variety of cases including normal, benign, and malignant, all with verified pathology information. This 

robust dataset, combined with its ground truth validation, makes it a valuable resource for the development and testing of 

decision support systems in breast cancer screening. 

The CBIS-DDSM collection represents a carefully curated subset of the DDSM data, selected by a trained mammographer 

to enhance its utility for research and clinical applications. In this updated version, the images have been decompressed and 

converted to DICOM format, ensuring compatibility with modern medical imaging systems. Furthermore, the dataset 

includes updated region-of-interest (ROI) segmentation and bounding boxes, as well as detailed pathologic diagnoses for the 

training data, making it a more refined and standardized resource for breast cancer imaging research [22]. 
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Figure 4: Sample Images from CBIS-DDSM Mammography Dataset [22] 

One of the key challenges in the development of computer-aided detection (CADe) and diagnosis (CADx) systems for 

mammography has been the lack of standardized evaluation datasets. Many algorithms are evaluated on private datasets or 

unspecified subsets of public datasets, making reproducibility and benchmarking difficult. The CBIS-DDSM addresses this 

issue by offering a publicly accessible, well-curated dataset for the mammography research community. While earlier 

datasets such as the DDSM, the Mammographic Imaging Analysis Society (MIAS) database, and the Image Retrieval in 

Medical Applications (IRMA) project have been instrumental, they often fall short in terms of size and accessibility. The 

CBIS-DDSM fills this gap, providing a standardized and comprehensive dataset for advancing mammographic imaging 

research [22]. 

The dataset is available in JPEG format and preserves the resolution of the original DDSM dataset. It occupies 6 GB of 

storage for the image files while the original DDSM dataset is 163 GB. The CBIS-DDSM includes 6,775 studies, 6,775 

series, and 10,239 images, with the modality categorized as MG (mammography). It involves a cohort of 1,566 participants, 

although the metadata may suggest 6,671 participants due to the assignment of multiple patient IDs per participant. For 

example, a single participant ID such as 00038 might have 10 separate IDs detailing specific scans, such as Calc-

Test_P_00038_LEFT_CC or Calc-Test_P_00038_RIGHT_CC_1 [22]. 

The CBIS-DDSM provides a structured and standardized dataset that is instrumental in the development of reproducible and 

comparable decision support systems in mammography. Researchers can find detailed information on the dataset and its 

usage in the associated manuscript available at Nature Scientific Data. This resource ensures that breast cancer imaging 

studies have access to a high-quality, comprehensive dataset to advance research in detection, diagnosis, and treatment 

planning [22]. 

 

https://www.nature.com/articles/sdata2017177
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5.2 Evaluation Parameters 

Global Accuracy:  

𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ (𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖)
𝑁
𝑖=1

  (55) 

Where: 

• 𝑇𝑃𝑖: True positives for class 𝑖. 

• 𝐹𝑃𝑖: False positives for class 𝑖. 

• 𝐹𝑁𝑖: False negatives for class 𝑖. 

• 𝑁: Total number of classes. 

Class Accuracy (Mean Accuracy):  

𝑀𝑒𝑎𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝑁
𝑖=1    (56) 

Intersection over Union (IoU):  

𝐼𝑜𝑈𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
   (57) 

Mean IoU: 

𝑀𝑒𝑎𝑛 𝐼𝑜𝑈 =
1

𝑁
∑ 𝐼𝑜𝑈𝑖

𝑁
𝑖=1    (58) 

Weighted Intersection over Union (Weighted IoU):  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐼𝑜𝑈 =
∑ 𝑤𝑖⋅𝐼𝑜𝑈𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

   (59) 

Where, 𝑤𝑖=Weight for class 𝑖, typically calculated as the proportion of pixels belonging to class 𝑖 in the dataset: 

𝑤𝑖 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐷𝑎𝑡𝑎𝑠𝑒𝑡
   (60) 

Boundary F1 Score (BF Score):  

𝐵𝐹 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅
𝑃⋅𝑅

𝑃+𝑅
   (61) 

Where: 

𝑃 =
𝑇𝑟𝑢𝑒 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑃𝑖𝑥𝑒𝑙𝑠

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑃𝑖𝑥𝑒𝑙𝑠
   (62) 

𝑅 =
𝑇𝑟𝑢𝑒 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑃𝑖𝑥𝑒𝑙𝑠

𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑃𝑖𝑥𝑒𝑙𝑠
   (63) 

Table 1: Evaluation Parameters 

TP (True Positive) Represents the number of cases where the model correctly identifies 

the presence of breast cancer (malignant). 

TN (True Negative) Indicates the number of cases correctly classified as not having breast 

cancer (benign). 

FP (False Positive) Represents the number of cases incorrectly classified as having breast 

cancer when it is actually benign. 

FN (False Negative) Indicates the number of cases where breast cancer is present but the 

model fails to detect it or misclassifies it as benign. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (64) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                    (65) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (66) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
        (67) 
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𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (68) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (69) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
        (70) 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶) =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)
            (71) 

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 =
2(𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃)

(𝑇𝑃+𝐹𝑃)×(𝐹𝑃+𝑇𝑁)+(𝑇𝑁+𝐹𝑁)×(𝐹𝑁+𝑇𝑁)
             (72) 

5.3 Simulation Parameters 

Table 2 presents the simulation parameters used for the Cuckoo Search Algorithm (CSA) and Neural Network (NN) in this 

methodology. The CSA parameters include a population size of 25, 100 maximum iterations, a step size scaling factor of 

1.5, and a Levy distribution parameter of 1.5. For the NN, the input layer size ranges from 50 to 100, with hidden layers of 

64 and 32 neurons, a single output neuron, a softmax activation function, a learning rate of 0.005, a batch size of 32, and 100 

epochs. 

Table 2: Simulation Parameters for Cuckoo Search and Neural Network 

Parameter Value 

Cuckoo Search Algorithm (CSA) 

Population Size 25 

Maximum Iterations 100 

Step Size Scaling Factor 1.5 

Levy Distribution Parameter 1.5 

Neural Network (NN) 

Input Layer Size 50–100 

Hidden Layer Sizes 64, 32 

Output Layer Size 1 

Activation Function Softmax 

Learning Rate 0.005 

Batch Size 32 

Epochs 100 

5.4 Results  

The results section presents the outcomes of the segmentation and evaluation process using the DeepLab v3+ architecture. 

Figures 5 to 7 illustrate the segmentation performance, showing input images, ground truth labels, and the corresponding 

segmentation results. Figures 8 and 9 display contrast-enhanced images used for preprocessing, ensuring better segmentation 

accuracy. 

 

Figure 5: Segmented image using DeepLab v3+ based segmentation 
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Figure 6: Labeled test ultrasound image by DeepLab v3+ based segmentation 

  

(a) Input   (b) Ground Truth   (c) Result  

Figure 7: Segmentation results 

 

 

Figure 8: Contrast enhanced image for the input thermography image-1 

 



Vishakha Dubey, Dr. Shanti Rathore, Dr. Rahul Gedam 
 

pg. 976 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 1s 
 

 

Figure 9: Contrast enhanced image for the input thermography image-2 

The evaluation metrics in Table 3 highlight the effectiveness of the method, achieving a global accuracy of 96.90%, a mean 

accuracy of 94.71%, and a mean IoU of 84.81%, demonstrating the robustness and precision of the proposed segmentation 

approach. 

Table 3: Results of Evaluation Metrics for Semantic Segmentation 

Metric Value 

Global Accuracy 0.96901 

Mean Accuracy 0.94712 

Mean IoU 0.84813 

Weighted IoU 0.94467 

Mean BF Score 0.59684 

Table 4: Comparative Analysis of Results for Various Feature Extraction Methods Using Breast Cancer 

Thermography Dataset 

Parameter Morphological 

Features 

DWT 

Features 

LBP Texture 

Features 

EMPO-Optimized 

DTCWT 

Hybrid 

Features with 

PCA 

Accuracy 94.73% 95.21% 95.78% 96.31% 96.91% 

Error Rate 5.27% 4.79% 4.22% 3.69% 3.09% 

Sensitivity 94.81% 95.15% 95.83% 96.40% 96.95% 

Specificity 96.72% 97.10% 97.45% 97.85% 98.12% 

Precision 94.86% 95.31% 95.92% 96.55% 97.02% 

FPR 3.28% 2.90% 2.55% 2.15% 1.88% 

F-Score 94.78% 95.23% 95.85% 96.48% 96.99% 

MCC 93.95% 94.67% 95.12% 95.73% 96.21% 

Kappa Statistics 91.02% 92.55% 93.11% 94.36% 95.02% 

Table 4 presents a comparative analysis of various feature extraction methods applied to the Breast Cancer Thermography 

dataset, evaluating their performance across multiple metrics. The methods compared include Morphological Features, DWT 

Features, LBP Texture Features, EMPO-Optimized DTCWT, and Hybrid Features with PCA. The Hybrid Features with 

PCA method achieved the highest performance across all metrics, with an accuracy of 96.91%, a sensitivity of 96.95%, and 

a specificity of 98.12%. It also demonstrated the lowest error rate (3.09%), FPR (1.88%), and the highest F-score (96.99%), 

MCC (96.21%), and Kappa statistics (95.02%). In contrast, the Morphological Features method had the lowest performance 

in terms of accuracy (94.73%) and other evaluation measures. The results indicate that the Hybrid Features with PCA method 

outperforms all other feature extraction techniques, providing the most balanced and effective approach for breast cancer 

detection using thermographic data. 
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Table 5: Comparative Analysis of Results for Various Feature Extraction Methods Using Breast Ultrasound 

Dataset  

Parameter Morphological 

Features 

DWT 

Features 

LBP 

Texture 

Features 

EMPO-

Optimized 

DTCWT 

Hybrid 

Features with 

PCA 

Accuracy 94.51% 95.08% 95.67% 96.14% 96.72% 

Error Rate 5.49% 4.92% 4.33% 3.86% 3.28% 

Sensitivity 94.63% 95.01% 95.72% 96.22% 96.80% 

Specificity 96.48% 96.93% 97.34% 97.72% 98.05% 

Precision 94.70% 95.21% 95.83% 96.37% 96.89% 

FPR 3.52% 3.07% 2.66% 2.28% 1.95% 

F-Score 94.58% 95.14% 95.76% 96.30% 96.84% 

MCC 93.71% 94.50% 95.02% 95.62% 96.13% 

Kappa 

Statistics 

90.85% 92.41% 93.03% 94.18% 94.87% 

Table 5 provides a comparative analysis of various feature extraction methods applied to the Breast Ultrasound dataset, 

evaluating their performance across several key metrics. The Hybrid Features with PCA method showed the best performance 

overall, achieving the highest accuracy (96.72%), sensitivity (96.80%), specificity (98.05%), precision (96.89%), F-score 

(96.84%), MCC (96.13%), and Kappa statistics (94.87%), while maintaining the lowest error rate (3.28%) and FPR (1.95%). 

The Morphological Features method, on the other hand, exhibited the lowest performance across most metrics, with an 

accuracy of 94.51% and an error rate of 5.49%. The results highlight that the Hybrid Features with PCA method outperforms 

all other feature extraction techniques, providing the most balanced and effective solution for breast cancer detection using 

ultrasound data. 

Table 6: Comparative Analysis of Results for Various Feature Extraction Methods Using Mammography Images 

Dataset 

Parameter Morphological 

Features 

DWT Features LBP 

Texture 

Features 

EMPO-

Optimized 

DTCWT 

Hybrid 

Features 

with PCA 

Accuracy 94.83% 95.36% 95.89% 96.45% 97.12% 

Error Rate 5.17% 4.64% 4.11% 3.55% 2.88% 

Sensitivity 94.90% 95.30% 95.92% 96.53% 97.18% 

Specificity 96.85% 97.29% 97.61% 98.02% 98.35% 

Precision 94.96% 95.45% 96.02% 96.67% 97.24% 

FPR 3.15% 2.71% 2.39% 1.98% 1.65% 

F-Score 94.88% 95.37% 95.95% 96.60% 97.20% 

MCC 94.08% 94.87% 95.32% 95.92% 96.40% 

Kappa Statistics 91.12% 92.70% 93.38% 94.62% 95.36% 

Table 6 presents a comparative analysis of various feature extraction methods applied to the Mammography Images dataset, 

evaluating their performance across several performance metrics. Among these, the Hybrid Features with PCA method 

outperformed all others, achieving the highest accuracy (97.12%), sensitivity (97.18%), specificity (98.35%), precision 

(97.24%), F-score (97.20%), MCC (96.40%), and Kappa statistics (95.36%), while also maintaining the lowest error rate 

(2.88%) and FPR (1.65%). In comparison, the Morphological Features method demonstrated the lowest performance with 

an accuracy of 94.83% and a higher error rate (5.17%). These results indicate that the Hybrid Features with PCA method 

provides the most robust and effective approach for breast cancer detection in mammographic images, offering the best 

overall balance of sensitivity, specificity, and precision across all evaluated metrics. 
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Table 7: Comparative Analysis of Neural Network and Cuckoo Search-Optimized Neural Network Classifier 

 

 

Parameter 

Breast Cancer 

Thermography Dataset 

Breast Ultrasound 

Dataset 

Mammography Images 

Dataset 

NN CSA-NN NN CSA-

NN 

NN CSA-NN 

Accuracy 95.78% 96.91% 95.02% 96.72% 96.24% 97.12% 

Error Rate 4.22% 3.09% 4.98% 3.28% 3.76% 2.88% 

Sensitivity 95.84% 96.95% 95.10% 96.80% 96.32% 97.18% 

Specificity 97.25% 98.12% 96.89% 98.05% 97.66% 98.35% 

Precision 96.21% 97.02% 95.47% 96.89% 96.72% 97.24% 

FPR 2.75% 1.88% 3.11% 1.95% 2.34% 1.65% 

F-Score 95.86% 96.99% 95.12% 96.84% 96.34% 97.20% 

MCC 95.14% 96.21% 94.32% 96.13% 95.69% 96.40% 

Kappa Statistics 93.85% 95.02% 92.74% 94.87% 94.35% 95.36% 

Table 7 presents a comparative analysis between the standard NN and the CSA-NN classifier for breast cancer detection 

across three different datasets. The results clearly show that the CSA-NN outperforms the NN in all performance metrics, 

including accuracy, sensitivity, specificity, precision, F-score, MCC, and Kappa statistics. For instance, in the Breast Cancer 

Thermography dataset, the CSA-NN achieves an accuracy of 96.91% compared to 95.78% for the NN, along with improved 

sensitivity (96.95% vs. 95.84%) and specificity (98.12% vs. 97.25%). The CSA-NN also demonstrates a reduction in error 

rate (3.09% vs. 4.22%) and FPR (1.88% vs. 2.75%). This trend is consistent across all datasets, with the CSA-NN improving 

accuracy from 95.02% to 96.72% in the Breast Ultrasound dataset, and from 96.24% to 97.12% in the Mammography dataset. 

The optimization through the Cuckoo Search algorithm aids in fine-tuning the NN parameters, which enhances its ability to 

find the optimal global solution, thus improving the classifier's performance. The CSA optimization not only reduces 

overfitting but also leads to a more generalized model, effectively boosting classification results across multiple breast cancer 

detection methods. 

Table 8: Comparative analysis of proposed work with previous research works 

Authors Dataset Method used Accuracy Precision Recall F1-Score 

 

[23] 

Breast 

Ultrasound 

Dataset 

Softmax Classifier 95.82% -- -- 93.99% 

Linear SVM 91.29% -- -- 89.63% 

Bayesian classifier 89.01% -- -- 87.77% 

[24] CBIS-DDSM 

Mammography 

Dataset 

Faster R-CNN 94.2% 95.2% -- -- 

 

[25] 

CBIS-DDSM 

Mammography 

Dataset 

VGG-19 87.83% -- -- -- 

 

[26] 

Breast Cancer 

Thermography 

Dataset 

ResNet18 93.3% -- 88.0% -- 

GoogleNet 79.33% -- 84.0% -- 

AlexNet 50.0% -- 0.0% -- 

Proposed Work Breast Cancer 

Thermography 

Dataset 

DeepLab v3+ 

Architecture-based 

Semantic 

Segmentation  with 

Combined Hybrid 

Features and CSA-NN 

96.91% 97.02% 96.95% 96.99% 

Proposed Work Breast 

Ultrasound 

Dataset 

DeepLab v3+ 

Architecture-based 

Semantic 

Segmentation  with 

96.72% 96.89% 96.80% 96.84% 
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Combined Hybrid 

Features and CSA-NN 

Proposed Work CBIS-DDSM 

Mammography 

Dataset 

DeepLab v3+ 

Architecture-based 

Semantic 

Segmentation  with 

Combined Hybrid 

Features and CSA-NN 

97.12% 97.24% 97.18% 97.20% 

The proposed methodology demonstrates superior performance compared to previous research across multiple datasets, 

achieving higher accuracy, precision, recall, and F1-score. By combining DeepLab v3+ architecture-based semantic 

segmentation with hybrid features and CSA-NN, the approach significantly enhances breast cancer detection, outperforming 

traditional methods as indicated in Table 8. 

6. CONCLUSION 

The research presented a novel hybrid methodology combining segmentation and feature extraction techniques to enhance 

breast cancer detection using thermographic data. Initially, semantic segmentation was performed using DeepLab v3+ to 

accurately isolate the regions of interest (ROIs) from the thermograms. This enabled a more focused analysis of the relevant 

features, crucial for accurate classification. To further refine the feature set, various techniques were employed, including 

Discrete Wavelet Transform (DWT), Local Binary Patterns (LBP), and Dual-Tree Complex Wavelet Transform (DTCWT). 

These methods provided robust, high-quality feature representations that captured essential patterns in the thermographic 

images, improving the overall analysis. Moreover, Principal Component Analysis (PCA) was applied to reduce the 

dimensionality of the extracted features, which enhanced computational efficiency without sacrificing critical information. 

This dimensionality reduction step played a crucial role in improving the performance of the classifier by minimizing 

computational load and mitigating the risk of overfitting. The Cuckoo Search-Optimized Neural Network (CSA-NN) 

classifier was then utilized to classify the extracted features. This hybrid approach not only addressed common challenges in 

machine learning, such as class imbalance and feature redundancy, but also optimized the network's parameters for better 

accuracy and reliability. The performance of the CSA-NN classifier was exceptional, achieving an impressive accuracy of 

96.91% on the Breast Cancer Thermography Dataset. This marked a significant improvement over previous methods, as the 

proposed model outperformed earlier approaches in key performance metrics such as sensitivity, specificity, and precision. 

This methodology demonstrates the potential of combining state-of-the-art segmentation and feature extraction techniques 

with advanced optimization algorithms to improve the accuracy and efficiency of breast cancer detection using 

thermography. The results highlight the effectiveness of this approach in overcoming existing limitations and offer a 

promising solution for early and accurate breast cancer diagnosis. 
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