
Journal of Neonatal Surgery 

ISSN(Online): 2226-0439 
Vol. 14, Issue 4s (2025) 
https://www.jneonatalsurg.com 

 

 

   
 

pg. 11 
 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 4s 

 

Parkinsons Disease Prediction With Spiral Drawings and Wave Frequency Using Deep 

Conformal Neural Networks 

 

Mrs. S. SasiRekha1, Dr. R. Shankar2, Dr. S. Duraisamy3 

1Research Scholar,  
2Associate Professor,  
3Assisstant Professor 
123Department of Computer Science, 
123Chikkanna Government Arts College, Tirupur, India 
 

00Cite this paper as: Mrs. S. SasiRekha, Dr. R. Shankar, Dr. S. Duraisamy, (2025) Parkinsons Disease Prediction With Spiral 

Drawings and Wave Frequency Using Deep Conformal Neural Networks. Journal of Neonatal Surgery, 14 (4s), 11-22. 

ABSTRACT 

In this study, present a system that combines two independent data sources wave frequency and spiral drawing picture 

datasets to improve prediction accuracy for Parkinson's disease (PD) diagnosis. A complete data fusion technique is used to 

combine information from both modalities, resulting in a more robust dataset. To improve prediction reliability, we present 

Deep Conformal Neural Networks (DCNN), which not only forecast PD status but also offer confidence ratings for each 

prediction, resulting in increased transparency and interpretability. The technology uses voice recordings for frequency 

analysis and picture data from medical scans for visual analysis. The DCNN model successfully processes and classifies 

different data types by using sophisticated deep learning methods such as convolutional operations, pooling layers, and 

activation functions. The model's performance is assessed using a variety of measures, including accuracy, precision, recall, 

and F-measure. The DCNN surpasses standard machine learning models, with 99% accuracy, 98% precision, 99% recall, 

and 96% F-measure, exhibiting greater diagnostic skills for Parkinson's disease diagnosis. These results emphasize DCNNs' 

potential for enhancing the reliability of early Parkinson's disease diagnosis, hence facilitating more effective clinical 

decision-making. 
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1. INTRODUCTION 

After Alzheimer's disease (AD), Parkinson's disease (PD) is said to be the second most often occurring neurological illness 

of the central nervous system. PD targets older adults primarily with ages of 60 years or more. Including their death, 

neurodegenerative illnesses cause structural and functional loss of the neurons. Second frequency in neurodegenerative 

diseases is Parkinson's disease (PD). First mentioned in James Parkinson's 1817 publication "An Essay on the Shaking Palsy," 

PD. Many of the created Machine Learning and Deep Learning models by --different researchers are seen as automated 

approaches facilitating Parkinson's disease detection Ali et al. (2019). Though certain medications assist to reduce the 

symptoms and preserve the quality of life, there is no correct therapy for PD diagnosis. Those therapies include 

physiotherapy, drugs, and surgery. Parkinson's diagnosed using cardinal motor indications of stiffness, tremor, and 

instability. Examining this face expression is more consistent and simpler as well as it utilized widely in telemedicine, thus 

affecting the patents on the faraway areas. 

Mostly affecting motor skills including movement, balance, and coordination, Parkinson's disease (PD) is a progressive 

neurological illness. Using several modalities including voice signals, gait patterns, handwriting, and face recognition, recent 

developments in machine learning (ML), deep learning (DL), and feature engineering greatly improve early identification 

and prediction of Parkinson's disease. 

Increasing amount of studies has concentrated on PD identification utilizing handwriting and art patterns. We developed a 

robust cascaded learning system using feature selection and adaptive boosting, which demonstrated remarkable accuracy in 

recognizing Parkinson's disease from handwritten illustrations. In line with this, Karan et al. (2020) used speech signal 

intrinsic mode function-based features for PD prediction, therefore highlighting the possibilities of multi-modal feature 

extraction for precise diagnosis. 
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Advanced neural networks including LSTMs and CNNs have been used recently for PD prediction. Emphasizing the 

potential of speech analysis in neurological diagnostics, Anila et al. (2024) suggested an LSTM-based deep neural network 

model using voice traits to predict neurological illnesses. Further raising prediction accuracy for PD detection, Lilhore et al. 

(2023) presented a hybrid CNN-LSTM model with hyperparameter adjustment. 

Many gait analysis studies have used gait data to evaluate PD degree and progression. While Gurgenidze et al. (2024) 

examined wave train electrical activity patterns to evaluate gait freezing in PD patients, Berke et al. (2022) used CNNs for 

severity prediction utilizing gait characteristics. Furthermore illustrating the possibilities of multimodal techniques, Tunc et 

al. (2020) investigated speech characteristics for evaluating PD degree using extreme gradient boosting models. 

Early diagnosis of EEG data has also benefited from machine learning-based methods like feature selection, genetic 

algorithms, SVM classifiers. For early PD identification, De Oliveira et al. (2020) used machine learning techniques and 

EEG data with partial directed coherence. Moreover, research such those by Kamble et al. (2021) and Saeed et al. (2022) 

have shown how much machine learning improves diagnostic accuracy. 

These findings taken together highlight the encouraging role feature engineering, ML, and DL play in early Parkinson's 

disease diagnosis and progression tracking. These developments in prediction models greatly help to enhance the results of 

interventions and patient care. 

2. BACKGROUND STUDY  

Ali, L., et al. (2019) these authors address Parkinson's disease (PD) identification using handwritten data. Considered data 

was very imbalanced. These authors performed studies to establish data imbalance biases machine learning algorithms. 

Skewed data-trained machine learning models benefit the dominant class. These authors discovered excellent sensitivity but 

low specificity for PD diagnosis since the ill class was the majority and the healthy class was the minority. Their random 

under-sampling method reduced model skewness. The random under-sampling method balanced or optimized training to 

build unbiased models. PD detection accuracy was improved by combining feature selection with machine learning. This 

created Chi2-Adaboost, a cascaded learning system. The recommended cascaded learning system outperformed six others. 

Traditional Adaboost models performed 3.3% better using the cascaded technique. 

Anila, M., et al. (2024) as effectively and early diagnose Parkinson's disease using speech features, the LSTM technique 

seems intriguing. The LSTM model successfully classifies data into PD and non-PD groups by learning complex audio input 

patterns. The standardized and reliable UCI Parkinson's dataset is used to train and evaluate the LSTM model. The dataset's 

quantity of speech data from PD patients and healthy controls provides a solid basis for the model. The model's accuracy, 

precision, recall, and F1 score are used to assess its performance and highlight areas for improvement. The model is highly 

sought after for fast and accurate PD diagnosis due to its 89.23% accuracy rating. Optimize the model's architecture and 

hyperparameters, regularize, and terminate early to minimize over-fitting. Overall, the LSTM-based PD detection method is 

a great tool for early and accurate audio recording PD detection. Early diagnosis and fast intervention enhance Parkinson's 

disease (PD) treatment and quality of life. More hidden layers and hyper-parameter tweaking with varied values enhance the 

divergent LSTM-based approach. 

Anusri, U., et al. (2021) Parkinson's disease (PD) is a neurological ailment with imprecise prediction, posing problems to the 

community. their proposed study identifies facial emotions in PD patients and normal individuals, including sadness, 

happiness, rage, and melancholy. The datasets for this prediction study come from Parkinson's Progression Markers Initiative 

(PPMI), which includes 188 PD patients and 50 healthy individuals for testing and training. Using this dataset, these authors 

used Alex Net and Vgg 16 CNN architecture to obtain accuracy, sensitivity, specificity, F1 score, and area under curve. 

Therefore, Vgg 16 yields 10% more accurate findings than Alex Net. VGG 16 architecture demonstrated 96.5% accuracy, 

93% sensitivity, 96% specificity, 97.7% F1 score, and 95.3% area of curve compared to Alex Net research, making it useful 

for early-stage Parkinson's disease diagnosis in healthcare.  

Aydın, F., & Aslan, Z. (2021) these authors described a novel way to detect Parkinson's disease gait patterns. These authors 

use the vibrations algorithm, a novel ensemble learning method, CART, and HHT, or Hilbert-Huang Transform. HHT, 

OneRAttributeEval, and sixteen statistical functions were used to carefully design and choose features. The proposed model 

has a classification accuracy of 98.7879%, TPR of 98.92%, and TNR of 98.61%. Even with contradicting results, their study 

is more comprehensive and better. These authors found that the heels are a stronger predictor of PD than any other foot-

bottom element in persons with and without the disease. These authors also found that left foot signals give more information 

than right foot signals for categorization and that the L1 signal accounts for 30% of all characteristics. Signal properties such 

amplitudes (A), maximum extreme values (pks), and peak-height values (p) dominated the selected parameters. Nearly half 

of the selected variables were based on basic statistical functions like mean, median, and MAD. Hardware implementation 

is easy with the recommended approach's decreased computational cost. Twenty-four decision tree models were used to 

create their model. Decision trees generate guidelines. 

Chakraborty, S., et al. (2020) Using Ensemble Voting classifiers and Convolutional Neural Networks, this research builds a 

multistage classification system to identify Parkinson's disease in wave and spiral drawings. Data from spiral and wave 
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sketches made by both healthy individuals and those with Parkinson's disease were mainly used for categorization in this 

study. The work's suggested method seems to be rather good at distinguishing between healthy volunteers' drawings and 

those of Parkinson's sufferers. Averaging 93.3% accuracy, 94% recall, 93.50% precision, and 93.94% f1 score, the model 

produced the following results for corresponding courses.  

Chandra, J., et al. (2021) these authors achieved a very high AUC in differentiating PD patients from controls by discovering 

intuitive and highly predictive elements in spiral drawings from PD patients. The research shows that this technique has the 

potential to allow for widespread, point-of-care PD screening, but to rigorously evaluate its accuracy for PD diagnosis; 

modifications to the drawing task and study design are needed. Tools for screening for PD are crucial for treating PD, 

especially in underserved regions, due to the rising frequency of the illness and the declining numbers of neurologists 

globally. Community health care providers and primary care clinics might quickly identify people at risk for PD by creating 

and verifying low-cost automated handwriting-based screening methods for PD. This would reduce the worldwide burden 

of PD. 

Goyal, J., et al. (2021) nearly 90% of Parkinson's patients have voice issues. Robust feature extraction and categorization 

help identify PD early on. For oscillatory signals like speech, resonating components reveal persistent oscillations and 

oscillation transients, unlike time-frequency analysis. Hybrid analysis improves PD diagnosis by integrating the capabilities 

of both types of analysis. These authors recommend combining resonant component analysis with time-frequency feature 

extraction. High-resonance components are extracted. PSD is a time-frequency-based characteristic generated by sparsely 

represented high-resonating components. Components have low or high frequencies. These authors give the CNN classifier 

PSD pictures to test deep learning's Parkinson's patient classification. These authors achieved 99.37% validation accuracy 

and 100% training accuracy using a combination of features. The study has also shown the impact of diversity on the 

workplace to help physicians implement the proposed work in clinical practice. The study found that diversity influences 

model accuracy. Clinical implementation of the indicated task requires ethnic group data. 

Malathi, A., et al. (2024) Using state-of-the-art optimization algorithms and machine learning approaches, these authors 

presented a thorough framework for PD prediction in this study. These authors conducted experiments to prove that their 

suggested technique could successfully predict PD from open-source datasets. These authors improved upon previous 

methods' prediction accuracy by combining feature extraction with ImCfO_Attn_EffBNet and using Empirical Mode 

Decomposition. Convergence rates and global solution quality were considerably improved with the integration of the ImCfO 

algorithm. Based on a number of evaluations, the ImCfO_Attn_EffBNet was able to achieve the following results: accuracy 

(95.068%), recall (92.948%), specificity (92.89%), f-score (92.89%), precision (92.89%), and false positive rate (2.1%). The 

results show how cutting-edge optimization methods, when combined with state-of-the-art machine learning models, 

improve healthcare applications and illness prediction.  

Table 1: Comparison table on Parkinson's disease 

Study Methodology Key Features Performance Limitations 

Saravanan et 

al. (2023) 

Modified deep learning 

(VGG19-INC) with 

dynamic learning rates and 

LIME for explain ability. 

Fusion of pre-trained 

models and dynamically 

varying rates for 

improvement. 

Superior 

performance to 

existing methods. 

Requires transfer 

learning 

expertise. 

Liu et al. 

(2022) 

Radio wave analysis for at-

home PD monitoring and 

progression tracking. 

Continuous gait speed 

measurement; correlation 

with MDS-UPDRS scores. 

Sensitive, 

objective, and 

passive 

assessments. 

Data limited to 

gait-related 

symptoms. 
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Soumaya et 

al. (2021) 

Genetic Algorithm with 

SVM using acoustical and 

decompositional features of 

speech. 

Feature selection with GA, 

10-fold cross-validation. 

91.18% accuracy 

with 15 features. 

Limited feature 

types and non-

comparative 

approaches. 

Lamba et al. 

(2021) 

Handwriting analysis using 

29 kinematic features with 

Genetic Algorithm and 

Mutual Information. 

AdaBoost with 96.02% 

accuracy (9 features); 

Random Forest with 

91.34% accuracy (14 

features). 

Cannot assess 

disease severity; 

specific to 

handwriting. 

Parkinson’s but 

the severity of the 

disease cannot be 

diagnosed 

Shahid & 

Singh (2020) 

PCA-based DNN for 

predicting UPDRS scores 

in PD progression. 

Feature extraction using 

PCA, real-world dataset 

from UCI. 

Outperforms 

traditional models 

like MLR, NN. 

Performance 

depends on 

dataset size. 

Moetesum et 

al. (2019) 

CNN-based visual 

handwriting attributes 

extraction for PD detection. 

Median residual and edge 

images with raw 

handwriting images; early 

and late fusion techniques. 

83% accuracy on 

handwriting 

dataset. 

Focus on offline 

features only; 

limited dataset 

diversity. 

Kotsavasilogl

ou et al. 

(2017) 

NVV metric for motor 

coordination assessment 

through simple handwriting 

tasks. 

Normalized Velocity 

Variability (NVV) as a key 

feature; touch-sensitive 

tablet integration. 

91% classification 

accuracy. 

Limited to upper 

limb motor 

impairments. 

 

3. PROPOSED METHODOLOGY 

For the third phase, a holistic approach is adopted by amalgamating data from both wave frequency and spiral drawing image 

datasets. This phase involves a comprehensive data fusion strategy, amalgamating insights from both modalities to create a 

more robust and informative dataset. To fortify prediction reliability, Deep Conformal Neural Networks are introduced. 

Trained not only to predict the Parkinson's disease class but also to furnish a confidence score for each prediction, these 

networks offer a nuanced understanding of prediction reliability, contributing to heightened transparency and interpretability 

in Parkinson's disease diagnosis. 

3.1 Dataset 

Based on voice recordings and different speech characteristics, this dataset has information capable of detecting Parkinson's 

disease (PD). Classification problems, in which the aim is to separate patients with Parkinson's disease from healthy people, 

often employ the dataset. Extracted from voice recordings, the main characteristics of the dataset center on acoustic aspects 

influenced by the condition. 

Frequency Dataset 1: https://www.kaggle.com/datasets/naveenkumar20bps1137/parkinsons-disease-detection 

This collection seems to be centered on image-based information linked with Parkinson's disease. Based on the description, 

photos probably medical scans or images from diagnostic tests relevant to Parkinson's Disease diagnosis or analysis appear 

to abound. 

Image Dataset 2: https://data.mendeley.com/datasets/fd5wd6wmdj/1 

https://www.kaggle.com/datasets/naveenkumar20bps1137/parkinsons-disease-detection
https://data.mendeley.com/datasets/fd5wd6wmdj/1
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3.2 Deep Conformal Neural Networks 

Inspired by biological neural networks in human brain processes, Artificial Neural Networks (ANN) are a computational 

method used in order to address prediction issues in computer vision, data mining, etc. Artificial neural networks are the 

theoretical roots of Deep Conformal Neural Networks (DCNN) topology. General deep framework for classification or 

regression analysis, DCNN is a very common learning method producing effective results by inferring from a dataset. 

Various topologies have been explored by means of distinct deep learning algorithms and methods. For a long period, it will 

remain quite popular in computer science and other multi-disciplined fields. Deep neural networks are a potent tool in 

machine learning research including pattern recognition and natural language processing when compared with other 

conventional learning approaches.  

𝑍𝑖,𝑗,𝑘 = ∑ ∑ ∑ 𝑊𝑚,𝑛,𝑐,𝑘 ∙ 𝑋𝑖+𝑚−1,𝑗+𝑛−1,𝑐 + 𝑏𝑘
𝐶
𝑐=1

𝑤
𝑛=1

ℎ
𝑚=1  ------------- (1) 

This formula represents a key operation in a Deep Conformal Neural Network (DCNN). It describes the computation of the 

output feature map 𝑍𝑖,𝑗,𝑘 at position (𝑖, 𝑗) for the 𝑘 − 𝑡ℎ filter by performing a convolution between the input X and the 

weight kernel W. The triple summation iterates over the height h, width www, and channels C of the filter, while 𝑏𝑘 is the 

bias term added after the convolution operation. This process essentially aggregates the contributions from different parts of 

the input to produce the final output feature. 

𝐴𝑖,𝑗,𝑘 = max (0, 𝑍𝑖,𝑗,𝑘) --------------------- (2) 

This formula represents the Rectified Linear Unit (ReLU) activation function applied to the output 𝑍𝑖,𝑗,𝑘 from the previous 

convolution operation. It sets any negative values in 𝑍𝑖,𝑗,𝑘to zero while keeping positive values unchanged. Essentially, 

𝐴𝑖,𝑗,𝑘is the activated output, where the ReLU function introduces non-linearity by allowing only non-negative values to pass 

through, helping the network learn more complex patterns. 

𝑃𝑖,𝑗,𝑘 = max{𝐴𝑚,𝑛,𝑘} , 𝑚 ∈ [𝑖: 𝑖 + 𝑝ℎ], 𝑛 ∈ [𝑖: 𝑖 + 𝑝𝑤] ------------- (3) 

This formula describes the max pooling operation, where 𝑃𝑖,𝑗,𝑘 is the pooled value at position (𝑖, 𝑗) for the 𝑘 − 𝑡ℎ feature 

map. The operation involves taking the maximum value from a local region of size 𝑝ℎ × 𝑝𝑤  centered on (𝑖, 𝑗) in the input 

feature map A. The indices m and n specify the window of values over which the maximum is computed, effectively down-

sampling the input while retaining the most important features for the next layer. 

𝑃𝑖,𝑗,𝑘 =
1

𝑝ℎ∙𝑝𝑤
 ∑ ∑ 𝐴𝑚,𝑛,𝑘

𝑗+𝑝𝑤
𝑛=𝑗

𝑖+𝑝ℎ
𝑚=𝑖  --------------------- (4) 

This formula represents the average pooling operation, where 𝑃𝑖,𝑗,𝑘 is the average value in a local region of size 𝑝ℎ × 𝑝𝑤from 

the input feature map A. It calculates the average of all values within the pooling window, effectively down-sampling the 

input while preserving the overall features in a less sensitive way than max pooling. 

𝑍[𝑙] = 𝑊 [𝑙]𝐴[𝑙−1] + 𝑏[𝑙] --------------------- (5) 

𝐴[𝑙] = 𝜎(𝑍[𝑙]) --------------------- (6) 

The formula (5) represents the linear transformation applied to the input from the previous layer𝐴[𝑙−1]. It involves multiplying 

the input by the weight matrix𝑊[𝑙], followed by adding the bias term 𝑏[𝑙], resulting in the pre-activation values 𝑍[𝑙] for the 

current layer. 

The formula (6) applies a non-linear activation function 𝜎 (such as ReLU, sigmoid, or tanh) to the pre-activation values 𝑍[𝑙], 

producing the activated output 𝐴[𝑙] for the current layer, which is then passed to the next layer. 

𝑦̂𝑘 =
𝑒𝑍𝑘

∑ 𝑒
𝑍𝑗𝑛𝑦

𝑗=1

 --------------------- (7) 

𝑦̂ =
1

1+𝑒−𝑍 --------------------- (8) 

The formula (7) is the softmax function, commonly used for multi-class classification. It converts the raw scores (𝑙𝑜𝑔𝑖𝑡𝑠) 𝑍𝑘 

for each class into probabilities by exponentiating each score, normalizing it by the sum of exponentiated scores, ensuring 

that the output is a probability distribution across all classes. 

The formula (8) is the sigmoid function, used for binary classification. It maps the raw score Z into a probability between 0 

and 1, indicating the likelihood of the positive class. The output 𝑦̂ represents the probability of the positive class, with values 

closer to 1 indicating a higher probability. 

𝐿 = −
1

𝑚
∑ ∑ 𝑦𝑘

(𝑖)𝑙𝑜𝑔
𝑛𝑦

𝑘=1
𝑚
𝑖=1 (𝑦̂𝑘

(𝑖)
) --------------------- (9) 

𝐿 =
1

𝑚
∑ (𝑦(𝑖) − 𝑦̂(𝑖))2𝑚

𝑖=1  --------------------- (10) 
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The formula (9) is the cross-entropy loss used for multi-class classification problems. It measures the difference between the 

true class labels 𝑦𝑘
(𝑖) and the predicted probabilities 𝑦̂𝑘

(𝑖)
. The loss is averaged over all m training examples, penalizing the 

model more when its predictions deviate from the true labels. 

The formula (10) is the Mean Squared Error (MSE) loss, typically used for regression tasks. It computes the squared 

differences between the true values 𝑦(𝑖)and the predicted values𝑦̂(𝑖), averaging them over all training examples to quantify 

how far the model's predictions are from the actual values. 

𝑊 ≔ 𝑊 − 𝛼 ∙
𝜕𝐿

𝜕𝑊
, 𝑏 ≔ 𝑏 − 𝛼 ∙

𝜕𝐿

𝜕𝑏
 --------------------- (11) 

The formula (11) updates the weights 𝑊 and biases 𝑏 by subtracting a fraction of the gradients of the loss function 𝐿 with 

respect to each parameter. Here, 𝛼 is the learning rate, which controls the step size of each update. The goal is to minimize 

the loss function by iteratively adjusting the weights and biases in the direction that reduces the error. 

 

Figure 1: Architecture of Deep Conformal Neural Networks 

In this figure 1 spiral image and wave frequency is the input. These two are undergo in CNN and Dense process and it will 

send to the fusion layer of DCNN. After the fusion layer the data gives the output as the person is a normal healthy person 

or Parkinson's disease affected person. 

Algorithm: Deep Conformal Neural Networks 

Input: Image and Wave Frequency 

Output: Either Normal or Parkinson's disease 

 Initialize 𝑐𝑎𝑛𝑑_𝑠𝑒𝑡 =  {∅}  

 If node 𝑖 receives PD message from node 𝑗 then  

      𝑐𝑎𝑛𝑑_𝑠𝑒𝑡 =  𝑐𝑎𝑛𝑑_𝑠𝑒𝑡 ∪  {𝑗}  

End if   

Node 𝑗 in 𝑐𝑎𝑛𝑑_𝑠𝑒𝑡 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑗) 𝑖𝑓  && 𝑡𝑠(𝑗)  >  1 𝑡ℎ𝑒𝑛 // 𝑡𝑠 is the time slot  

 𝑃𝐷(𝑖)  =  𝑃𝐷(𝑗)  +  1  

 𝑡𝑠(𝑖)  =  𝑡𝑠(𝑗)  −  1  

Else node j in 𝑐𝑎𝑛𝑑_𝑠𝑒𝑡 such that |𝑁(𝑗)| 𝑖𝑓  <  𝑡𝑠(𝑗)  𝑡ℎ𝑒𝑛  

 𝑃𝐷(𝑖) =  𝑃𝐷(𝑗) +  1  

  // 𝑓 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑟𝑒𝑒 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡   

  𝑡𝑠(𝑖)  =  𝑓, 𝑓  {1, 2, … , 𝑗 − 1} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡𝑠(𝑖)  𝑡𝑠(𝑘), ∀ 𝑘  𝑁(𝑗)&& 𝑃𝐷(𝑘)  

 =  𝑃𝐷(𝑗)  +  1  

  Else  
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        𝑈𝑃𝐷𝐴𝑇𝐸_𝑆𝐶𝐻(𝑖, 𝑐𝑎𝑛𝑑_𝑠𝑒𝑡)  

    End if  

 End if 

The DCNN algorithm uses the picture and wave frequency datasets to produce a Parkinson's disease (PD) diagnosis. The 

algorithm's architecture is intended to refresh the collection of candidate nodes and employ temporal slots for prediction 

updates, eventually diagnosing Parkinson's disease by combining insights from both modalities (images and audio). The 

"Flow Chart of Deep Conformal Neural Networks" depicts the network's systematic method for node updates and temporal 

scheduling. 

 

Figure 2: Flow Chart of Deep Conformal Neural Networks 

Designed for categorization challenges like Parkinson's illness, Deep Conformal Neural Networks (DCNN) has architecture 

shown in this Figure 2. It starts with inputs such photos and wave frequency data then works them through many layers of 

convolution and activation functions. To lower dimensionality and emphasize the most important characteristics, the model 

uses pooling both max and average retinues. The last output layer sorts the input as either normal or suggesting Parkinson's 

illness using softmax or sigmoid. Gradient descent helps the model's parameters weights and biases to be improved, hence 

reducing the prediction error. 

4. RESULTS AND DISCUSSION 

The proposed method has implemented by using python programming with the use of two different dataset like spiral 

drawings and wave frequency from EEG recordings. This result shows that the proposed methodology gives best 

performance comparing to the existing methodology.  

4.1 Accuracy  

In predictive modeling, accuracy is the measure of how close the model's projections are to real-world outcomes. Making 

predictions and judgments in a variety of circumstances relies on the model's reliability and accuracy, thus it assesses these 
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characteristics. 

T-True, F-False, P-Positive, N-Negative 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ------- (12) 

4.2 Precision  

In predictive modeling, accuracy is the proportion of total expected positive observations to correctly forecasted positive 

observations. It displays how effectively the model lowers false positives, ensuring the genuine accuracy and reliability of 

the positive predictions it generates qualities necessary for decision-making and, as a result, error reduction in many other 

domains. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ------ (13) 

4.3 Recall 

Recall in predictive modeling is the fraction of real positive instances the model properly detected. In sectors like as medical 

diagnosis or fraud detection, identifying all positives is critical since it shows how well the model detects all relevant 

instances of a particular class. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ------ (14) 

4.4 F-measure  

The F-measure, which determines the harmonic mean of recall and accuracy, is a strong all-around measurement of how well 

a model is performing for models that need to prevent both false positives and false negatives. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 ------- (15) 

Table 2: Comparison table on Performance Metrics 

Algorithms Accuracy Precision Recall F-measure 

CNN 93 92 93 90 

YOLO-V4 94 93 94 91 

VGG-16 95 94 95 92 

VGG-19 96 95 96 93 

Resnet-50 97 96 97 94 

Resnet-150 98 97 98 95 

Deep Conformal 

Neural  Networks 

99 98 99 96 

 

Table 2 compares the performance of several neural network algorithms using four essential metrics: accuracy, precision, 

recall, and F-measure. These metrics measure how effectively models perform in tasks like as categorization. As the models 

develop from CNN to Resnet-150, the numbers for each measure rise, indicating improved overall performance. The Deep 

Conformal Neural Networks model achieved the greatest scores: 99% accuracy, 98% precision, 99% recall, and 96% F-

measure. This shows that this model excels at properly identifying things, reducing mistakes, and striking a balance between 

accuracy and recall, making it very trustworthy for its intended use. 
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Figure 3: Comparison chart on Accuracy 

This Figure 3 compares the efficacy of several ML methods, with algorithm names on the x-axis and percentages representing 

their relative accuracies. Beginning with "CNN" and progressing to "Deep Conformal Neural Networks," the algorithms are 

organized in a manner that reflects their escalating level of accuracy. The y-axis has gridlines to make reading the values 

easier, and it can be adjusted to center the 90-100% range. The superiority of the "Deep Conformal Neural Networks" over 

the others is shown by their 99% accuracy rate. 

 

Figure 4: Comparison chart on Precision 

This Figure 4 compares the efficacy of several ML methods, with algorithm names on the x-axis and percentages representing 

their relative Precision. Beginning with "CNN" and progressing to "Deep Conformal Neural Networks," the algorithms are 

organized in a manner that reflects their escalating level of Precision. The y-axis has gridlines to make reading the values 

easier, and it can be adjusted to center the 90-100% range. The superiority of the "Deep Conformal Neural Networks" over 

the others is shown by their 98% Precision rate. 
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Figure 5: Comparison chart on Recall 

This Figure 5 compares the efficacy of several ML methods, with algorithm names on the x-axis and percentages representing 

their relative Recall. Beginning with "CNN" and progressing to "Deep Conformal Neural Networks," the algorithms are 

organized in a manner that reflects their escalating level of Recall. The y-axis has gridlines to make reading the values easier, 

and it can be adjusted to center the 90-100% range. The superiority of the "Deep Conformal Neural Networks" over the 

others is shown by their 99% Recall rate. 

 

Figure 6: Comparison chart on F-measure 

This Figure 6 compares the efficacy of several ML methods, with algorithm names on the x-axis and percentages representing 

their relative F-measure. Beginning with "CNN" and progressing to "Deep Conformal Neural Networks," the algorithms are 

organized in a manner that reflects their escalating level of F-measure. The y-axis has gridlines to make reading the values 

easier, and it can be adjusted to center the 90-100% range. The superiority of the "Deep Conformal Neural Networks" over 

the others is shown by their 96% F-measure rate. 
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5. CONCLUSION 

In conclusion, the study demonstrates that Deep Conformal Neural Networks (DCNN), when combined with conventional 

machine learning techniques, offer significant improvements in the identification of Parkinson’s disease. Among the models 

tested, DCNN achieved the highest performance, with an impressive 99% accuracy, alongside 98% recall and 96% F-

measure, highlighting its ability to generate accurate predictions and effectively identify true positives. This performance not 

only ensures minimal missed diagnoses but also reduces false positives, which is critical in clinical applications. The fusion 

of image-based data and wave frequency datasets within the DCNN framework enhances its predictive power, making it 

particularly well-suited for the early detection of Parkinson’s disease. This multi-modal data approach improves both the 

precision and reliability of the model’s predictions, ensuring more accurate clinical decisions. Furthermore, the inclusion of 

a confidence score system within the DCNN enhances interpretability, providing greater transparency and facilitating clinical 

decision-making. Overall, the findings highlight the potential of DCNN as a powerful tool for improving Parkinson’s disease 

diagnosis. The combination of high accuracy, strong recall, and enhanced interpretability creates a robust system that offers 

both clinical reliability and transparency. This work underscores the growing role of advanced deep learning models in 

transforming medical diagnostics, particularly in the context of complex and early-stage diseases like Parkinson’s. With 

continued research and refinement, DCNN could become a vital asset in enhancing diagnostic processes and patient care. 
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