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ABSTRACT 

Agriculture involves cultivating land, growing crops, and raising animals for food, fiber, and other products essential for 

human life. In crop yield prediction, agriculture involves forecasting the amount of crop production from a given area of 

land. This process utilizes various methods, including historical data analysis, weather forecasting, soil conditions, and crop 

management practices. Accurate yield predictions help farmers make informed decisions about resource allocation, optimize 

crop management, and manage risks related to climate and market fluctuations. Several machine learning techniques have 

been developed, but timely yield prediction remains a challenging issue. A novel method called Radial Kernel Truncated 

Gradient Margin Boost Classification (RKTGMBC) has been developed for accurate crop yield prediction, achieving higher 

accuracy and lower time complexity. The main aim of the RKTGMBC method is to perform several processes such as data 

acquisition, preprocessing, and feature selection. Following this, crop yield prediction is performed using the selected 

features through an ensemble classification method. In the RKTGMBC method, the number of selected relevant features is 

used as input for the Truncated Gradient Margin Boost ensemble classification method. This method employs the radial basis 

kernel perceptron as a weak learner to analyze the data samples and provide final classification results. The Margin Boost 

ensemble classification method combines the results of the weak learners and applies the Truncated Gradient method to 

provide stable output classification results by minimizing or maximizing the margin to reduce error. In this way, accurate 

crop yield prediction is achieved with minimal computational time. Experimental evaluation considers factors such as crop 

yield prediction accuracy, precision, recall, F1 score, and prediction time with respect to the number of data samples. The 

quantitatively analyzed results indicate that the proposed RKTGMBC method achieves higher crop yield prediction accuracy 

with minimal computation time compared to conventional techniques. 

 

Keywords: Crop yield prediction, Margin Boost Classification, radial basis kernel perceptron, truncated gradient method. 

1. INTRODUCTION 

Agriculture involves forecasting the amount of crop production that harvested from a given area of land. This process uses 

various methods such as historical data analysis, weather forecasting, soil conditions. Advanced machine learning algorithms 

are often employed to improve accuracy. Accurate yield predictions help farmers make informed decisions about resource 

allocation for effective agricultural planning, resource management, and ensuring food security. The AdaBoost algorithm 

with Gray Level Co-occurrence Matrix (AdaBoost GLCM) was developed in [1] aimed to improve the crop yield prediction 

accuracy by the means of feature selection. But, the designed AdaBoost GLCM did not reduce the computational complexity 

in crop yield prediction.  A Random Forest Extreme Gradient (RFXG) method was developed in [2] for cotton yield 

prediction based on observed weather data to handle large-scale datasets. However, it failed to consider the influence of 

various meteorological indices, such as soil temperature and humidity, to further enhance prediction performance. 

Machine learning and deep learning models were developed in [3] to enhance crop yield prediction and reduce the mean 

absolute error. However, it failed to handle larger datasets and incorporate more historically accurate environmental and 

weather data for each crop, making it difficult to identify the best-performing model. Machine Learning (ML) techniques 

and Random Forest Regression models were developed in [4] to estimate crop yield with high accuracy and minimal error. 

However, reducing the crop yield prediction time remained a significant challenge. A machine learning model using 

regression and a deep learning model were developed in [5] with the aim of forecasting agricultural yields with minimal  
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error. But, it failed to improve the model’s accuracy in crop production prediction when applied to a large dataset. 

The attention-based convolutional neural network developed in [6] was designed to analyze and predict brinjal crop yield, 

improving detection performance. But, it failed to focus on optimizing the algorithm's efficiency through suitable assessment. 

A long short-term memory (LSTM) recurrent neural network and a 1-dimensional convolutional neural network (1DCNN) 

were developed in [7] with the aim of crop yield forecasting by automatically learning the features. However, it did not 

succeed in enhancing accuracy while minimizing time.  The Extreme Gradient Boosting (XGBoost) model was designed in 

[8] for soybean yield prediction based on multidimensional feature engineering. But, it failed to provide operational and 

timely predictions for soybean yield. 

The Crop Yield Prediction Algorithm (CYPA) was designed in [9] by using IoT for precision agriculture to improve the 

efficiency and accuracy of crop yield prediction. However, it faces significant challenges when applied to higher-dimensional 

datasets. A Long Short-Term Memory (LSTM) model was designed in [10] to predict crop yield accurately with minimal 

training error. But, a detailed evaluation of feature extraction was not conducted to enhance the performance of the prediction 

model. A hybrid approach using a deep learning model was designed in [11] to forecast corn yield at different growth phases 

and with various features. However, it failed to deliver accurate results due to time constraints. A hybrid machine learning 

model was developed in [12] using IoT for yield prediction, focusing on preprocessing and feature selection. But, it did not 

incorporate various parameters such as soil nutrients, soil quality, irrigated area, and agricultural points, which could have 

enhanced the system's accuracy. A Modified Multi-Layer Perceptron model was developed in [13] to create an effective 

model for accurately predicting maize crop yield. But, it did not incorporate meteorological factors that change over the 

seasons for achieving precise outcomes. A Convolutional Neural Network and Recurrent Neural Network (CNN-RNN) were 

developed in [14] with the aim of predicting cocoa crop yield. However, this approach did not improve accuracy compared 

to more advanced network architectures. A Deep learning techniques were developed in [15] with the aim of timely and 

accurate crop yield prediction. However, the integration of remote sensing data with crop growth models was not considered 

to enhance the predictive performance of the models. 

1.1 Key contributions of the article  

The key contributions of RKTGMBC method are listed below. 

 To enhance crop yield prediction, a novel RKTGMBC method has been developed based on classification. 

 To minimize the prediction time, the RKTGMBC method employs perform data preprocessing and relevant feature 

selection.  

  To improve crop yield prediction accuracy and minimize the root mean square error, the RKTGMBC method utilizes 

the Margin Boost ensemble classification technique for precise classification, aided by a Radial Basis Kernel 

Perceptron. In addition, the truncated gradient method is applied to provide stable classification results and minimize 

errors. 

 Finally, a comprehensive experimental assessment is carried out, incorporating a variety of performance metrics, to 

demonstrate the improvement of the RKTGMBC method over conventional methods. 

1.2 Paper Organization   

 The paper is organized into six various sections as follows: Section 2 discusses related works. Section 3 describes the 

proposed RKTGMBC method with different processes. The detailed experimental setup and dataset description is presented 

in Section 4. Performance metrics description is presented in section 5. The comparison analyses of different methods are 

discussed in section 6 with various metrics. Finally, Section 7 provides the conclusion of paper. 

2. RELATED WORKS  

The integration of machine learning techniques was developed in [16], with climate and remote sensing data to provides 

more accurate yield predictions. But the time complexity of the yield predictions was not minimized.  The multimodel 

ensemble (MME) using a particle filtering (PF) algorithm was designed in [17] for accurate, season-based crop yield 

prediction. An integration of the 2D-CNN and LSTM models was developed in [18] for crop yield prediction. However, it 

failed to consider climatic data for achieving better accuracy in forecasting crop yield. A new Partial Domain Adversarial 

Neural Network (PDANN) was developed in [19] to significantly improve crop yield in heterogeneous regions. But, it did 

not investigate integrating the PDANN model with farm management systems to enhance yield monitoring. A machine-

learning-based maize yield prediction model was designed in [20] using domain adaptation for modern agriculture 

monitoring, helping to achieve food security and sustainability. 

 A deep transfer learning model was designed in [21] for crop yield prediction with higher accuracy at different locations 

and scales.  In [22], a deep transfer learning framework was developed for soybean yield prediction. However, it did not 

incorporate a regularized transfer learning model to enhance yield predictions across different regions. An integration of 

Generative Adversarial Networks (GANs) and Convolutional Neural Networks (CNNs) was developed in [23] for growth 

monitoring of winter wheat and yield estimation. However, the accuracy of yield prediction was not improved. The 
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optimization of LSTM and Bi-LSTM models was developed in [24] for crop yield prediction with improved accuracy. 

However, the computational time for these deep learning models was higher. 

A novel approach was developed in [25] for predicting crop yields by integrating a feature selection method with an 

optimized support vector regression model. This approach was designed to enhance both prediction accuracy and 

computational efficiency.  A Bayesian spatially varying functional model (BSVFM) was developed in [26] to predict county-

level corn yield. However, missing values at random increase the risk of inaccurate crop yield prediction. A novel prediction 

system based on machine learning was developed in [27] to forecast the yield of different crops at the country level based on 

weather data.  A fuzzy hybrid ensemble classification model was developed in [28] using remote sensing data to enhance 

crop yield estimation with minimal processing time. A stochastic model was developed in [29] based on the Monte Carlo 

method for predicting rice and wheat crop yields. But, achieving better accuracy and minimizing error were major challenges.  

A novel prediction system based on machine learning was developed in [30] to forecast the yield of different crops at the 

country level based on weather data. 

3. PROPOSAL METHODOLOGY  

Agriculture plays a vital role in supporting the country's economy and satisfying a large portion of its food requirements. 

However, due to the significant climatic changes, has created challenges in maintaining a stable food supply chain. To address 

these challenges, various scientific methods have been integrated into agriculture to ensure a balance between food supply 

and demand. The unpredictable climate conditions make it increasingly difficult for farmers to adopt sustainable and 

adaptable practices. In response, modern technology and innovative farming techniques are becoming essential for predicting 

the crop yields. But accurately estimating crop production is therefore critical for identifying potential threats to food security. 

In this paper, a novel RKTGMBC method is employed for accurate crop yield prediction through the ensemble learning 

model.  This RKTGMBC method combines the strengths of multiple classifiers, utilizing radial basis kernel-based techniques 

and margin boosting to improve predictive performance by analyzing the features.  By integrating RKTGMBC models to 

handle complex patterns in agricultural data, farmers and decision-makers predicts yield outcomes more reliably, even during 

fluctuating environmental conditions. 

 

Figure 1 architecture of proposed RKTGMBC method 

Figure 1 above demonstrates the architecture diagram of the proposed RKTGMBC method for accurate prediction of crop 

yield. The proposed method collects the number of features 𝑓1, 𝑓2, … 𝑓n and the overall samples or instances or data ‘𝐷’ are 

collected from the Crop Yield Prediction Dataset https://www.kaggle.com/datasets/patelris/crop-yield-

prediction-dataset?resource=download. This dataset includes eight features and 28242 instances for accurate 

prediction of crop yield. After the data acquisition, the proposed method performs preprocessing, feature selection. With the 

number of selected features from the dataset is given to the truncated gradient Margin Boost technique for accurate 

classification of the data samples. Based on the data classification, the crop yield prediction is obtained in particular area.   

https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset?resource=download
https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset?resource=download
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The crop yield prediction process is explained briefly in the subsections below. 

3.1 Preprocessing and feature selection  

Preprocessing is a vital step that ensures the raw data samples is transformed into a clean, structured, and suitable format for 

accurate classification. Appropriate preprocessing improves model accuracy and performance by addressing issues such as 

missing data and normalization in the dataset. Missing data refers to the absence of values in a dataset.  

Let us consider the number of data samples  𝐷1, 𝐷2, 𝐷3, …𝐷𝑚 taken from the dataset and it given as input to the weak learners. 

The data samples and the selected significant features are arranged in the dataset as follows. The input dataset ‘𝐷𝑆’ is 

formulated in the form of matrix as given below. 

𝑀 =

[
 
 
 
 

𝑓1 𝑓2 … 𝑓n
D11 𝐷12 … 𝐷1𝑛

𝐷21 𝐷22 … 𝐷2𝑛

⋮ ⋮ …  ⋮
𝐷𝑚1 𝐷𝑚2 … 𝐷𝑚𝑛]

 
 
 
 

  (1) 

Where,  ‘𝑀’ denotes an input matrix, where ‘𝑛’ denotes a column represents the features 𝑓1, 𝑓2, … 𝑓n and the overall data 

samples ‘𝐷’ stored in the ‘𝑚’ row respectively. The proposed technique utilizes the weighted average model to handle the 

missing data in the given dataset.  

𝑊𝐴 =
∑ 𝐷𝑖∗ 𝑊𝑖

𝑚
𝑖=1

∑  𝑊𝑖
𝑚
𝑖=1

    (2) 

Where, 𝑊𝑀 refers to a weighted average results, 𝐷𝑖  indicates a known data samples in the given dataset,  𝑊𝑖 designates a 

weight assigned to data samples ‘𝐷𝑖’. Followed by, the normalization process is expressed as follows, 

𝐷𝑁 =
∑ 𝐷𝑖− 𝜇𝑚

𝑖=1

𝑆𝐷(𝐷)
   (3) 

Where, 𝐷𝑁  indicates a data normalization output, 𝐷𝑖  indicates a  data samples in dataset after handling the missing value,  𝜇 

denotes a mean of feature value,  𝑆𝐷(𝐷) indicates a standard deviation, 𝑚 indicates a total number of data samples. 

Followed by, significant feature selection process is carried out to minimize the classification time. Weighted Decay 

Regression method is employed for minimizes the squared residuals between the target variable and the input variables with 

a regularization term.  

𝑅 = argmin    [|𝑌 − 𝛼𝑀|2 + 𝜗2‖𝛽‖ 2 ]   (4) 

Where, 𝑅 denotes a regression outcome,  𝑌 denotes a target variable, 𝛼 indicates a weight parameter, 𝑀 indicates an input 

data matrix,  𝜗2 ridge regularization parameter,   ‖𝛽‖ 2  indicates L2 norm (i.e. squared) of the coefficients vector ‘𝛽’. From 

the regression outcome, the features with minimal deviation from the target variable are considered more relevant to the 

target variable and discard the other features.  

3.2 Truncated gradient Margin Boosting Classification 

Truncated gradient Margin Boosting is an ensemble method used in machine learning and to enhance the performance and 

robustness of predictive models by combining multiple weak learners to create a strong learner. The main aim of boosting 

technique is to reduce errors in the weak learner. A weak learner is a base cassation model provides less accurate classification 

results. A strong learner is a model that has high predictive accuracy and performs well and achieves robust and reliable 

performance in classification. Therefore, the proposed RKTGMBC method utilizes the truncated gradient margin boosting 

technique for accurate classification of the data samples. Compared to other boosting technique, the proposed margin 

Boosting is a specialized variant of the boosting algorithm designed to enhance the performance of predictive models by 

focusing on improving margins and addressing issues related to error.   
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Figure 2 Structure of margin boost classification method  

Figure 2 illustrates the process of the margin boost classification method. This proposed boosting ensemble technique first 

constructs ‘𝑘’ weak learners, which are base classifiers using a radial basis function (RBF) kernel perceptron. The algorithm 

uses the selected significant features from the training dataset {𝐷𝑖 , 𝑌} as input for the weak learners. In this training set, 𝐷𝑖  

represents the input training samples, and 𝑌  represents the output labels for the ensemble classification methods. 

Then the Radial basis function (RBF) kernel perceptron is used as weak learner for classifying the data samples by 

transforming the input space into a higher-dimensional feature space where the data samples are linearly separable. The 

perceptron is a simple linear base classifier used for classification tasks by measuring the similarity between the data samples 

through the Radial basis kernel function. The perceptron is used for combining a set of weights with the input vector. 

 

Figure 3 process of Radial basis function (RBF) kernel perceptron 

Figure 3 depicts the process of Radial basis function (RBF) kernel perceptron and it iteratively improves a classification 

performance by running it on training data samples ‘ 𝐷𝑖’’, then updating the model whenever it determines an incorrect 

classification. At first, it initializes weight ‘𝑄𝑖 = 0’ and loss threshold ‘𝐿 =  𝜗’. Then, perceptron determines a weighted sum 
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of similarities between input data samples ‘𝐷𝑖’ and testing data samples ‘𝐷𝑇’ is given below  

𝑍 (𝐷𝑚) = 𝑠𝑔𝑛 ∑ 𝑄𝑖   𝜑(𝐷𝑖 , 𝐷𝑇)𝑚
𝑖=1                           (5) 

Where, ‘𝑍 (𝐷𝑚)’ represents the perceptron classification result, ‘𝜑(𝐷𝑖 , 𝐷𝑇)’ denotes the radial basis kernel function that 

determines the similarity between input training data samples ‘𝐷𝑖’ and testing data samples ‘𝐷𝑇’. Here, ‘𝑄𝑖’ indicates the 

weights for the training input data samples and ‘𝑠𝑔𝑛’ is a sign function which evaluates whether the classified output is 

positives or negative. 

 The Radial basis kernel is measured between the two data samples in input space.  

𝜑(𝐷𝑖 , 𝐷𝑇)  = exp [−0.5 ∗ ∑ (
|𝐷𝑖− 𝐷𝑇|2

𝜎2 )𝑚
𝑖=1 ]       (6) 

Where, 𝜑(𝐷𝑖 , 𝐷𝑇) denotes an outcome of Radial basis kernel between the training data samples ‘𝐷𝑖’ such as temperature, 

rainfall, year of crop yield, particular crop and area etc and testing data samples (𝐷𝑇), ‘𝜎 ‘refers to a standard deviation 

between the two data samples. The kernel function provides the similarity results from ‘0’ to ‘1.  From the (1), the 

classification outcome is obtained using current weights.  Compute the loss function for each classification output.   

𝐿 = 𝜂 (𝑍𝑇 (𝐷𝑚) −  𝑍(𝐷𝑚))          (7) 

Where, 𝐿 indicates a loss rate, 𝜂  denotes a learning rate, 𝑍𝑇 (𝐷𝑚) refers to the target output of the data samples,  𝑍(𝐷𝑚) 

denotes a predicted classification output. If the loss is reached to threshold 𝜗’, meaning the prediction is correct. Otherwise, 

the prediction is not correct. It states that if the loss function is not equal to threshold, this condition trigger weight updates 

in the learning algorithm. 

𝑄𝑛𝑒𝑤 = 𝑄𝑖 + 𝜂 (𝑍𝑇  (𝐷𝑚) −  𝑍(𝐷𝑚)) ∗ 𝐷𝑖     (8) 

Where, 𝑄𝑛𝑒𝑤  indicates a updated weight, 𝑄𝑖  refers to current weight, 𝜂 indicates a learning rate, 𝑍𝑇 (𝐷𝑚) refers to the target 

output of the data samples,  𝑍(𝐷𝑚) denotes a predicted class output,  𝐷𝑖   denotes a input data samples.  This process is 

repeated for each misclassified data samples until the model converges to correctly classify all the data samples.  

In order to improve the accuracy of classification ad minimize the false negative rate,   combining all the weak learners’ 

results.  The output of strong classifier is expressed as follows, 

𝑌 = ∑ 𝑍𝑘 (𝐷𝑚)𝑘
𝑟=1      (9) 

Where, ‘𝑌’ denotes the output of strong classier,𝑍𝑘  (𝐷𝑚) denotes an output of ‘𝑘𝑡ℎ’ weak learner results.  Followed by, each 

weak learner are weighted based on their error rate as given below, 

 𝜑𝑘 =
1

2
ln (

1−𝐿𝑘

𝐿𝑘
) (10) 

Where, 𝐿𝑘 denotes a classification loss or error rate, ln denotes a natural logarithm, 𝜑𝑘 indicates a weight assigned to the  

𝑘𝑡ℎ weak learner. Iteratively, the boost classifier defines the margin for each weak learner results as follows,  

𝑚𝑘 =
𝑌 ∑ 𝑍𝑘 (𝐷𝑚) 𝑊𝑘

𝑘
ℎ=1

 ∑|𝑊𝑘|
   (11) 

Where, 𝑚𝑘 denotes a margin of the weak learner ‘𝑘’, 𝑌 denotes a target output classification results, 𝑍𝑘 (𝐷𝑚) predicted 

classification results of weak learner, 𝑊𝑘 indicates a weight assigned to the  𝑘𝑡ℎ weak learner. After that, the margin 

truncation process is performed.  By this definition, the margin is positive if the data samples are correctly classified and 

negative if the example is incorrectly classified. Truncated margin helps in controlling the influence of extreme values of the 

margin, making the classification process more stable, preventing overfitting. 

To avoid extreme values in the margin, this may lead to misclassification, truncate the margin using a threshold or truncation 

parameter. The truncated margin introduces a limit to ensure that margins not exceed a certain level, either positively or 

negatively. The truncated gradient method is expressed as follows,  

𝑇(𝑚𝑘, 𝛽) = {
𝑎𝑟𝑔 𝑚𝑎𝑥 (0,𝑚𝑘 − 𝛽) ,  𝑖𝑓  𝑚𝑘 > 0
𝑎𝑟𝑔 𝑚𝑖𝑛 (0,𝑚𝑘 + 𝛽) , 𝑖𝑓   𝑚𝑘 ≤ 0

              (12) 

Where, 𝑇(𝑚𝑘, 𝛽) denotes a truncated gradient method, 𝛽 indicates a threshold or truncation parameter used to controls the 

degree to which the values of margin ‘𝑚𝑘’ are truncated or limited. When the margin is positive it means the data samples 

is correctly classified, 𝑎𝑟𝑔 𝑚𝑎𝑥 (0,𝑚𝑘 − 𝛽) denotes maximize the between 0 and 𝑚𝑘 − 𝛽. It truncates the margin by 

ensuring that if margin ‘𝑚𝑘’ is less than or equal to ‘𝛽’, it is set to zero. If Margin ‘𝑚𝑘’ is greater than 𝛽, the margin is 

reduced by 𝛽 but remains positive. When the margin is negative means the data samples misclassified or on the 

boundary,arg𝑚𝑖𝑛  denotes an minimize between 0 and𝑚𝑘 + 𝛽. By limiting the minimum value to either positive or negative, 

this margin truncation is used to the classification model for making the learning process more stable, preventing and 

overfitting.  This stabilization helps the model converge to a more optimal solution, thereby reducing both training and 
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validation errors. Based on classification accurate crop yield prediction is performed.  The algorithm of RKTGMBC method 

is described as follows,  

Algorithm 1 : Radial Kernel Truncated Gradient Margin Boost Classification 

Input:  Dataset ‘𝐷𝑆’, selected features 𝑓1, 𝑓2, … 𝑓n , data samples  𝐷1, 𝐷2, 𝐷3, … 𝐷𝑚,  

Output: Improve crop yield prediction accuracy 

Begin 

1. for each data samples 𝐷𝑖    

2.    Construct ‘𝑘’ number of weak learners  

3.    End for 

4.   for each training data samples 𝐷𝑖  

5.      for each testing data samples 𝐷𝑇  

6.        Measure weighted sum of similarities using (6) 

7.        Obtain the classification output  

8.      End for  

9.   End for 

10.   For each classification output  

11.         Measure the loss using (7) 

12.      If  (𝐿 = 𝜗) then 

13.          Obtain accurate classification results   

14.         else 

15.          Update the weight using (8)     

16.          Go to step 6  

17.      End if 

18.   End for  

19.     Combine all weak classifier results into strong  𝑌 = ∑ 𝑍𝑘 (𝐷𝑚)𝑘
𝑟=1  

20.     Assign weights to weak classifier  ‘ 𝜑𝑘’ 

21.      For each 𝑍𝑘 (𝐷𝑚) 

22.            Define margin using ‘𝑚𝑘’  

23.            If (𝑚𝑘 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 )  then  

24.                Data samples are correctly classified  

25.            else 

26.                Data samples incorrectly classified 

27.        End if  

28.    End for 

29.      Apply truncated gradient method ‘ 𝑇(𝑚𝑘 , 𝛽)’ 

30.     Controls the values of margin 

31.     Obtain strong classification results  

32.   End for 

End  



Mrs.C. Karkuzhali, Dr.R. Padmapriya 
 

pg. 874 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 4s 

 

Algorithm 1 describes the process of ensemble classification to enhance crop yield prediction accuracy while minimizing 

time complexity. Initially, the ensemble classifier constructs ‘k’ weak learners for each input data sample. Each weak learner 

measures the weighted similarity between the training and testing data samples using the radial basis kernel function. Based 

on the similarity measure, classification results are obtained. For each classified result, the loss rate is computed. If the 

estimated loss value equals the threshold value, the classifier provides accurate classification results. Otherwise, the weights 

are updated, and the similarity measure is repeated to re-evaluate the loss value against the threshold. This process generates 

classification results. After classifying the data samples, the results from the weak learners are combined to form a strong 

classifier. Similar weights are assigned to a set of weak classifiers based on their loss values. For each set of classifiers, 

margins are assigned to provide accurate classification results through the truncated gradient method. The ensemble classifier 

identifies the best weak learner with the minimum loss. Based on these classification results, the crop yield prediction is 

performed accurately. 

4. EXPERIMENTAL SETUP        

Experimental evaluation of the proposed RKTGMBC method and AdaBoost GLCM [1], RFXG [2] are implemented using 

Python high level programming language. To conduct the experiment, crop yield prediction dataset is collected from the 

https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset?resource=download.  This dataset includes eight 

features and 28242. For the experimental consideration, the numbers of data samples are taken in the ranges from 2500, 

5000, 7500 ….25000.  Table 1 given below provides the features description. 

Table 1 features description 

S.No features   Description 

1. S.No Serial number  

2. Area  Country 

3. Item Crops 

4. Year Year of crop yield  

5. hg/ha_yield Crop yield 

6. Pesticides_tonnes Pesticides used per tonne 

7. Average_rain_fall_mm_per_year Average rain fall  

8. avg_temp Average Temperature 

5. EVALUATION METRICS  

In this section, various metrics, including crop yield prediction accuracy, precision, recall, root mean square error, crop yield 

prediction time are described with the mathematical formulation.   

Crop yield prediction accuracy:  It is measured as the ratio of accurately predicting the crop yield from the total number of 

data samples. Therefore, accuracy is formulated as follows: 

𝐶𝑌𝑃𝐴 =   (
 𝑇𝑝+𝑇𝑛

𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛
) ∗ 100   (13) 

Where, 𝐶𝑌𝑃𝐴 denotes a an crop yield prediction accuracy, 𝑇𝑝 indicates the true positive, 𝑇𝑛 denotes the true negative, 𝐹𝑝 

represents the false positive, 𝐹𝑛 represents the false negative. It is measured in percentage (%).  

Precision: It is measured as the ratio of true positives to the sum of true positives and false positives, indicating the proportion 

of correctly classified the crop yield from the total number of data samples. The precision is computed as,  

𝑷𝑹 =   (
 𝑻𝒑

𝑻𝒑+𝑭𝒑
)   (14) 

Where, 𝑃𝑅 denotes a precision,  𝑇𝑝 denotes the true positive,  𝐹𝑝 represents the false positive.  

Recall: it refers to the ability of a model to correctly classify all samples in a dataset. It is the ratio of true positive predictions 

to the sum of true positives and false negatives. It is mathematically formulating as follows,  

𝑅𝐶 =  (
 𝑻𝒑

𝑻𝒑+𝑭𝒏
)   (15) 

Where, 𝑅𝐶 denotes a recall, 𝑇𝑝 indicates the true positive, 𝐹𝑛 represents the false negative.  

https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset?resource=download


Mrs.C. Karkuzhali, Dr.R. Padmapriya 
 

pg. 875 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 4s 

 

Root Mean Square Error (RMSE): it is a metric used to evaluate the accuracy of a predictive model. It represents the square 

root of the average squared differences between the predicted values and the actual values to the total number of data samples. 

It is mathematically computed as follows,  

𝑹𝑴𝑺𝑬 = [  √
(𝒀𝒂𝒄𝒕−𝒀𝒑𝒓𝒆)

𝟐

𝒎
]   (16) 

Where, 𝑹𝑴𝑺𝑬 indicates an root mean square error, 𝒀𝒂𝒄𝒕denotes the data samples for which actual crop yield prediction, 𝒀𝒑𝒓𝒆 

denotes a data samples for which predicted crop yield results.  

Crop yield prediction time: It is measured as an amount of time taken by algorithm for predicting crop yield. The time is 

mathematically formulated as follows, 

𝐶𝑌𝑃𝑇 = ∑ 𝐷𝑖
𝑚
𝑖=1 ∗ 𝑇𝑀(𝐶𝑌𝑃)   (17) 

Where,  𝐶𝑌𝑃𝑇 denotes a crop yield prediction time based on the patient data ‘𝐷𝑖’ and the actual time consumed in crop yield 

prediction denoted by ‘𝑇𝑀(𝐶𝑌𝑃). It is measured in terms of milliseconds (ms). 

6. PERFORMANCE METRIC ANALYSIS  

 In this section, performance of the RKTGMBC method and AdaBoost GLCM [1] RFXG [2] are evaluated with various 

metrics, including crop yield prediction accuracy, precision, recall, root mean square error, crop yield prediction time with 

different number of samples.  

Table 2 comparison of crop yield prediction accuracy 

Number of  

samples  

Crop yield prediction accuracy (%) 

  RKTGMBC AdaBoost GLCM RFXG 

2500 95.2 88 90.4 

5000 94.89 87.56 89.05 

7500 95 88.52 90 

10000 95.06 87.96 89.56 

12500 94.89 88.21 90.74 

15000 94.25 89.45 90.98 

17500 95.12 88.22 90.33 

20000 95 87.45 89.52 

22500 95.89 88.45 90 

25000 94.87 87.63 89.44 
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Figure 4 graphical illustration of crop yield prediction accuracy 

Figure 4 depicts the graphical illustration of crop yield prediction accuracy versus the number of data samples collected from 

the dataset for accurate crop yield prediction. The number of data samples considered on the horizontal axis, ranges from 

2500 to 25000, while the accuracy of three methods namely RKTGMBC method and AdaBoost GLCM [1] RFXG [2] are 

shown on the vertical axis. The obtained overall results indicate that the crop yield prediction accuracy of the RKTGMBC 

method is higher compared to the existing methods [1] and [2]. For instance, with 2500 data samples, the RKTGMBC method 

achieved an accuracy of 95.2%, whereas the existing methods [1] and [2] achieved accuracies of 88% and 90.4%, 

respectively. Similar a variety of results were observed across different data samples. The average value of ten various 

indicates that the RKTGMBC method improves the performance of accuracy by 8% and 9% when compared to the existing 

methods [1] and [2], respectively. This is owing to the RKTGMBC method utilizes the truncated gradient margin boost 

ensemble classification method. This method utilizes the radial basis kernel perceptron as a weak learner to perform data 

analyzes  based on the similarity measure between the training and testing data samples. After that   ensemble classification 

method combines the results of the weak learners and applies the Truncated Gradient method to adjust the margin level for 

each classifier results to provide stable output classification results. This in turn enhances the accuracy in crop yield 

prediction.  

Table 3 comparison of precision  

Number of  

samples  

 Precision 

  RKTGMBC AdaBoost GLCM RFXG 

2500 0.954 0.885 0.908 

5000 0.948 0.886 0.902 

7500 0.958 0.895 0.907 

10000 0.942 0.892 0.908 

12500 0.95 0.9 0.909 

15000 0.957 0.905 0.915 

17500 0.946 0.903 0.918 

20000 0.955 0.91 0.927 

22500 0.948 0.898 0.914 

25000 0.956 0.885 0.907 
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Figure 5 graphical illustration of precision 

Figure 5 shows a graphical illustration of the precision of using three methods namely proposed RKTGMBC method, 

AdaBoost GLCM [1] and RFXG [2]. In the figure, the horizontal axis represents the number of data samples, while the 

vertical axis indicates the performance of precision. The results observed indicate that the proposed RKTGMBC method 

outperforms the existing methods [1] and [2]. In experiment conducted with 2500 data samples, the precision was found to 

be 0.954 for the proposed RKTGMBC method, precision was found to be 0.885 and 0.908 for the two existing methods [1] 

and [2], respectively. Overall, the analysis of ten performance results demonstrates that the precision achieved using the 

proposed RKTGMBC method is significantly enhanced by 6% compared to [1] and 4% compared to [2].  The improvement 

is achieved through the application of a margin-boost ensemble classifier model for predicting crop yield. This model 

analyzes features using a radial basis kernel function, resulting in classification with higher true positive rates and minimized 

false positive rates, ultimately enhancing precision. 

Table 4 comparison of recall   

Number of  data 

samples  

 Recall  

  RKTGMBC AdaBoost GLCM RFXG 

2500 0.976 0.939 0.952 

5000 0.96 0.921 0.942 

7500 0.968 0.915 0.935 

10000 0.972 0.918 0.928 

12500 0.965 0.91 0.932 

15000 0.958 0.9 0.92 

17500 0.968 0.898 0.924 

20000 0.962 0.911 0.932 

22500 0.975 0.925 0.945 

25000 0.97 0.92 0.94 
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Figure 6 graphical illustration of recall  

Figure 6 illustrates the performance outcomes of recall against the number of data samples, ranging from 2500 to 25000 

taken from dataset. To calculate recall, three methods were employed namely proposed RKTGMBC method, AdaBoost 

GLCM [1] and RFXG [2].  The horizontal axis indicates the number of data samples, while the vertical axis indicates recall. 

The experimental results demonstrate that the RKTGMBC method achieved improved recall compared to the other two 

existing techniques. For each method, a variety of results were observed with different counts of input samples. The observed 

results of the RKTGMBC method model were compared with the existing techniques. The overall comparison shows that 

the performance of recall using RKTGMBC method in accurately predicting the crop yield is enhanced by 6% compared to 

[1] and 3% compared to [2] respectively.  

Table 5 comparison of root mean square error     

Number of data 

samples  

 Root mean square error     

  RKTGMBC AdaBoost GLCM RFXG 

2500 0.096 0.24 0.192 

5000 0.072 0.175 0.154 

7500 0.057 0.132 0.115 

10000 0.049 0.120 0.104 

12500 0.045 0.105 0.082 

15000 0.046 0.086 0.073 

17500 0.036 0.089 0.073 

20000 0.035 0.088 0.074 

22500 0.027 0.077 0.066 

25000 0.032 0.078 0.066 

 

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98
R

ec
a

ll
  

Number of data samples  

RKTGMBC

AdaBoost GLCM

RFXG



Mrs.C. Karkuzhali, Dr.R. Padmapriya 
 

pg. 879 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 4s 

 

 

Figure 7 graphical illustration of root mean square error  

In Figure 7, the graphical illustrate of root mean square error (RMSE) are illustrated versus the number of data samples, 

ranging from 2500 to 25000. Three methods namely the RKTGMBC method, AdaBoost GLCM [1] and RFXG [2] are 

employed to evaluate RMSE. The horizontal axis represents the number of data samples, while the vertical axis represents 

the RMSE. The results demonstrate that the RKTGMBC method achieves minimal RMSE compared to the other two 

conventional ensemble methods. Let us consider the number of data samples to be 2500 in the first run. By applying the 

RKTGMBC method, the RMSE was found to be 0.096, 0.24 for [1] and 0.192 for the [2]. Similar performance outcomes 

were obtained for each method with varying number of data samples. The overall comparison reveals that the RMSE 

performance in accurately predicting the crop yield is minimized by 58% compared to [1] and by 50% compared to the [2] 

when applying the RKTGMBC method.  This improved performance is achieved through the application of the truncated 

gradient method to the results of weak learners. This method adjusts the margin of classification results to minimize the error 

rate during the classification process. This, in turn, minimizes the RMSE. 

Table 6 comparison of crop yield prediction time 

Number of data 

samples  

 Crop yield prediction time (ms) 

  RKTGMBC AdaBoost GLCM RFXG 

2500 27.75 34.25 33.25 

5000 29.6 36.7 34.3 

7500 31.5 38.4 36.7 

10000 33.7 41.5 39.8 

12500 35.9 44.6 42.3 

15000 38.5 47.8 45.8 

17500 40.3 51.6 49.7 

20000 42.9 53.4 51.9 

22500 48.5 55.8 54.2 

25000 50 58.6 57 
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Figure 8 graphical illustration of crop yield prediction time 

Figure 8 illustrates the performance analysis of crop yield prediction time using three methods namely RKTGMBC method, 

AdaBoost GLCM [1] and RFXG [2]. For each method, a simulation of 10 runs was performed with 25000 distinct images 

collected from the dataset. From the above figure, increasing the number of data samples, the time incurred for crop yield 

prediction was also found to be increased. However, the prediction time using the RKTGMBC method was found to be 

minimized when compared to [1] and [2] respectively. In the first iteration with 2500 data samples, the prediction time for 

the RKTGMBC method was found to be 27.75𝑚𝑠. Similarly, the time consumption for methods [1] and [2] was found to be 

34.25 𝑚𝑠 and 33.25 𝑚𝑠, respectively. The overall results obtained from the RKTGMBC method are compared to the results 

of the existing methods. The comparison illustrates that the performance of crop yield prediction time using the RKTGMBC 

method is significantly minimized by 18% and 15% compared to the existing methods [1] and [2].   The reason behind this 

is to perform feature selection. The proposed ensemble classifier model utilizes the selected significant features to enhance 

the accuracy of crop yield prediction. This process minimizes the time consumption involved in crop yield prediction. 

7. CONCLUSION  

Accurately predicting crop yields, particularly in large areas, is essential for addressing global food security challenges. This 

paper introduces an ensemble learning method called RKTGMBC, focusing on precise crop yield estimation with minimal 

time consumption in the agriculture domain. The RKTGMBC method first performs data preprocessing by handling missing 

data, normalization, and selecting significant features, which reduces the time complexity of crop yield prediction. 

Subsequently, the Truncated Gradient Margin Boost ensemble classification method is employed to classify data samples 

based on the radial basis kernel perceptron, providing final crop yield prediction results. A comprehensive experimental 

assessment is conducted using various performance metrics, such as crop yield prediction accuracy, precision, recall, root 

mean square error, and prediction time concerning the number of data samples. The overall performance results demonstrate 

that the proposed RKTGMBC method achieves improved accuracy with minimal error and time consumption compared to 

conventional ensemble methods. 
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