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ABSTRACT 

Diagnosing thyroid disease is challenging because the disease presents itself through a spectrum of subtle and diverse 

symptoms. The study presents a refined deep learning method that utilizes a combination of Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) to improve both diagnostic accuracy and efficiency. The CNN module 

extracts spatial features from thyroid ultrasound images, and the RNN module analyzes these features in sequences to identify 

temporal patterns that can reveal the progression or type of thyroid conditions. The performance of our model against a 

dataset of labelled ultrasound images and patient data demonstrates notable advancements in classification and diagnostic 

accuracy compared to conventional techniques. Combining CNN and RNN architectures delivers a powerful approach that 

enables the automatic detection and classification of thyroid diseases, which leads to enhanced reliability and speed in 

healthcare diagnostics.  

 

Keywords: Convolutional Neural Networks (CNN), Deep learning, Thyroid disease classification, Medical diagnostic 

accuracy, biomedical image processing. 

1. INTRODUCTION 

Millions of people around the world are affected by thyroid diseases which represent a major global health concern and 

include both benign growths and cancerous tumors. As a key regulator of metabolism, the thyroid gland, when it 

malfunctions, creates numerous clinical signs which make accurate and swift diagnosis difficult [1]. Traditional diagnostic 

methods for thyroid conditions rely mainly on biochemical assays and thyroid function tests but these frequently need 

additional imaging studies like ultrasound to complete the evaluation [2]. 

The interpretation of thyroid images remains difficult because medical imaging technologies cannot fully overcome the 

subtle and heterogeneous characteristics of thyroid abnormalities. Experienced radiologists exhibit substantial diagnostic 

differences when interpreting thyroid images because of this variability. The growing incidence of thyroid diseases due to 

environmental toxins and dietary shifts demands enhanced diagnostic tools for early and precise detection. 

The driving force for this research originates from the critical necessity to solve diagnostic difficulties by incorporating 

machine learning into medical imaging techniques. Research demonstrates that deep learning techniques through 

Convolutional Neural Networks (CNNs) improve feature extraction capabilities within complex image datasets [3]. The 

temporal variation seen in disease progression through medical records and imaging supports the use of Recurrent Neural 

Networks (RNNs) for temporal analysis which has the potential to greatly improve diagnostic accuracy [4]. 

The study introduces an innovative deep-learning framework that integrates CNNs with RNNs to process both spatial and 

temporal data for superior thyroid disease classification and diagnostic performance. This new method resolves traditional 

imaging limitations while establishing integrated deep-learning models as the future standard for medical diagnostic 

applications. Enhanced diagnostic precision enables us to decrease the rates of both overtreatment and undertreatment of 

thyroid disorders which results in superior patient outcomes through precision medicine. 

The effectiveness of treatment and management depends on accurate early diagnosis yet current diagnostic techniques show 

several limitations. Traditional diagnostic methods depend largely on biochemical tests and human ultrasound interpretation 

but fail to provide definitive results without further validation because disease symptoms vary [5]. These diagnostic methods 

may cause uncertainty in diagnosis while slowing treatment and inflating healthcare expenses. 
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Deep learning advancements in artificial intelligence have created innovative possibilities for medical diagnostic 

improvements. CNN-based deep learning models have shown outstanding performance in image recognition challenges and 

show promise to exceed human precision in medical image analysis [6]. The use of current CNN models in thyroid diagnostic 

processes remains constrained because their static architecture cannot adequately process temporal information necessary 

for tracking thyroid abnormality progression. 

The study strives to create an advanced deep learning system that combines Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) to improve thyroid disease diagnosis. The hybrid model utilizes CNNs to analyze spatial 

features from thyroid ultrasound images and applies RNNs to understand temporal changes in these features to capture 

thyroid disease progression dynamics. We will determine the model's performance by measuring its diagnostic accuracy, 

sensitivity, and specificity against traditional diagnostic methods and current machine learning models. The research aims to 

evaluate the proposed model's real-world clinical usefulness to create a practical diagnostic tool for radiologists which will 

improve diagnostic accuracy and patient care management while minimizing misdiagnosis occurrences. The study works to 

connect advanced machine learning methods with regular clinical operations while making an important advancement in 

applying artificial intelligence to medical image analysis and diagnostic processes. 

2. MATERIALS AND METHODS 

The development of a MATLAB-based thyroid classification system, combining CNNs for feature extraction and RNNs for 

classification. A user-friendly GUI enables non-expert users to interact with the system seamlessly. In methodology, make a 

three-step first data collection and preparation, second development of classification model structure and last testing and 

validation. 

 

Figure 1: Methodology for Thyroid Disease Detection using RNN and CNN 

2.1 Data Collection and Preparation 

Thyroid ultrasound images form the core of the dataset because clinicians frequently use them in diagnostics because they 

provide detailed structural information about the thyroid gland while remaining non-invasive.  Medical image repositories 

accessible to the public, academic research publications, and partnerships with healthcare organizations supplied the datasets. 

A range of publicly accessible datasets from sources like Kaggle along with additional open medical imaging archives were 

used to achieve diverse data representation. The datasets provide 2000 labeled images marked as benign or malignant which 

serve as critical data for supervised model training.  



Minal Chaphekar, Dr. Omprakash Chandrakar 
 

 

pg. 1153 
 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 4s 

 

2.1.1 Data Preprocessing 

Ultrasound devices generate images which contain excessive borders and textual overlays including patient data and 

equipment settings that do not contribute to medical diagnosis. The primary step of the preprocessing pipeline plays a crucial 

role in concentrating the analysis towards the main parts of ultrasound images which pertain to the thyroid gland. This stage 

involves several key steps:  

Area Selection and Cropping 

This step removes visual distractions by eliminating borders and annotations while minimizing image size to improve 

computational performance. The cropping process produces images that highlight only the medically important components.  

 

(a) 

 

(b) 

Figure 2: (a) Raw Ultrasound Image of malignant thyroid (b) Pre-processed image of malignant thyroid 

Image analysis techniques enable automated cropping through bounding box creation around identified regions of interest to 

achieve consistent and repeatable results across datasets of any size. After then resize the images in [227,227]. 

Adaptive Thresholding 

This method improves thyroid ultrasound image segmentation through dynamic threshold adjustments that respond to local 

intensity variations across the image. The grayscale ultrasound image undergoes segmentation into multiple smaller blocks. 

A constant 𝐶 adjusts the local mean intensity to determine the adaptive threshold for each block. The formula for adaptive 

thresholding can be represented as:   

𝑇(𝑥, 𝑦) = 𝑚𝑒𝑎𝑛(𝐼𝑙𝑜𝑐𝑎𝑙) + 𝐶 

Where: 

• 𝑇(𝑥, 𝑦) is the adaptive threshold for a pixel at location (𝑥, 𝑦). 

• 𝑚𝑒𝑎𝑛(𝐼𝑙𝑜𝑐𝑎𝑙) is the mean intensity of the pixels in the local neighborhood around (𝑥, 𝑦). 

• 𝐶 is a constant subtracted or added to fine-tune the threshold value. 

The initial step involves splitting the grayscale ultrasound image into smaller blocks which consist of groups of pixels.  

Speckle Reduction Bilateral Filtering  

The SRBF preprocessing step follows area selection and cropping and addresses speckle noise found in ultrasound imaging. 

The bilateral filter processes pixels through two separate mechanisms: one weights pixels by spatial proximity and another 

by intensity similarity. 
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The bilateral filter is applied to each pixel in the image, and the output value 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) computed as: 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) =  
1

𝑊(𝑥, 𝑦)
∑ 𝐺𝑠(||𝑥 − 𝑖, 𝑦 − 𝑗||)

(𝑖,𝑗)∈𝑁

. 𝐺𝑟(|𝐼(𝑥, 𝑦) − 𝐼(𝑖, 𝑗)|). 𝐼(𝑖, 𝑗) 

Where: 

• 𝐼(𝑥, 𝑦): Intensity of the pixel at (𝑥, 𝑦)  

• 𝐺𝑠(||𝑥 − 𝑖, 𝑦 − 𝑗||): Spatial filter weight based on the distance between pixels (𝑥, 𝑦) and (𝑖, 𝑗)  

• 𝐺𝑟(|𝐼(𝑥, 𝑦) − 𝐼(𝑖, 𝑗)|): Radiometric filter weight based on intensity difference. 

• 𝑁: Neighborhood of the pixel (𝑥, 𝑦). 

• 𝑊(𝑥, 𝑦): Normalization factor, ensuring weights sum to 1. 

The SRBF process reduces imaging noise without losing essential structural details, enabling precise automated diagnostic 

operations, including ROI detection and morphological tasks. 

2.1.2 Data Segmentation 

The system uses sophisticated data segmentation methods to separate the thyroid gland or nodules from surrounding tissues 

and backgrounds in ultrasound scans. The process strengthens the analysis of the region of interest (ROI) by eliminating 

irrelevant data which allows the classification model to focus only on significant features. The segmentation process 

improves classification accuracy by allowing the model to analyze medically relevant regions which minimizes the effect of 

background noise and artifacts. Ultrasound imaging variability issues like inconsistent lighting and low contrast as well as 

speckle noise are addressed through combined thresholding methods and active contour models plus morphological 

operations. 

The system achieves accurate segmentation by implementing Automatic ROI Selection which identifies the thyroid gland or 

nodules without requiring manual input. Otsu’s Thresholding initiates the process by determining the best threshold which 

maximizes variance between the thyroid region and background. The application of Otsu's Thresholding produces a binary 

image which displays the thyroid gland prominently to simplify later processing stages. When initial thresholding fails to 

deliver accurate boundaries because of inconsistent image quality and lighting conditions advanced segmentation methods 

like active contours are applied to improve results. 

The Active Contour method known as the Snake model functions to enhance segmented boundaries by continuously 

adjusting a contour line until it aligns with thyroid gland edges. The energy function used in this segmentation method 

achieves a balance between internal forces that preserve smoothness and continuity and external forces that pull the contour 

toward areas of high image gradient intensity. The evolving model stops when it achieves the most accurate thyroid region 

segmentation to guarantee that classification features come from precise and stable boundaries. The classification accuracy 

improves significantly because this step creates a clear separation between normal and abnormal thyroid structures. 

The segmented thyroid region undergoes morphological operations to eliminate small artifacts and gaps while smoothing its 

boundaries. The quality of extracted ROIs is enhanced by applying opening techniques to eliminate small noise components 

and closing techniques to fill small holes within segmented regions. The final segmented images gain consistency and 

structure through these operations which help minimize errors such as false positives and false negatives in the classification 

model. The system achieves automated thyroid disease classification through robust integration of preprocessing and 

segmentation techniques which enhances both computational efficiency and diagnostic reliability. 

2.2. Development of Classification Model Structure 

The thyroid disease classification system uses a hybrid deep learning architecture which combines CNNs to extract features 

with RNNs to classify sequences. The design of this architecture enables it to utilize spatial and temporal data relationships 

which ensures accurate and reliable thyroid disease diagnosis.  
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Figure 3: System Classification Structure 

Multiple specialized components work together within the system to create an effective classification pipeline that delivers 

high performance. 

2.2.1 Data Splitting 

To split the segmentation data into Train Data and Validation Data in an 80: This process divides the dataset into training 

and validation sets at an 80:20 ratio through systematic partitioning to provide adequate learning data for the training set and 

a designated subset for model evaluation. Here’s how this can be done:  

Assume the dataset consists of 𝑁 total images. To achieve an 80:20 split: 

• Training Data: 80% of N, denoted as Ntrain. 

• Validation Data: 20% of N, denoted as Nval. 

Mathematically: Ntrain=0.8⋅N, Nval=0.2⋅N 

Randomly shuffle the dataset to ensure that the images are distributed evenly and are not biased (e.g., all benign or all 

malignant images ending up in one subset). 

2.2.2 CNN Feature Extraction 

Convolutional Neural Networks (CNNs) serve as a fundamental element of the thyroid disease classification system by 

extracting advanced spatial features from ultrasound images. Important patterns like texture, shape and edges serve as 

essential features to differentiate benign from malignant thyroid nodules. The feature extraction process in CNNs operates 

automatically and follows a hierarchical structure which ensures that relevant information is captured across each layer.  

 

Figure 4: CNN Feature Extraction of Segmented Image 

CNNs extract features through multiple layers, each designed to capture different levels of abstraction in the image:   
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Convolutional Layers 

The filters (kernels) move across the input image to identify local features including edges, corners, and textures.  

The operation for each pixel in the feature map is defined as: 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗). 𝐾(𝑖, 𝑗) + 𝑏

𝑗𝑖

 

Where: 

• I(x,y): Input image or feature map at position (x,y). 

• K(i,j): Kernel weights. 

• b: Bias term. 

Activation Function (ReLU) 

• A non-linear activation function (Rectified Linear Unit) is applied to introduce non-linearity:  

𝑓𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) 

• This ensures that only the significant features are retained while suppressing irrelevant information. 

Pooling Layers 

• Downsample the feature maps to reduce dimensionality while retaining critical features. 

• Common methods include max pooling:  

𝑓𝑝𝑜𝑜𝑙 = max (𝐼(𝑥, 𝑦)) 

Where 𝐼(𝑥, 𝑦) is the local region in the feature map. 

Fully Connected Layers 

• Flatten the feature maps into a one-dimensional vector and connect to a dense layer. 

• This step compiles all extracted features into a comprehensive feature representation. 

The CNN feature extraction process starts by submitting the preprocessed and segmented ultrasound images to the network. 

Images standardised to 227×227 pixels enter the convolutional layers where adjustable filters move across the images to 

recognize local patterns including edges, corners and textures. Individual filters target particular spatial features and generate 

feature maps that emphasize essential image areas. The ReLU activation function processes feature maps to maintain non-

linearity and extract complex relationships by preserving positive values while discarding unnecessary information. The low-

level features serve as foundational elements for deeper network layers, which capture increasingly complex abstract patterns, 

including shapes and patterns related to the thyroid gland and nodules.  

The output feature maps created by convolutional layers move to pooling layers where they undergo downsampling by local 

region summarization. Pooling layers decrease the size of feature maps to maintain critical features and reduce computational 

demands. The processed feature maps transform a single-dimensional vector through fully connected layers to consolidate 

all extracted information into a condensed format. The classification model (e.g., RNN) receives this feature vector for further 

analysis and diagnosis since it contains the most relevant spatial characteristics of the thyroid image. The systematic 

extraction of hierarchical features directs the model to prioritize essential patterns which leads to reliable thyroid disease 

classification. 

2.2.3 RNN Classifier 

The proposed system integrates a Recurrent Neural Network (RNN) Classifier, which analyzes and classifies feature vectors 

extracted by the CNN. RNNs process sequential data well while capturing time-based dependencies, which makes them ideal 

for analyzing complex patterns found in thyroid ultrasound images. The system uses temporal dynamics from extracted 

features to improve the RNN classifier's ability to distinguish between benign and malignant thyroid conditions.  

RNNs work through input data step by step while keeping a hidden state that preserves past input details to affect upcoming 

predictions. The ability to detect evolving patterns in sequential data proves essential when identifying changes in feature 

vectors that indicate thyroid abnormalities. The primary components of an RNN classifier include:   

Input Layer   

The input layer receives sequential feature vectors produced by the CNN for processing by the RNN.  
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Recurrent Layers   

These layers iteratively update their hidden state based on the current input and previous hidden state:   

ℎ𝑡 = 𝜎(𝑊ℎ. ℎ𝑡−1 + 𝑊𝑥. 𝑥𝑡 + 𝑏) 

Where 

ℎ𝑡 is the hidden state at time t. 

𝑊ℎ and 𝑊𝑥 are weight matrices for the hidden state and input, respectively. 

𝑥𝑡  is the input feature at time t. 

b is the bias term. 

σ is the activation function, typically tanh⁡\tanhtanh or ReLU. 

Advanced Variants (LSTM/GRU) 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are popular RNN variants that address the vanishing 

gradient problem and improve long-term dependency learning: 

 

where ft,it,Ct and ht represent the forget gate, input gate, cell state, and hidden state, respectively. 

Output Layer 

• The final hidden state is passed to a softmax layer to produce class probabilities 

𝑃(𝑦 = 𝑐|𝑥) =
𝑒𝑧𝑐

∑ 𝑒𝑧𝑖𝑛
𝑖=1

 

where zc is the score for class c, and n is the number of classes (benign or malignant) 

The proposed thyroid classification system relies on the RNN classifier as its decision-making component. The RNN 

processes features extracted by the CNN from ultrasound images to classify thyroid nodules. The combination of CNN and 

RNN processing enables the diagnostic system to analyze spatial and temporal data which produces accurate and dependable 

results. The system's ability to detect complex patterns that signal thyroid malignancies improves through the integration of 

RNNs enabling early and precise diagnosis. 

2.3 Testing and Validation 

Deep learning model training for thyroid disease classification follows a structured approach to enhance model performance 

and achieve accurate disease classification. The initial step in the training process involves data preparation by splitting the 

pre-processed dataset into three distinct sets for training, validation, and testing purposes. The selection of the neural network 

architecture follows model architecture definition with task-specific configuration of architecture parameters. The model 

employs a loss function to assess prediction errors against ground truth labels while an optimizer reduces this error throughout 

the training process. The training process involves iterative model updates with the training data while validation set 

performance tracking helps to prevent overfitting. The model's generalization capabilities are enhanced when 

hyperparameters are adjusted according to validation results and its final evaluation takes place on a test dataset to determine 

performance against new data. The training method enables deep learning systems to classify thyroid diseases with greater 

efficacy which enhances diagnostic precision and patient treatment outcomes. 

 

Performance evaluation methods are essential for assessing the effectiveness and reliability of deep learning models in 

thyroid disease classification. Key evaluation metrics include accuracy, sensitivity, specificity, precision, F1-score, receiver 

operating characteristic (ROC) curve, and confusion matrix. 
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Accuracy measures the proportion of correctly classified instances out of the total number of instances. It is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity (Recall) measures the proportion of actual positive instances correctly identified by the model. It is calculated as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Specificity measures the proportion of actual negative instances correctly identified by the model. It is calculated as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision measures the proportion of true positive instances out of all instances predicted as positive by the model. It is 

calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1-score is the harmonic mean of precision and sensitivity. It is calculated as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

The ROC Curve demonstrates how sensitivity and specificity vary across different threshold settings. The AUC-ROC 

measurement evaluates model performance comprehensively by analyzing all potential threshold levels. 

The Confusion Matrix displays a model's prediction results versus actual labels in a table format with columns for true 

positive (TP), false positive (FP), true negative (TN) and false negative (FN) outcomes. 

Evaluation metrics offer deep insights into deep learning model performance which helps make informed decisions about 

model deployment and clinical use in thyroid disease classification. 

3. EXPERIMENTAL RESULTS 

The deep learning-based thyroid disease classification system showed promising outcomes by accurately identifying benign 

and malignant thyroid nodules. The study's use of a combined CNN-RNN architecture allows both efficient feature extraction 

and sequential pattern recognition which results in 93% classification accuracy. The model's high accuracy demonstrates its 

dependable diagnostic capability for thyroid conditions while reducing both false positives and false negatives. The system's 

robustness allows it to perform effectively across diverse ultrasound imaging scenarios which makes it useful for clinical 

diagnostic purposes. 

 

Figure 5: Training Accuracy progress plot 

Standard performance metrics used in a thorough evaluation confirm the system's effectiveness. The model provided high 

precision which allowed correct classification of malignant cases thus avoiding unnecessary treatments for benign conditions. 

A high sensitivity (recall) measurement reveals that the system can detect malignant nodules reliably and reduces the risk of 

overlooking critical medical cases. The specificity measurement confirmed that the system effectively identified benign 

nodules without generating false alarms.  
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Figure 6: Confusion matrix with 116 validate images 

The model showed proficiency in distinguishing benign from malignant cases because the F1-score provided a balanced 

assessment of precision and recall. The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC-ROC) 

approached 1 which showed the system’s high ability to distinguish between the two classes. The segmentation process 

served as an important element for achieving system success. The use of Otsu’s Thresholding and Active Contour Models 

enabled precise detection and extraction of the thyroid gland in ultrasound images through Automated Region of Interest 

(ROI) detection.  

The segmentation results achieved better quality through morphological operations such as opening and closing which 

produced smooth and accurate boundaries. The preprocessing procedures improved input data quality which allowed the 

deep learning model to concentrate on crucial classification features. Improved image clarity was achieved through Speckle 

Noise Reduction Bilateral Filtering and Adaptive Thresholding which addressed typical ultrasound imaging challenges. 

 

Figure 7: MATLAB GUI Interface for end users 
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The development of a MATLAB-based Graphical User Interface (GUI) improved system usability by providing seamless 

interaction capabilities for clinicians and technicians. Through the Graphical User Interface users can upload thyroid 

ultrasound images for processing and get instant classification results which provides system accessibility for non-experts. 

The system allows hospitals and research labs to deploy the deep learning model in their clinical environments without 

needing much technical knowledge which makes it appropriate for use in resource-limited healthcare facilities. 

4. DISCUSSION 

This confusion matrix demonstrates how well the classification model performs when distinguishing between benign and 

malignant thyroid conditions. The classification model correctly identified 58 benign cases and 50 malignant cases which 

match the green highlighted cells in this matrix. The red cell in the confusion matrix reveals that 8 benign cases received 

incorrect malignant classifications. Each percentage represents the share of total predictions in each category while diagonal 

cells display correct classification results. The model demonstrated high diagnostic precision by correctly classifying 93% 

of the total cases through calculation of the sum of diagonal entries compared to the complete number of cases (108 out of 

116). Accurate thyroid disease diagnosis evaluation through this metric ensures proper treatment decisions. 

5. CONCLUSION  

An advanced deep learning model proved successful in classifying thyroid diseases through ultrasound imaging analysis. 

The confusion matrix visualizations show that the model achieved a 93% accuracy rate while maintaining high sensitivity 

and specificity values. Diagnostic capabilities have markedly progressed beyond traditional methods as demonstrated by the 

study results. The model demonstrated high accuracy in distinguishing between benign and malignant thyroid conditions 

which minimized misdiagnosis and ensured patients received the correct medical care. 

The model demonstrates its integration potential within medical workflows through diagnostic time reduction and favorable 

feedback from clinical users which boosts healthcare service efficiency and quality. The implementation process revealed 

challenges including system integration with existing platforms which will guide future research and development efforts. 

The research findings emphasize machine learning benefits in medical diagnostics while establishing a solid foundation for 

creating more dependable and efficient diagnostic technologies. By continuing to refine these technologies and promote their 

use we can improve patient outcomes and optimize healthcare resources which represents a major breakthrough in medical 

imaging. 
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