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ABSTRACT 

This paper develops a robust picture fuzzy (PF) decision-making framework by integrating power aggregation operators 

derived from Aczél-Alsina operations. The proposed power aggregation operators effectively capture intricate 

interrelationships among multiple criteria, thereby enhancing the precision and reliability of decision-making processes. In 

this study, the familiarity of decision makers with the evaluated objects is systematically incorporated into the PF framework 

alongside primary data, ensuring a more comprehensive assessment. Motivated by the operational principles of Aczél-Alsina 

functions, this research advances the theoretical foundation of PF Aczél-Alsina power-weighted and ordered-weighted 

geometric operators, seamlessly integrating decision makers’ expertise into the aggregation process. The structural properties 

and mathematical characteristics of these newly developed operators are rigorously analyzed. To validate their practical 

applicability, we employ the proposed operators to solve a complex multi-criteria decision-making (MCDM) problem within 

the food industry, a domain where uncertainty and nuanced judgments play a critical role. A comparative evaluation against 

existing operators highlights the superior performance of our approach in effectively managing uncertainty, refining decision 

accuracy, and enhancing adaptability to real-world decision-making challenges. 

 

Keywords: Multi criteria decision-making, picture fuzzy set, Aczel-Alsina t-norms and t-conorms, Power aggregation 

operator, Food industry 

1. INTRODUCTION 

Multi-criteria decision-making (MCDM) is a fundamental aspect of decision theory with extensive applications across 

diverse domains, including engineering, economics, healthcare, and environmental management. Decision-makers 

frequently encounter challenges in deriving logical conclusions due to the complexity of evaluating multiple conflicting 

criteria and assessing numerous alternatives under uncertainty. Traditional decision-making models often struggle to 

accommodate the vagueness and subjectivity inherent in human judgment, necessitating the development of more flexible 

mathematical frameworks. 

To address these challenges, Zadeh (1965) introduced fuzzy set (FS) theory, which allows for a more nuanced representation 

of uncertainty by incorporating the degree of membership μ within the range 0 ≤ μ ≤ 1. This approach enabled the modeling 

of imprecise information, making it a powerful tool in decision analysis. However, FS theory does not account for the 

possibility of hesitation or partial membership in multiple categories. 

To enhance the expressive power of FS theory, Atanassov (1986) proposed intuitionistic fuzzy sets (IFS), which introduce 

the degree of non-membership ν alongside the membership degree μ, subject to the constraint 0 ≤ μ + ν ≤ 1. IFS allows 

decision-makers to express hesitation by acknowledging both acceptance and rejection degrees, improving the representation 

of uncertain scenarios. Nevertheless, IFS still lacks the ability to explicitly incorporate neutrality, which is essential in many 

real-world decision-making problems where experts may prefer an intermediate stance rather than a strict "yes" or "no" 

response. 
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To overcome this limitation, Cuong et al. (2013) introduced picture fuzzy sets (PFS), an extension of IFS that incorporates 

an additional parameter: the degree of neutrality (η), alongside membership (μ) and non-membership (ν), under the condition 

0 ≤ μ + η + ν ≤ 1. PFS models are particularly effective in scenarios where human opinions involve nuanced responses 

such as "yes," "no," "neutral," or even cases where decision-makers partially agree and partially disagree simultaneously. 

These sets have proven useful in areas such as expert systems, medical diagnosis, risk assessment, and social decision-

making, where neutrality and hesitation play a crucial role. 

Additionally, some individuals may choose not to express a preference (π). Cuong et al. (2016) examined the classification 

and properties of representable picture t-norms and picture t-conorms. Yager (1988) introduced the ordered weighted 

aggregation (OWA) operator and analyzed its characteristics. Further, Wei (2017) investigated PF arithmetic and geometric 

operators, including PF hybrid aggregation operators (AOs) and their applications. Several researchers have contributed to 

the advancement of PF aggregation operators in MCDM. Garg (2017) proposed a range of AOs for PFSs and applied them 

to solve MCDM problems. Wei (2018) explored MCDM using arithmetic and geometric AOs based on Hamacher operations. 

Khan et al. (2019) introduced PF Einstein operations, while Zhang et al. (2018) proposed PF Dombi Heronian mean 

operators. Jana et al. (2019) developed PF Hamacher AOs for enterprise performance evaluation. Other notable contributions 

include works by Ates et al. (2020), Wang et al. (2018), and Qiyas et al. (2020), who introduced various PF aggregation 

operators for handling complex decision-making scenarios. This paper introduces a novel class of aggregation operators by 

integrating the power aggregation (PA) operator with Aczél-Alsina power (AAP) operations, thereby enhancing information 

aggregation in the PF environment. The proposed PF AOs include the PF Aczél-Alsina power weighted geometric 

(PFAAPWG) operator and the PF Aczél-Alsina power ordered weighted geometric (PFAAPOWG) operator. Additionally, 

the study explores their fundamental properties and practical applications in MCDM problems. The organization of the paper 

are showed in Fig. 1 

1.1 Motivation of the Paper 

The motivation behind this research stems from the need to enhance decision-making methodologies in complex and 

uncertain environments. The key motivating factors are as follows: 

 Expanding the PF framework by incorporating advanced aggregation mechanisms is crucial for handling uncertainty 

and imprecise information in real-world applications.  

 A significant research gap exists in the integration of Aczél-Alsina power aggregation operators within PF 

environments, necessitating a systematic exploration of their applicability.  

 The verification of the mathematical properties of the proposed operators is essential to ensure their robustness and 

reliability in decision-making contexts.  

  This study aims to develop novel PF Aczél-Alsina power geometric operators, extending their theoretical foundation 

and practical relevance to diverse decision-making scenarios.  

 A comparative evaluation is conducted to highlight the advantages of the proposed operators over existing approaches.  

1.2 Contribution of the Paper 

The major contributions of this paper are summarized as follows: 

 The introduction of PF Aczél-Alsina power-weighted and ordered-weighted geometric aggregation operators, 

providing a new approach to information fusion in PF environments.  

 A comprehensive theoretical analysis of the fundamental properties of the proposed operators, ensuring their 

mathematical soundness and applicability.  

 The development of a novel MCDM approach utilizing PF Aczél-Alsina power geometric aggregation operators to 

enhance decision-making precision.  

 The application of the proposed methodology to a real-world decision-making problem in the food industry, 

demonstrating its effectiveness through comparative analysis against existing aggregation techniques.  

1.3 Paper Organization 

This paper is systematically structured into seven sections: 

 Section 2 provides an overview of the fundamental concepts of PFS and their associated operations, forming the 

theoretical foundation of this study.  

 Section 3 introduces the proposed PF Aczél-Alsina power geometric aggregation operators and discusses their 

formulation.  

 Section 4 presents a structured algorithm for solving MCDM problems using the proposed aggregation framework.  

 Section 5 demonstrates a numerical case study in the PF context.  
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 Section 6 Comparative analysis showcasing the advantages of the proposed approach.  

 Section 7 concludes the study with a summary of key findings and potential directions for future research. 

  

Figure  1: Flowchart illustrating the organization of the paper. 

2. PRELIMINARIES 

In this section, some basic concepts have been reviewed related to PFS. 

2.1 Picture Fuzzy Set 

The PFS (Cuong et al. (2013, 2014)) is an extension of “IFS”. The mathematical form of PFS is expressed as follows:  

Definition 1 A picture fuzzy set A on universal set X is defined by, 

A = {⟨x, μA(x), ηA(x), νA(x)⟩/x ∈ X}  

Where, μA(x), ηA(x) and νA(x) ∈ [0,1] are the degree of membership, the degree of neutral membership and the degree of 

non-membership of x ∈ A respectively, with the following condition: 0 ≤ μA(x) + ηA(x) + νA(x) ≤ 1 ∀x ∈ X. Then, for x ∈
X, πA(x) = 1 − μA(x) − ηA(x) − νA(x) could be called the degree of refusal membership of x in A. Geometrical 

representation of PFS is shown in Figure 1. For convenience, α = (μα, ηα, να) is called a picture fuzzy number (PFN). 

2.2 Comparison for PFNs 

According to Garg (2017) the score and accuracy functions of PFNs are as follows: 

Definition 2 Let α = (μα, ηα, να) be a PFN, its score function S(α) and its accuracy function A(α) is defined by S(α) =
μα − ηα − να;  S(α) ∈ [−1,1], A(α) = μα + ηα + να; A(α) ∈ [0,1]. Based on the S(α) and A(α) an order relationship 

between two PFNs is defined as follows.  

Definition 3 Let α1 = (μα1
, ηα1

, να1
) and α2 = (μα2

, ηα2
, να2

) be two PFNs. Then the following comparison rules can be 

used:   

    1.  If S(α1) < S(α2) then α1 ≺ α2  

    2.  If S(α1) = S(α2) then   

        (a) If A(α1) < A(α2) then α1 ≺ α2  

        (b) If A(α1) = A(α2) then α1 ≈ α2.  
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2.3 Operation laws of Picture fuzzy numbers  

Naeem(2022) operations laws and power geometric aggregation operator (Ullah, K. et all (2023)) are defined for PFNs as 

follows. 

Definition 4 The PG operator are defined as:  

 PG(b̆1, b̆2, … , b̆r) = ∏r
k=1 b̆

k

(1+Ü(b̆k))

∑r
k=1 1+Ü(b̆k)

 (1) 

 where Ü(b̆k) = ∑r
k=1,k≠h  sup(ăh, ăk), sup(ăh, ăk) = 1 − 𝔇(ăh, ăk) and the weight 

(1+Ü(b̆k))

∑r
k=1 1+Ü(b̆k)

of the argument b̆h depends 

on all the input arguments b̆k(k = 1,2, … , r), which enables the argument values to support each other in the geometric 

aggregation process.  

Definition 5  Let α1 = 〈μα1
, ηα1

, να1
〉 and α2 = 〈μα2

, ηα2
, να2

〉 be any two PFNs, then the Euclidean distance between them 

is defined as follows:  

 𝔇(α1, α2) =
1

3
{|μα1

− μα2
| + |ηα1

− ηα2
| + |να1

− να2
|} (2) 

Definition 6  AA in early 1982 introduced the concepts of TN and TCN classes for functional equations. The AATN can be 

defined as follows:  𝔈𝔤A

x (ŭ̈, v̆̈) = {𝔈𝔤D
(ŭ̈, v̆̈), if β = 0min(ŭ̈, v̆̈), if β = ∞e−{(−Lnŭ̈)β+(−Lnv̆̈)β}

1
β

,otherwise. and the AATCN 

can be defined as follows: 𝔒A
x (ŭ̈, v̆̈) = {𝔒D(ŭ̈, v̆̈); if β = 0 max(ŭ̈, v̆̈); if β = ∞e−{(−Ln(1−ŭ̈))β+(−Ln(1−v̆̈))β}

1
β

,otherwise. such 

that 𝔈𝔤A

0 = 𝔈𝔤D
, 𝔈𝔤A

1 = 𝔈𝔤P
, 𝔈𝔤A

∞ = min, 𝔒A
0 = 𝔒D, 𝔒A

1 = 𝔒P, 𝔒A
∞ = max. The TN 𝔈𝔤A

β
 and TCN 𝔒A

β
 are combained to one 

another for each β ∈ [0, ∞]. The class of AATN is strictly increasing, and the class of AATCN is strictly decreasing. The 

following is the AATN and AATCN operational laws in connection with PF theory.  

Definition 7 Let αj = 〈μαj
, ναj

, ηαj
〉, j = 1,2 be two PFNs, β ≥ 1 and K > 0. Then, the AATN and AATCN operations of 

PFN are defined as:   

1.  α1 ⊕ α2 = 〈1 − e−{(−Ln(1−μα1))β+(−Ln(1−μα2))β}

1
β

, e−{(−Ln(ηα1))β+(−Ln(ηα2))β}

1
β

, e−{(−Ln(να1))β+(−Ln(να2)))β}

1
β

〉;  

2.  α1 ⊗ α2 = 〈e−{(−Ln(μα1))β+(−Ln(μα2))β}

1
β

, 1 − e−{(−Ln(1−ηα1))β+(−Ln(1−ηα2))β}

1
β

, 1 − e−{(−Ln(1−να1))β+(−Ln(1−να2)))β}

1
β

〉;  

3.  K ⋅ α1 = 〈1 − e−{K(−Ln(1−μα1))β}

1
β

, e−{K(−Ln(ηα1))β}

1
β

, e−{K(−Ln(να1))β}

1
β

〉;  

4.  α1
K = 〈e−{K(−Ln(μα1))β}

1
β

, 1 − e−{K(−Ln(1−ηα1))β}

1
β

, 1 − e−{K(−Ln(1−να1))β}

1
β

〉. 

Definition 8  Let α = {〈x, μα(x), να(x), ηα(x)|x ∈ X〉} α1 = {〈x, μα1
(x), να1

(x), ηα1
(x)|x ∈ X〉} and α2 =

{〈x, μα2
(x), να2

(x), ηα2
(x)|x ∈ X〉} be any three PFS, and their set operators are defined as   

1.  α1 ⊆ α2 ⇔ μα1
(x) ≤ μα2

(x), να1
(x) ≤ να2

(x) and ηα1
(x) ≥ ηα2

(x)∀x ∈ X;  

2.  α1 ∪ α2 = {〈x, {𝔒A{μα1
(x), μα2

(x)}}, {𝔈𝔤A
{να1

(x), να2
(x)}}, {𝔈𝔤A

{ηα1
(x), ηα2

}(x)}|x ∈ X〉};  

3.  α1 ∩ α2 = {〈x, {𝔈𝔤A
{μα1

(x), μα2
(x)}}, {𝔒A{να1

(x), να2
(x)}}, {𝔒A{ηα1

(x), ηα2
(x)}}|x ∈ X}〉};  

4.  αc = {〈x, ηα(x), να(x), μα(x)|x ∈ X〉}.  

3. PROPOSED PF ACZEL-ALSINA POWER AGGREGATION OPERATOR 

 The current section defines a series of PF Aczel-Alsina power geometric operators that incorporate CLs with the evaluated 

PFNs.  

3.1 PF Aczel-Alsina power geometric aggregation operator 

 In this part, we built the PF weighted and ordered weighted Aczel-Alsina power geometric AOs. Additionally, we investigate 

several fundamental aspects of these proposed operators.  

3.1.1 PF Aczel-Alsina power weighted geometric aggregation operator 

 By employing the fundamental operations of AA aggregation tools, we derived appropriate methodologies, including 

PFAAPWG, with reliable properties while considering PFNs. Additionally, we applied a weighted suppport degree 

throughout our article, using the following equation: χj =
wj(1+Ŭ(αj))

∑
ρ
j=1

wj(1+Ŭ(αj))
 where the suppport of αj is denoted by Ŭ(αj) =
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∑ρ
h=1,h≠j  supp(αj, αh), j = 1,2, … , ρ, h = 1,2, … , r and the associated weight vector of αj is w = (w1, w2, … , wρ, )T, j =

1,2, … , ρ, wj > 0, and ∑ρ
j=1 wj = 1.  

Definition 9 Let αj = (μj, ηj, νj)(j = 1,2, … , ρ) be a set of PFNs and χ = (χ1, χ2, … , χρ)T be the weight vectors for PFNs 

with the condition ∑ρ
j=1 χj = 1. Then, the mapping PFAAPWG: bρ → b operator is given as follows: PFAAPWG 

{α1, α2, … , αρ} =⊕j=1
ρ

(αj)
χj   

 = (α1)χ1 ⊕ (α2)χ2 ⊕ … ⊕ (αρ)χρ . (3) 

Theorem 1  The aggregated value of the PFNs αj for j = 1,2, … , ρ with respect to the weight vector χ = (χ1, χ2, … , χρ)T 

obtained using the PFAAPWG Equation 5 is also a PFN and is given by PFAAPWG {α1, α2, … , αρ} =  

 = 〈e
−{∑

ρ
j=1 (χj(−Ln(μαj

))α)}
1
α

, 1 − e
−{∑

ρ
j=1 (χj(−Ln(1−ηαj

))α)}
1
α

, 1 − e
−{∑

ρ
j=1 (χj(−Ln(1−ναj

))α)}
1
α

〉 (4) 

Proof. By mathematical induction the proof as follows:   

    1.  For ρ = 2, we have PFAAPWG ((α1, α2)) = α1
χ1 ⊕ α2

χ2 . By operational laws, we get α1
χ1 = 〈e−{(χ1(−Ln(μα1))α)}

1
α , 1 −

e−{(χ1(−Ln(1−ηα1))α)}
1
α , 1 − e−{(χ1(−Ln(1−να1))α)}

1
α〉. analogously, for α2

χ2 = 〈e−{(χ2(−Ln(μα2))α)}
1
α

, 1 −

e−{(χ2(−Ln(1−ηα2))α)}
1
α

, 1 − e−{(χ2(−Ln(1−να2))α)}
1
α

〉. PFAAPWG (α1, α2) = (α1,χ1⊕ α2)χ2 = 〈e−{(χ1(−Ln(μα1))α)}
1
α , 1 −

e−{(χ1(−Ln(1−ηα1))α)}
1
α , 1 − e−{(χ1(−Ln(1−να1))α)}

1
α〉 ⊕ 〈e−{(χ2(−Ln(μα2))α)}

1
α

, 1 − e−{(χ2(−Ln(1−ηα2))α)}
1
α

, 1 −

e−{(χ2(−Ln(1−να2))α)}
1
α

〉 = 〈e−{(χ1(−Ln(μα1))α)+(χ2(−Ln(μα2))α)}
1
α

, 1 − e−{(χ1(−Ln(1−ηα1))α)+(χ2(−Ln(1−ηα2))α)}
1
α

, 

1 − e−{(χ1(−Ln(1−να1))α)+(χ2(−Ln(1−να2))α)}
1
α

〉 

= 〈e
−{∑2

j=1 (χj(−Ln(μαj
))α)}

1
α

, 1 − e
−{∑2

j=1 (χj(−Ln(1−ηαj
))α)}

1
α

, 1 − e
−{∑2

j=1 (χj(−Ln(1−ναj
))α)}

1
α

〉. Hence, this true for j=2.  

    2.  Now, supppose that this will be true for j=k. Then we have the following equation: PFAAPWG {(α1α2, … , αk)} =

〈e−{∑k
j=1 (χk(−Ln(μαk

))α)}
1
α

, 1 − e−{∑k
j=1 (χk(−Ln(1−ηαk

))α)}
1
α

, 

1 − e−{∑k
j=1 (χk(−Ln(1−ναk

))α)}
1
α

〉. Now, we have to show that it also hods for j=k+1 as follows PFAAPWG 

{(α1, α2, … , αk, αk+1)} = 〈e−{∑k
j=1 (χk(−Ln(μαk

))α)}
1
α

, 1 − e−{∑k
j=1 (χk(−Ln(1−ηαk

))α)}
1
α

, 1 − e−{∑k
j=1 (χk(−Ln(1−ναk

))α)}
1
α

〉 ⊕

〈e−{∑k+1
j=1 (χk+1(−Ln(μαk+1

))α)}
1
α

, 1 − e−{∑k+1
j=1 (χk+1(−Ln(1−ηαk+1

))α)}
1
α

, 1 − e−{∑k+1
j=1 k(χk+1(−Ln(1−ναk+1

))α)}
1
α

〉 =

〈1e
−{∑k+1

j=1 (χj(−Ln(μαj
))α)}

1
α

, 1 − e
−{∑k+1

j=1 (χj(−Ln(1−ηαj
))α)}

1
α

, 1 − e
−{∑k+1

j=1 (χj(−Ln(1−ναj
))α)}

1
α

〉  

 which is true for j=k+1.  

Property 1  The PFAAPWG is idempotent. i.e., If αj = α for all j, then PFAAPWG (α1, α2, … , αρ) = α.  

Property 2  The PFAAPWG is boundedness. i.e., For a collection of PFNs αj for all j = 1,2, … , ρ and α− =

min(α1, α2, … , αρ) and α+ = max(α1, α2, … , αρ).  

Then α− ≤ PFAAPWAA(α1, α2, … , αρ) ≤ α+. 

Property 3  The PFAAPWG is monotonicity. i.e., for any two PFNs αj = 〈μαj
, ηαj

, ναj
〉 and α′j = 〈μ′αj

, η′αj
, ν′αj

〉 such that 

αj ≤ α′j for all j = 1,2, … , ρ. Then PFAAPWG(α1, α2, … , αρ) ≤ PFAAPWG(α′1, α′2, … , α′ρ). 

3.1.2 PF Aczel-Alsina power ordered weighted geometric aggregation operator 

 In this part, a novel PFAAPOWG. This operator considers the ordered weights associated with the aggregated PFNs.  

Definition 10 Let αj = (μj, ηj, νj)(j = 1,2, … , ρ) be a set of PFNs and χ = (χ1, χ2, … , χρ)T be the weight vectors for PFNs 

with the condition ∑ρ
j=1 χj = 1. Then, the mapping PFAAPOWG: bρ → b operator is given as follows: PFAAPOWG 

{α1, α2, … , αρ} =⊕j=1
ρ

(αj)
χj   

 = (α1)χ1 ⊕ (α2)χ2 ⊕ … ⊕ (αρ)χρ . (5) 
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Theorem 2  The aggregated value of the PFNs αj for j = 1,2, … , ρ with respect to the weight vector χ = (χ1, χ2, … , χρ)T 

obtained using the PFAAPOWG Equation 5 is also a PFN and is given by PFAAPOWG {α1, α2, … , αρ} =  

 = 〈e
−{∑

ρ
j=1 (χj(−Ln(μαj

))α)}
1
α

, 1 − e
−{∑

ρ
j=1 (χj(−Ln(1−ηαj

))α)}
1
α

, 1 − e
−{∑

ρ
j=1 (χj(−Ln(1−ναj

))α)}
1
α

〉 (6) 

Property 4  The PFAAPOWG is idempotent. i.e., If αj = α for all j, then PFAAPOWG (α1, α2, … , αρ) = α.  

Property 5  The PFAAPOWG is boundedness. i.e., For a collection of PFNs αj for all j = 1,2, … , ρ and α− =

min(α1, α2, … , αρ) and α+ = max(α1, α2, … , αρ).  

Then α− ≤ PFAAPWAA(α1, α2, … , αρ) ≤ α+. 

Property 6  The PFAAPOWG is monotonicity. i.e., for any two PFNs αj = 〈μαj
, ηαj

, ναj
〉 and α′j = 〈μ′αj

, η′αj
, ν′αj

〉 such that 

αj ≤ α′j for all j = 1,2, … , ρ. Then PFAAPOWG(α1, α2, … , αρ) ≤ PFAAPOWG(α′1, α′2, … , α′ρ). 

4. EVALUATION OF PFMCDM USING PROPOSED OPERATORS 

 This part illustrates how the proposed operators are applied by solving an PFMCDM model.  

4.1 Procedure for PFMCDM problems 

 This section, presents a procedure for solving PFMCDM problems using the proposed operators. 

Step 1 Let A = (A1, A2, … , Aκ) be a finite number of alternatives, and α = (B1, B2, … , Bρ) be the set of criteria. Let w =

(w1, w2, … , wρ)T be the weight vector of criteria, where wj ≥ 0, j= 1,2,,ρ such that ∑
ρ
j=1 wj = 1. The PF decision matrix 

D = [Aij]κ×ρ evaluates the alternatives under each criteria, where μij, ηij, νij indicates the truth, falsity and indeterminacy 

membership function respectively. 

Step 2 To standardize an PF decision matrix that includes a cost type criteria, apply the following Equation 7  

 D = [Aij]κ×ρ = {

〈μij, ηij, νij〉 ifbenefittype

〈νij, ηij, μij〉 ifcosttype  (7) 

 This section demonstrates the application of the proposed operators through the resolution of an PFMCDM model. 

Step 3 Apply the proposed operators to aggregate the evaluations of each criteria across all alternatives.  

Step 4 Determine the optimal alternative by ranking the options based on their aggregated score values.  

5. NUMERICAL ILLUSTRATION 

 Let’s consider a practical example of a MCDM problem, which addresses the selection of food suppliers within food quality 

management. In this example, five suppliers, denoted as alternatives Ai (i = 1,2,3,4,5), are evaluated based on four distinct 

criteria Bj (j = 1,2,3,4): product quality, delivery reliability, cost efficiency, and sustainability practices. These evaluations 

are weighted according to the vector: τ = (0.2,0.1,0.3,0.4)T. This structure allows decision-makers to systematically 

evaluate each supplier’s performance against multiple relevant factors, ensuring a balanced and well-informed choice. Step 

1: The decision matrix for this MCDM problem, featuring -induced PF preference values as assessed by a decision expert, 

is provided in Table 1.   

Table  1:  PF decision matrix 

 C1 C2 C3 C4 

A1  〈0.5,0.04,0.1〉   〈0.7,0.12,0.02〉   〈0.3,0.5,0.1〉   〈0.4,0.2,0.2〉  

A2  〈0.6,0.2,0.1〉   〈0.5,0.2,0.09〉   〈0.5,0.02,0.4〉   〈0.7,0.2,0.01〉  

A3  〈0.5,0.2,0.2〉   〈0.2,0.4,0.06〉   〈0.5,0.3,0.1〉   〈0.55,0.23,0.2〉  

A4  〈0.6,0.01,0.2〉   〈0.52,0.1,0.23〉   〈0.3,0.4,0.2〉   〈0.5,0.2,0.15〉  

A5  〈0.5,0.3,0.11〉   〈0.2,0.3,0.1〉   〈0.05,0.6,0.1〉   〈0.3,0.24,0.2〉  
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Step 2 Since all the criteria are beneficial, normalization of the PF decision matrix is not required. 

Step 3 Combine all the criteria, each associated with its own unique PF preference value for each alternative, using the 

PFAAPWG in Equation 6 to obtain the overall PF. αi of the corresponding Ai as α1 = 〈0.57,0.234,0.097〉, α2 =
〈0.701,0.121,0.18〉, α3 = 〈0.649,0.194,0.114〉, α4 = 〈0.621,0.183,0.127〉, α5 = 〈0.726,0.308,0.0969〉. Combine all the 

criteria, each with its own distinct PF preference value for each alternative using PFAAPOWG Equation ?? to get the overall 

PF αi of the corresponding Ai as α1 = 〈0.561,0.261,0.084〉, α2 = 〈0.687,0.116,0.202〉, α3 = 〈0.661,0.219,0.109〉, α4 =
〈0.628,0.203,0.130〉, α5 = 〈0.73,0.339,0.085〉.  

Step 4 Calculate the score values corresponding to the PF αi obtained in Step 3 based on the PFAAPWG respectively are 

S(α1) = 0.242, S(α2) = 0.4001, S(α3) = 0.341, S(α4) = 0.311, S(α5) = 0.321. Based on PFAAPWG, the score 

value .Thus, we have A2 > A3 > A5 > A4 > A1. Hence the best alternative is A2. 

Calculate the score values corresponding to the PF αi obtained in Step 3 based on the PFAAPOWG respectively are S(α1) =
0.216, S(α2) = 0.369, S(α3) = 0.333, S(α4) = 0.294, S(α5) = 0.306. Based on PFAAPOWG, the score value .Thus, we 

have A2 > A3 > A5 > A4 > A1. Hence the best alternative is A2.  

6. COMPARATIVE ANALYSIS 

 In this discussion, we compare the overall ranking results obtained using the proposed PFAAPWG and PFAAPOWG 

operators for the example in Section 5, with the existing results based on the PF weighted geometric aggregation operator 

(PFWG) and PF orered weighted geometric aggregation operator (PFOWG). From Table 2,we observe that the best 

alternatives of the proposed operators are same as that of the existing operators. This comparison is visually represented in 

Figure 2.  

   

Figure  2: Graphical comparison of proposed and existing operators 

Table  2: Comparison of the existing operators with the proposed operators 

  Method Operator Ranking  Best  

 Wei, G. (2017) 

 

PFWG A2 > A5 > A4 > A1 > A3 A2 

PFOWG A2 > A5 > A3 > A4 > A1 A2 

Proposed operator PFAAPWG A2 > A3 > A5 > A4 > A1 A2 

PFAAPOWG A2 > A3 > A5 > A4 > A1 A2 
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7. CONCLUSION 

This paper introduces the PFAAPG aggregation framework, specifically focusing on the development of the PFAAPWG and 

PFAAPOWG operators. The fundamental mathematical properties of these operators are systematically analyzed to establish 

their theoretical foundation. A key distinguishing feature of these operators is their ability to not only incorporate the 

evaluated arguments provided by decision experts but also to account for the significance levels associated with their 

assessments, thereby enhancing the robustness and adaptability of the decision-making process. To demonstrate the practical 

applicability of the proposed operators, a PFMCDM approach is developed and applied to a real-world food industry 

selection problem, where four evaluation criteria are considered. The effectiveness and reliability of this approach are 

validated through a comparative analysis with existing aggregation operators, including the PFOWG, and PFAAPWG 

operators. Furthermore, graphical representations are provided to enhance interpretability, offering a more intuitive 

visualization of the decision-making outcomes. Future research directions include extending this approach by developing 

advanced picture fuzzy geometric aggregation operators and investigating the integration of probabilistic information, 

uncertainty modeling, and additional influencing factors to further refine decision-making frameworks. These enhancements 

aim to improve the precision and applicability of picture fuzzy aggregation methods in complex multi-criteria decision-

making environments. 
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