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ABSTRACT 

Polycystic kidney syndrome, is a genetic disease in which the renal tubules become structurally abnormal, resulting in the 

outgrowth of multiple cysts and a decline in renal function. Thus, a crucial step in enhancing the quality of life for cancer 

patients is treatment planning. Although Magnetic Resonance Imaging (MRI) is a popular imaging method for evaluating 

these tumours, the volume of data it generates makes it difficult to manually segment the images in a reasonable length of 

time, which restricts the use of precise quantitative assessments in clinical practise. The enormous spatial and structural 

heterogeneity among brain tumours makes automatic segmentation a difficult task, hence effective and automatic 

segmentation methods are needed. UNet and its variants are one of the most advanced models for medical image 

segmentation, and they performed well on MRI images. So, in this paper we designed an automatic Kidney segmentation 

approach using Connected-UNets, which connects two UNets using additional modified skip connections. To highlight the 

contextual information within the encoder-decoder network design, we integrate Atrous Spatial Pyramid Pooling (ASPP) in 

the two conventional UNets. We also apply the proposed architecture on the Attention UNet (AUNet) and the Residual UNet 

(ResUNet). To evaluate the proposed model the dataset obtained from Myo clinic was considered. The experimental results 

give Dice Coefficient for the three architectures Connected UNets, Connected AUNets, and Connected ResUNets as 93.36%, 

93.52 %, and 94.13%, and IoU score as 85.75%, 86.01%, and 87.63% respectively. 
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1. INTRODUCTION 

In the human urinary system, the kidneys play a key role in excreting waste products from blood, balancing bodily fluids and 

electrolytes, controlling blood pressure, and secreting hormones. As such, they are essential organs. Globally, kidney 

problems are a serious health concern. 1.2 million persons worldwide passed away from chronic renal disease in 2017 [1]. 

In 2018 saw 175,0,0 0 individuals pass away from kidney cancer, making up roughly 1.8% of all cancer-related fatalities 

worldwide [2]. About one in every ten live newborns is at risk of developing autosomal dominant polycystic kidney disease 

(ADPKD) [3]. kidney function measurement techniques should be able to predict the course of the disease, help with 

diagnosis and treatment, and even identify kidney lesions at an early stage. A sufficient amount of anatomical detail can be 

seen in high-spatial-resolution pictures produced by computed tomography (CT). As a result, it is important for diagnosing 

renal illness. 

 In addition to supporting medical radiologists or doctors in disease management, kidney segmentation in CT images can 

help surgeons with surgical planning and allow for the computation of the total kidney volume to assess kidney function in 

ADPKD [4]. On the other hand, kidney segmentation by hand requires a lot of work and time, and the outcomes are not 

always constant. Radiologists must invest a significant amount of time in processing the volume of CT scans [5]. Their 

experience has a major impact on the segmentation performance. Furthermore, some fuzzy areas may be difficult for the 

unaided eye to distinguish accurately. It is very expensive to manually annotate hundreds of CT images.  Therefore, an 

automatic kidney segmentation procedure is presented in this paper which is required to satisfy clinical requirements.   

The remainder of this paper is organized as follows: Section 2 reviews related works that identified the pre-processing 

methods and deep learning models. Then, Section 3        introduces the proposed methods, models, and pre-processing 

procedures to determine a kidney and tumor segmentation solution. Section 4 presents experiment to evaluate the 

performance metrics and validate the pre-processing procedures. Finally, discussions and conclusions are drawn in Sections 

5 and 6. 
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2. RELATED WORK 

Convolutional neural networks (CNNs) and machine learning techniques have been employed to develop numerous deep 

learning methods for kidney segmentation. A three-dimensional (3D) fully convolutional network consisting of a pyramid 

pooling module and a gradually improved feature module was proposed by Yang et al. [6]. A private dataset with an average 

Dice coefficient of 0.931 is used to test this network. For kidney detection and segmentation, Cuingnet et al. [7] employed 

the random forest algorithm and template deformation technique. A random forest classification framework was applied to 

dynamic contrast-enhanced images by Khalifa et al. [8]. To improve the segmentation outcome, Zhao et al. [9] suggested a 

multiscale supervised 3D U-Net and a CCL technique. Low-resolution labels might be accurately predicted by the multiscale 

supported model. Complex samples were handled using a loss-assisted, logarithmic, and exponential model. Zhao et al. used 

the KiTS19 local test dataset to reach a Dice coefficient of 0.969.  

A triple-stage 3D U-Net with dilated convolution blocks in place of pooling operations was presented by Hou et al. [10]. The 

input photos for the three stages of the 3D U-Net were low-resolution, full-resolution, and cropped images. The Dice 

coefficient and a weighted cross-entropy were combined to create a hybrid loss function. On the KiTS19 dataset, the method's 

average Dice score was 0.9674. A hybrid 3D V-Net model was created by Türk et al. [11] using the ResNet++ architecture 

in the output layer. A V-Net-based encoder and an ET-Net-based decoder make up the model. With a Dice coefficient of 

0.977, the suggested network performed better than the original V-Net. However, because it takes a lot of time and computing 

power, training the 3D model is difficult. There aren't many public data sets for kidney CT scans.  

Numerous U-Net versions have been created to increase dice scores, and the U-Net model [12] is a well-liked design for the 

semantic segmentation of medical images. Isensee et al. [13] and Hou et al. [14] both employed a three-dimensional (3D) U-

Net architecture in the KiTS19 Challenge. In particular, Hou et al. [14] employed multistage procedures to get accurate 

kidney locations and enhance tumour segmentation outcomes by employing a generic 3D U-Net, whereas Isensee et al. [13] 

utilised a residual 3D U-Net. A multistage approach and a residual 3D U-Net known as VB-Net, which adopted a V-Net 

design [15] but substituted a bottleneck structure for the traditional convolutional layers, were employed by Mu et al. [16]. 

Third place in the competition went to this vehicle.  

Cascade U-ResNets was proposed by Xi et al. [17] to perform liver and lesion segmentation simultaneously. In order to 

reduce the target area and improve the precision of tumour segmentation results, cascaded approaches are frequently 

employed [18]. In order for the encoder to extract information, the new encoder-decoder architecture downsamples the image 

resolution. In order to retrieve spatial information, the decoder then upsamples the feature map [19]. An encoder-decoder 

model based on U-Net was utilised by Hong et al. [20]; EfficientNet replaced the encoder to achieve greater performance 

than the original U-Net model. Some researchers have recommended the use of transfer learning to maintain pre-trained 

weights from similar tasks [20,24], while others have built newer and more flexible architectures [21,23] due to the limitation 

of computer resources. Our main goal is to improve dice score, so we employed connected U-Net, AU-Net, and Resnet 

architectures for kidney segmentation in this paper. 

3. METHODS  

Deep learning models have recently achieved remarkable success in segmenting kidney tumors in MRI images. Recent 

studies involved the UNet as one of the state-of-the-art architectures and tried to modify it for a better segmentation 

performance. In this work, we introduced the Connected-UNets architecture for kidney tumor segmentation, which uses 

additional skip connection pathways to completely connect two single UNets. In addition, the network uses the ASPP 

technique as a transition block to get around the problem of resolution loss, especially in the case of small tumours. By 

revoking the first decoded characteristics and connecting them with the extra encoded inputs, the novel segmentation design 

increases the capacity of skip connections to rebuild the subtleties lost in the encoding pathway. The Attention UNet (AUNet) 

and the Residual UNet (ResUNet) are the two UNet variants on which we implemented the same design. 
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3.1 Connected-UNets architecture  

Figure 1 shows an overview of the proposed architecture, where it consists of two standard encoder and decoder blocks and 

two ASPP blocks for the transition between the two pathways.  We suggest   connecting   the first decoder   and the second 

encoder blocks with additional modified skip connections   in order to reconstruct   the   decoded   information   in the   first 

UNet before   being encoded   again in the second UNet. Each encoder block includes two convolution units, which consist 

of 3 × 3 convolutions followed by an activation ReLU (Rectified Linear Unit) and a batch normalization (BN) layer. A 

maximum pooling operation is then applied for the output of each encoder block before passing the information to the next 

encoder.  Each decoder   block consists   of a 2 × 2 transposed   convolution   unit (i.e., deconvolution   layer) that is 

concatenated with the previous encoder output, and then the result is fed into two convolution blocks, which consist of 3 × 

3 convolutions followed by an activation ReLU and a BN layer. 

 

The transition between the down-sample and the up-sample paths is made with an ASPP block. As the name indicates, this 

technique uses “Atrous” (which means “holes” in French) convolution to allow having a larger receptive field in the transition 
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path without losing resolution. After going through the first UNet, a second UNet is attached through new skip connections   

that use information from the first up-sampling pathway. First, the result of the last decoder block is concatenated with the 

same result after being fed into a 3 × 3 convolution layer followed by an activation ReLU and a BN layer. This serves as the 

input of the first encoder block of the second UNet. The output of the maximum pooling operations of each three encoder 

blocks are fed into a 3 × 3 convolutions layers and then concatenated with the output of the last previous decoder block. The 

result is next down-sampled to the next encoder block. The last encoder block of the second UNet is sent into the ASPP 

block and the rest is similar to the first UNet, Finally, the last output is given to a 1 × 1 convolutions layer that is followed 

by a sigmoid activation layer to generate the predicted mask. 

3.2 Connected-AUNets architecture 

In addition to the proposed architecture that is applied on the standard UNet, we propose another variation by adding an 

attention block during the up-sampling path, called AUNet model as shown in figure 3. This integrates the attention 

mechanism with the skip connections between the encoder and decoder blocks. Indeed, the additional attention block should 

allow the network to weigh the low-level features (i.e., down-sampled information) before being concatenated with the high-

level features (i.e., up-sampled information) during the skip connections. Thus, a new Connected-AUNets architecture is 

introduced as illustrated in Fig. 2. 

3.3 Connected-Res UNets architecture 

Motivated by the improvement made to the UNet architecture to be robust enough for segmenting medical images with 

different scales, we replace the standard convolution blocks with residual convolution blocks to become   the   Residual UNet 

(ResUNet), and consequently we proposed a Connected-ResUNets architecture as detailed in Fig. 4. Consequently, adding 

the residual convolution blocks should enhance the UNet architecture to reconcile the features learned at each scale of the 

down-sampling pathway and take full advantage of the information propagated that may cause degradation of the deep 

network. 
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3.4 Datasets 

To evaluate the proposed method the dataset containing 40 MRI images is used. The dataset is obtained from Mayo Clinic 

[24] obtained from the 40 patients with ADPKD. The MR images were coronal single-shot fast spin-echo T2-weighted 

sequences that were acquired using a 1.5-T scanner (Genesis Signa, GE Healthcare) with a reconstructed matrix size of 256 

× 256 × z (with z large enough to cover the full extent of the kidneys within the imaged volume). The specifications are 

given in the Table 1.  

Table 1. Specifications 

S.No Parameter value 

1. acquisition matrix size 256 × 128 

2. pixel size 1.5 mm 

3. slice thickness 3.0 mm 

4. slice spacing 3.0 mm 

5. TR/TE minimum 190 

6. external magnetic field (B0) 1.5 T 

 

3.5 Evaluation Metrics 

To evaluate the performance of the proposed model four metrics namely Jaccard Index, Dice coefficient, Recall and Precision 

are used. The dice coefficient is also called a dice similarity coefficient, it is a statistical measurement that can assess the 

resemblance between two different sets of data. it is used to fully assess the proposed segmentation performance within the 

similarity between two sets of data have been evaluated based on the dice coefficient which has been calculated using 

equation (1). Jaccard Index (Jac) or IoU, it is also called the Jaccard similarity coefficient, this considers as a statistic utilized 

in comprehending the resemblance between image sets. The measurement confirms the resemblance between finite sets of 

samples. In formal, it can be defined as the intersection size divided by the union size of the sets of samples. Thus, the 

similarity and difference among the results of ROI segmentation and the ground truth which is calculated by implementing 

equation (2). The recall is the ratio of the total number of true positives over the total number of ground-truth pixels (3). 

Precision is the ratio of the total number of true positives to the total number of predicted pixels (4). 
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Recall = TP /TP + FN      (3) 

Precision = TP /TP + FP     (4) 

Where ‘A’ was the area of ROI segmentation using the proposed method, and ‘B’ was the ROI of the ground truth. 

4. RESULTS AND DISCUSSIONS 

In this section, the segmentation results of the Kidney MRI images with U-Net, Connected U-Net, AU-Net, Connected AU-

Net, ResU-Net, Connected ResU-Net in terms of Dice Score and IoU scores for the datasets is presented. Clearly, from the 

Table 2, Connected ResU-Net gave good segmentation results. 

Table 2. segmentation results for different U-Net Architectures 

Proposed architectures Dice score (%)  

MIAS 

IoU score (%) 

Standard UNet 89.21 79.5 

Connected-UNets 93.36 85.75 

Standard AUNet 91.35 82.59 

Connected-AUNets 93.52 86.01 

Standard ResUNet 92.71 84.58 

Connected-ResUNets 94.13 87.63 

 

Additionally, the area under the curve (AUC) over test sets of all datasets was used to assess the segmentation performance 

of our proposed Connected-UNets and its modifications against the conventional UNet, AUNet, and ResUNet. With an 

average AUC of 0.79 for the dataset, 0.94 for theMIAS, the proposed architectures easily beat all traditional models, as 

shown by Figure 5. 

 

Figure 5. AUC curves for  dataset 
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Visual aspect of the kidney segmentation approach is as shown in figure 6. Three sets of images such as 46 age man, 32 age 

women, and 26 age women are considered. From left to right the original image, segmented image with U-NET, Connected 

UNET. 

 

 

 

 

 

 

 

 

 

Figure 6. Visual aspect of the kidney segmentation for 3 images 

Visual aspect of the kidney segmentation approach is as shown in figure. Three sets of images such as 46 age man, 32 age 

women, and 26 age women are considered. From left to right the original image, segmented image with U-NET, Connected 

UNET. Clearly, connected U-Nets gave good segmentation results. 

5. CONCLUSION  

In summary, we designed an automatic kidney segmentation approach using Connected-UNets, which connects two UNets 

using additional modified skip connections. To highlight the contextual information within the encoder-decoder network 

design, an Atrous Spatial Pyramid Pooling (ASPP) is integrated in the two conventional UNets. The proposed architecture 

is also applied on the Attention UNet (AUNet) and the Residual UNet (ResUNet). The proposed model is evaluated using 

myo clinic dataset with 40 MRI images. The experimental results gave superior Dice Coefficient for the three architectures 

Connected UNets, Connected AUNets, and Connected ResUNets. Considering the advantages of UNets, we would like to 

extend to more datasets. 
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