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ABSTRACT 

Biomarker integration is an important and imperative process in the research of Alzheimer's condition, where non-invasive 

information gathered from various sources are integrated for more precise and earlier diagnosis. This paper investigates non-

invasive biomarkers, such as MRI imaging, by using CNN and SVM machine learning models for the prediction of 

development of AD. For Neuroimaging the ADNI dataset is one of the most common datasets used in machine learning 

applications for Alzheimer's prediction. This work also evaluates the feasibility of other datasets, including the OASIS 

dataset, given the great value of imaging and clinical data it has. One promising direction in this domain is wearable data, 

where data collection could be non-invasive. This has enormous potential to enhance the diagnosis reliability and efficiency 

of non-invasive diagnosis of Alzheimer's. ADNI will have a significant part in the prediction of Alzheimer's due to the 

comprehensive longitudinal data it offers, the facilitation of biomarker identification, and large-scale data sharing to enable 

the development of precise early detection models. OASIS also offers complete longitudinal and cross-sectional 

neuroimaging data, and demographic information to facilitate collaborative research and validation of predictive models. 

These are indeed important data that will enable us to train powerful algorithms to permit early detection and prognosis for 

Alzheimer's disease. This study will contribute to extending current predictive methods by integrating these multimodal 

biomarkers and datasets and providing tools for non-invasive diagnosis in Alzheimer's disease. 

 

Keywords: Alzheimer’s Disease (AD), Convolutional Neural Network (CNN), Mild Cognitive Impairment (MCI), Magnetic 

Resonance Imaging (MRI), Convolutional Neural Network (CNN), Support Vector Machine (SVM), Open Access Series of 

Imaging Studies (OASIS) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) Datasets. 

1. INTRODUCTION 

Among neurodegenerative diseases, AD is a progressive condition and significantly influences cognitive function, especially 

memory. Indeed, Alzheimer’s condition represents 50-70% cases of cognitive impairment, and its progression is silent for 

many years due to underlying mechanisms at play, such as amyloid accumulation, synapse failure, and neuronal death which 

take time before manifestations of clinical symptoms appear. The established diagnostic criteria, such as those from the 

DSM-5 and NINCDS-ADRDA, usually diagnose AD when extensive deterioration of the brain has already impaired daily 

functioning. [1] In 50% to 60% of cases, moderate cognitive impairment is considered an important preclinical stage before 

the transition to dementia. 
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It is found to affect 7.6% in the 55-59-year-old category, 9.5% among those aged 60 to 69, 14.6% in the age range of 70–79 

category, as well 23.6% in the persons aged more than 80 years of age. However, early diagnosis has been hampered as there 

is a lack of dependable biomarkers, non-invasive and affordable that could predict the development of MCI to AD with more 

than 95% accuracy. Although there is the promise of success with the various methods being devised that incorporate 

genomics, structural and functional neuroimaging, and neurophysiological assessments, small sample sizes and short follow-

up times are but a few concerns that point to high variability and a need for further thorough research to enhance early 

detection and intervention strategies in AD. 

AD destroys parts of the brain that are engaged in language, reasoning, and social behaviour. The initial manifestations of 

AD arise in the [2] entorhinal cortex and hippocampal regions, which are related to memory. Symptoms of AD include 

behavioural abnormalities, linguistic difficulty, and memory loss, all of which can vary among individuals. These symptoms 

of AD will be usually preceeded by a preclinical stage of MCI, when individuals have memory problems but are still able to 

function. In general, deep learning approaches, namely GAN, LSTM networks, RNN, and CNN can be widely used in 

machine learning to analyze patterns through data. CNNs classify images well, RNNs handle sequential data, LSTM 

networks handle problems that RNNs have with vanishing gradients and GANs generate new data comparable to the training 

set. 

AD is the leading cause of dementia, estimated by a worldwide context to be responsible for 50–75% of the cases. Other 

variants of dementia include frontotemporal dementia, estimated at 10–15%, Lewy Body disease at 10–25%, and vascular 

dementia at 20–30%. It is estimated that in 2019, Dementia was diagnosed in 50 million people, and by 2050, that figure will 

rise to 131.5 million. It is estimated that the global economic cost of AD will reach US$2 trillion by 2030 [3]. The 

pathophysiology of AD begins years before the onset of clinical symptoms, such as memory loss and difficulty finding 

words, with structural and chemical changes in the brain AD diagnostic technique follows several steps,[4] such as feature 

extraction, segmentation, pre-processing, data gathering, and classification.  

Studies have found that women who have polycystic ovary syndrome (PCOS) may be at an increased risk for Alzheimer's 

disease, and the possible connection might be its association with hormonal imbalances and metabolic abnormalities.  PCOS 

is a hormonal condition that results in [5] polycystic ovaries and irregular menstrual cycles, which raises the risk of diabetes, 

insulin resistance, infertility, and Alzheimer’s disease. Insulin resistance is a common problem that affects a sizable 

percentage of women with PCOS. This may result in compensatory hyperinsulinemia, which is elevated insulin levels. 

Excessive insulin might exacerbate the hormonal imbalance by increasing the synthesis of androgens. 

Elevated levels of luteinizing hormone (LH) associated with PCOS are linked to decreased functional connectivity in the 

right frontal lobe, as shown in MRI. The psycho-social condition of PCOS might otherwise negatively affect women 

regarding their health as the physical symptoms and reproductive outcomes might influence their mental health. Integrating 

AI in the analysis of health complex data would support healthcare providers in identifying PCOS symptoms through 

hormonal imbalances and develop specific prevention strategies tailored to individual lifestyle, diet, and health profiles. [6] 

The risk of PCOS using linear regression, multi-model stacking, and gradient boosting can be well predicted. However, in 

terms of performance, multi-model stacking with logistic regression was significantly better than other models. 

Despite all these promises, research regarding the diagnosis of AD using DL has remained low, particularly concerning the 

exploration of cutting-edge deep-learning architectures for diagnostic applications. Among others, this systematic literature 

review outlines the future direction for research on AD early detection, and it underlines the importance of neuroimaging 

data for the diagnosis of AD using both DL and classic ML techniques. 

1.1 PROBLEM STATEMENT 

The current detection of AD is through finding out biomarkers linked to the brain's tau and amyloid beta proteins by study 

of cerebrospinal fluid (CSF); PET imaging, which depicts abnormalities within the brain through radioactive tracers; 

traditional neuroimaging modalities, like MRI and CT, used to identify structural changes of the brain. These methods have 

their utility but are often beset with huge costs and a time requirement and are dependent on infrastructural facilities that 

limit accessibility and scalability. Addressing the problems mentioned above, our research proposal put forward a new 

approach using large datasets of brain images and non-invasive biomarkers for the analysis of MRI brain images using 

machine learning models. 

1.2 EXISTING SYSTEM 

In the traditional method of Alzheimer's prediction, invasive methods and costly imaging modalities are typically used. 

Cerebrospinal Fluid (CSF) test is a prevalent technique that takes a sample of CSF during a lumbar puncture (spinal tap). 

This can measure Alzheimer's biomarkers like amyloid beta and tau protein levels, which are the crucial markers of 

Alzheimer's pathology. Although this technique is good for the detection of Alzheimer's-related changes, it is invasive, 

uncomfortable for the patient, and may have risks like infections or headaches. Positron Emission Tomography (PET) 

scanning is a second method of detecting Alzheimer's disease through detailed brain imaging following the intravenous 

injection of a radioactive tracer. PET scans identify brain abnormalities seen in Alzheimer's disease. PET scans, however, 
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are not only expensive but also involve the use of radioactive material, specialized equipment, and facilities and are therefore 

less available for use on a routine basis. 

Other imaging methods, including CT and MRI yield structural images of the brain that can display atrophy or abnormalities 

associated with Alzheimer's. While less intrusive than CSF examination, these methods are also very costly, time-consuming 

during examinations, and require specialized settings. 

1.3 DRAWBACKS OF EXISTING SYSTEM 

Although accurate, these techniques have a number of important limitations in common. They are costly, time-consuming, 

and need highly specialized equipment, which limits their availability and scalability. Routine screening and early detection 

for large groups are therefore difficult. Moreover, problems may only be identified after extensive brain alterations have 

already taken place, which reduces the scope for early intervention. 

The reliance on such high-cost or invasive means is such that Alzheimer's disease can pass unnoticed until late, when it 

bypasses the possibility of taking preventive action in time. Delayed detection is not only problematic from a patient 

outcomes perspective but is also heavily loaded in financial costs for the health system. Due to these challenges, the demand 

for non-invasive, inexpensive, and scalable means to anticipate the likelihood of Alzheimer's disease prior to notable 

symptom development is an immediate requirement. 

1.4 PROPOSED SYSTEM  

In our solution, we created a multimodal model architecture capable of working with diverse complex datasets while 

supporting high accuracy. This architecture utilizes a CNN model for efficient feature extraction, taking advantage of its 

ability to learn spatial hierarchies in the data. We then use a SVM model for classification after feature extraction, 

which enhances the robustness of the system to categorize the features accurately.This fusion of CNN and SVM enables us 

to design a strong framework that can overcome the issues raised by varied datasets without sacrificing performance. 

1.5 ADVANTAGES OF PROPOSED SYSTEM  

 The CNN-SVM model synergizes the benefits of 

deep learning and SVM classification. CNN is superior at automatically deriving intricate features from neuroimaging data, 

detecting fine patterns in 

brain structures, which are a sign of early-stage 

Alzheimer's disease. 

 SVM effectively utilizes these derived features to 

separate healthy subjects and those with Alzheimer's. The accuracy of SVM classification enhances the overall accuracy of 

the system. 

 Combination of CNN and SVM forms a strong and stable system that can process high-dimensional, complex data 

such as MRI scans, supporting consistent performance even with massive datasets. 

 Early detection of minute changes in the brain, supported by this system, facilitates initial diagnosis of Alzheimer's 

disease at initial stages, leading to improved prognosis and treatment planning. 

 Hybrid CNN-SVM model ensures reductions in overfitting problems that are usually encountered in deep learning 

models, by merging CNN's feature extraction with SVM's regularization strength. This provides improved 

generalization to novel data. 

 The system is very scalable and adaptable to various forms of neuroimaging data, and hence is also appropriate for 

clinical use across various stages of AD diagnosis. 

2. RELATED WORK 

C. Kavitha et al. have given a paper on predictive ML models for the detection of early-stage Alzheimer's disease. [7] The 

paper explores algorithms such as Decision Trees, SVM, Random Forest (RF), and XGBoost, with emphasis on data 

preprocessing, feature selection, and training on MRI datasets. Gender, education, brain volume, and age are the key 

predictors, and Random Forest and XGBoost are found to perform the best. The research points to the promise of these 

models to augment early detection and intervention approaches to Alzheimer's. 

Juan Felipe Beltrán et al. proposed a method for employing machine learning methods based on ADNI data to forecast the 

progression of AD from MCI. This study highlights that low-cost, [8] non-invasive blood biomarkers can be as effective as 

neuroimaging, like MRI, for early detection when combined with cognitive testing in a multi-modal approach.  

Laura M. Winchester et al. reviewed the applications of AI and machine learning in Alzheimer's biomarker discovery. While 
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promising plasma biomarkers like [9] Aβ42 and p-tau217 are under investigation, the review calls for more diverse data 

collection, AI refinement, and validation of non-invasive biomarkers to improve clinical applicability. 

Minseok Song et al. applied the Random Forest algorithm using brain MRI data from the ADNI dataset to identify 

Alzheimer's disease, highlighting its strength in handling high-dimensional and noisy data. [10] The study demonstrated high 

classification accuracy with RF, MLP, and CNN, identifying key biomarkers such as the inferior lateral ventricle, 

hippocampal, and amygdala, and emphasized the potential of RF for prior detection and longitudinal studies in Alzheimer’s 

diagnosis.  

Jose M. Alonso et al. presented a multi-modal, double-layered model for identifying AD and its prediction, utilizing info 

from 1,048 ADNI participants. [11] The model achieved 93.95% accuracy in classifying AD and MCI patients and 87.08% 

accuracy in predicting MCI progression to AD, incorporating the SHAP framework for enhanced explainability and 

proposing future studies to integrate longitudinal data and network science for improved clinical application. 

Aristidis G. Vrahatis et al. [12] emphasized the need for early Alzheimer's diagnosis using non-invasive methods like blood 

tests, imaging, wearable sensors, and digital biomarkers, which are less risky and more comfortable than traditional invasive 

techniques. They emphasise the importance of DL and AI in managing the computational burden of these approaches. 

Morshedul Bari Antor et al. conducted multivariate study using the OASIS dataset to predict Alzheimer's diagnosis with ML 

models, comprising SVM, random forests, logistic regression, and decision trees. After fine-tuning, [13] SVM achieved the 

highest accuracy at 92%, with the study emphasizing the need for early diagnosis. 

Lin Liu et al. propose the diagnosis of Alzheimer’s using ML to analyze speech characteritstics from the [14] VBSD dataset, 

which includes recordings from elderly speakers with and without AD. Their model, using Logistic Regression CV, proved 

more accurate and cost-effective compared to conventional diagnostic methods, demonstrating AI's capacity for prior 

detection and improved outcomes in neurodegenerative disease management. 

Sergio Grueso et al. reviewed the use of ML methods in forecasting the advancement of AD from MCI, analyzing [15] 116 

out of 452 studies focused on neuroimaging data like MRI and PET. They discovered that CNN model attained a greater 

mean accuracy of 78.5% than Support Vector Machines, which had an average accuracy of 75.4%, with accuracy improving 

when integrating MRI and PET data.  

Farman Ali et al. defined a double-layered DL model using ADNI data to predict Alzheimer's progression, integrating 

neuroimaging, cognitive scores, cerebrospinal fluid biomarkers, and demographic features. [16] Their model achieved 

93.87% accuracy in multiclass categorization with mean absolute error of 0.1375 in regression, outperforming traditional 

models and highlighting the need for improved model explainability and integration of additional modalities.  

Rashmi Kumari et al. proposed a state-of-the-art DL model for AD diagnosis based on 3D MRI scans, integrating Graph 

Attention Networks (GAT) with Dynamic Convolutional Graph Neural Networks (DCGNN) to improve classification rates. 

[17] Their model classified with 93.34% accuracy in the case of AD vs. CN, 83.67% accuracy for CN vs. MCI, and 79.1% 

accuracy for AD vs. MCI when validated with the ADNI dataset. 

Bazarbekov et al. reviewed the usage of ML and AI techniques in diagnosis of Alzheimer’s, highlighting the influence on 

cognitive functions and the significance of early and accurate detection. [18] The review analyzes various data sources, 

including PET, MRI, EEG, sensor data, and MEG.  

Xinxing Zhao et al. studied the use of structural MRI scans with artificial intelligence in the Alzheimer’s diagnosis [19] 

demonstrating the efficiency of ML and DL in early and accurate detection. They discuss the workflow of CAD systems, 

emphasizing the importance of standardizing data and addressing imaging variability. 

Taliah Tajammal et al. proposed an advanced DL-based approach for AD diagnosis utilizing efficient MRI data from ADNI 

, [20] achieving 99.6% accuracy in binary classification and 98.8% in multi-class classification of AD stages. Their approach, 

which combines a Custom Convolutional Neural Network with an ensemble of models. 

Niyamat M. A. Chimthanawala et al. emphasized the significance of Alzheimer's disease prior detection, reviewing 

promising non-invasive biomarkers such as plasma [21] Aβ42/Aβ40 ratio, phosphorylated tau proteins, neurofilament light 

chain, miRNAs, inflammatory markers like GFAP and YKL-40, and ophthalmic biomarkers detected by OCT.  

Jhansi Rani Kaka et al. introduced the DE-MSVM method by combining AlexNet-based feature extraction, image 

normalization, and multiobjective [22] optimization to enhance Alzheimer's classification in their proposed method, showing 

that the technique is more accurate and robust than some recently proposed techniques, including DE-SVRPSO and GA-

SVRPSO, and many others, with a classification accuracy of 98.13%. 

Elham S. Amini et al. explored the interaction between sex hormones, reproductive history, and genetic risk in women's 

brain aging related to Alzheimer's, analyzing data from [23] 16,854 women. The study reveals that cumulative hormone 

exposure accelerated brain aging, while multiple pregnancies had protective effects, and emphasizes the importance of 

personalized approaches to women's cognitive health, especially in relation to APOE e4 genotype and hormone replacement 
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therapy timing. 

3. MATERIALS AND METHODOLOGY 

3.1  Patients MRI Images 

This study explores T1-weighted cross-sectional MR brain scans obtained from publicly available datasets. The data for this 

research was provided by the OASIS database, specifically the OASIS-3 dataset. OASIS-3, the most recent version, is 

designed to openly share neuroimaging data with the scientific community. The dataset is categorized into different classes 

based on the severity of Alzheimer's disease, and images were utilized for training and testing purposes. 

 

Fig. 1. MR images illustrating examples for various dementia stages: (a) No Dementia (ND), (b) Moderate Dementia 

(MoD), (c) Mildly Demented (MD), and (d) Very Mild Dementia (VMD), from left to right, respectively. 

To develop a consistent CNN-SVM model, a huge quantity of training data needs to be used to avoid overfitting and ensure 

the system’s generalizability. In medical studies, though, access to large datasets is frequently difficult due to privacy issues. 

This is particularly the case in Alzheimer's disease (AD) research, where having access to large numbers of neuroimaging 

scans has been a long-standing issue. In addition, small and imbalanced datasets usually cause overfitting, negatively 

affecting the model's performance and accuracy. Data augmentation methods are generally used to counteract these issues in 

order to reduce data sparsity and class imbalance and enhance the CNN-SVM model's robustness and efficiency. 

 

Fig. 2. Three-tier Architecture of the system 
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3.2 Proposed Framework 

This paper pivots on the CNN-SVM multimodal for Alzheimer's disease prediction. A CNN-SVM hybrid is a model that 

utilizes the feature extraction capability of CNN and the classification capability of SVM. It combines the benefits it offers 

from using CNN for images with the strength of SVM in classification tasks. CNNs are usually applied for image-based 

tasks because the convolutional filters take spatial hierarchies of the input for pattern detection.  Although CNNs more 

commonly use Softmax functions for classification, SVMs offer better alternatives mainly when there are small datasets or 

when a clear separation margin between classes is a priority. Replacing the Softmax with SVM helps focus the model on 

maximizing the margin between points, therefore helping improve classification and generalization in several tasks. 

Three-Tier Architecture of the CNN-SVM Model 

The proposed system architecture for predicting Alzheimer’s disease using non-invasive methods is organized into three 

distinct tiers: data preprocessing, feature extraction and dimensionality reduction, and classification. Each tier is designed to 

optimize the accuracy and efficiency of the model. Below is a detailed breakdown of each tier: 

3.2.1 Data Preprocessing Tier 

This stage prepares the input data for subsequent processing and modeling. The OASIS dataset, consisting of MRI images, 

undergoes a series of preprocessing steps to enhance the quality and standardize the data. 

3.2.1.1 Preprocessing Steps: 

 Resizing and Normalization: MRI images are resized to uniform dimensions, (X ∈ (𝑅)𝐻∗𝑊∗𝐶) where H, W, and 

C represent height, width, and channels, respectively. Normalization scales pixel intensities to the range [0,1], 

ensuring consistent numerical representation. 

X𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑   =  
(min(𝑋) − 𝑋)

(min(𝑋) − max(𝑋))
 

 Splitting Dataset: The pre-processed data is then divided into testing and training sets in a 20:80 ratio to validate 

the model effectively. 

 Data Augmentation: certain techniques are applied to artificially the dataset size, thereby reducing overfitting and 

improving generalization. 

3.2.2 Feature Extraction and Dimensionality Reduction Tier: 

This tier employs a CNN for extracting high-dimensional, hierarchical features from MRI images.  

3.2.2.1 Feature Extraction Using CNN: 

The CNN sequential model comprises several layers: 

 Convolutional Layer: Extracts spatial features by convolving the input image X with a series of kernels or filters 

W. Each filter produces a feature map: 

Z𝑖𝑗 = ∑𝑚,𝑛  W𝑚𝑛  X𝑖+𝑚,𝑗+𝑛 + 𝑏) 

 where ‘b’ is the bias term. 

 Non-linear transformations, such as ReLU (max(0,x)), are applied to introduce non-linearity. 

 Pooling Layer:  Reduces the spatial size of feature maps while retaining essential features. In the case of max 

pooling: 

     P𝑖𝑗 = max ( Z𝑖𝑗) 

 Flattening Layer: Transforms the multi-dimensional feature maps into a 1D vector appropriate for classification. 

3.2.2.2 Dimensionality Reduction Using CNN: 

The high-dimensional feature vectors extracted by CNN are further reduced using PCA to retain only the most significant 

features. PCA re-projects the data onto a reduced-dimensional space: 

𝑌 = X W𝑃𝐶𝐴 

Where W𝑃𝐶𝐴  is the matrix of eigenvectors corresponding to the top k eigenvalues, and k is chosen such that 95%−99% of 

variance is retained. 
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3.2.3  Classification Tier 

3.2.3.1  SVM Classifier: 

SVM determines the optimal hyperplane with maximum margin between two classes to separate them distinctly. 

3.2.3.2  Kernel Trick: 

To address non-linearly separable data, the kernel trick is used for feature mapping to a higher dimension. The Radial Basis 

Function (RBF) is: 

                     K(y𝑖,y𝑗)=exp(−γ∣∣y𝑖 −y𝑗 ∣∣^2) 

where γ is a hyperparameter that controls the extent to which a single training sample influences the model.  

Components of CNN- SVM unit: 

1. Input Layer: This consists of medical imaging data in the form of MRI or PET scans that act as inputs to the model. Such 

images are highly dimensional and contain basic spatial information regarding the detection of Alzheimer's disease. 

2. Convolutional Layers: These layers include modifying the source image with filters for feature extraction like edges, 

textures and patterns. Convolutional layers enable learning spatial hierarchies of features relevant to the early identification 

of brain atrophy and other indicators of Alzheimer's. 

3. Pooling Layers: These layers decrease computations and dimensionality by reducing the resolution of feature maps 

generated by the convolutional layers to avoid overfitting. average pooling and max pooling are typically used while 

preserving crucial features. 

4.  Flattening layer: In the flattening layer, after a series of pooling and convolutional layers, the last feature map is converted 

into a one-dimensional vector by flattening it. This vector contains high-level features that represent the image. Then, it 

proceeds to feed into the dense layer. 

5. Fully Connected (Dense) Layer: The collected features are flattened after multiple convolutions and pooling layers 

before moving on to one or more dense layers, which helps in learning non-linear combinations of features presenting higher-

level abstractions relevant to Alzheimer's diagnosis. 

6. Feature extraction using CNN: The flattened feature vector produced by the CNN, which encodes the image’s most 

important characteristics, is now ready for classification. Instead of using a softmax layer (as is typical in CNNs), this feature 

vector is passed to an SVM for classification. 

7. Dimensionality reduction using PCA: Before fitting the SVM, PCA (Principal Component Analysis) is applied to reduce 

dimensionality, retaining components that explain upto 99% of the variance. This improves classification accuracy and 

computational efficiency by focussing on significant patterns and eliminating noise. PCA reduces the dimensions while 

retaining most of the information which in turn helps in reduced storage & computational requirements  

8. SVM Classifier: SVM determines whether the input is of  Alzheimer's disease or not, based on features learned, by finding 

a maximum-margin hyper-plane that classifies the 

classes.SVM for classification is performed using LinearSVC. To achieve this, we want to find a hyperplane that can 

separate data classes well, i.e., (1). 

                               𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏        (1) 

Here, w denotes weight vector, b denotes bias, and x denotes input vector. The optimization objective is to maximize the 

margin and minimize the classification errors given by (2) with the parameter C controlling the trade-off. 

𝑚𝑖𝑛𝑤,𝑏
1

2
∣∣ 𝑤 ∣∣2+ 𝐶 ∑ max (0, 1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏))𝑁

𝑖=1       (2) 

x - Input feature vectors from training & testing i.e x_train_reduced and x_test_reduced. 

b - Bias term learned by  SVM during training. 

w - Weight vector learned by  SVM during training. 

F(x): Decision function calculated (1) used for classification. 

9. Performance evaluation and output predictions: Overall performance is calculated with the help of various metrics 

such as Accuracy Precision recall F1 Score and CV Accuracy using (5), (6), (7), (8), (9) which are discussed in later sections 

of this paper. 

10. Output Layer: The SVM final output gives a binary output, say, Alzheimer's vs. non-Alzheimer's or multi-class 

classification, say, healthy, mild cognitive impairment, and Alzheimer's. The SVM decision boundary is used in making the 

prediction based on features which might have been extracted by the CNN. 
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3.3  PROPOSED MODEL DESCRIPTION  

Instead of using a single algorithm, we developed a multimodal model architecture catering to various complex datasets 

without compromising on accuracy. In this architecture, we employed a SVM for classification after using a convolutional 

neural network CNN for feature extraction. 

 

Fig. 3. CNN-SVM Multimodal Workflow 

3.3.1 Data Collection 

MRI images have been retrieved from OASIS corpus where there are several scans of a patient which are further processed 

to decrease skewing and overfitting issues. 

3.3.2 Preprocessing 

We have normalized the images collected into a fixed size and format along with the application of some transformations 

that resulted in making the data set rich in diversity and have strong models and decreased the problem of overfitting. 

3.3.3 Feature Extraction with CNN 

Design CNN Architecture:  

Number of Layers: Prepare a multiple-layer CNN with many Convolutional, Activation functions (e.g. ReLU), Pooling, and 

dropout layers. The ReLU (Rectified Linear Unit) activation function which is depicted in (3) introduces nonlinearity into 

the model and keeps positive values unchanged while setting negative values to zero. 

                           𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)                           (3) 

Convolutional Layers: Feature Extraction using convolutional operations on the input images. 

After Convolutional Layers we apply Batch Normalisation to stabilize training, accelerate convergence, and reduce 

sensitivity to initialization.  

Pooling Layers: Use MaxPooling or AveragePooling layers. These reduce the dimension but do leave most of the important 

features behind. Fully Connected Layers: Add fully connected layers to further process the features before passing them on 

to classification 

We use dropout, where we randomly zero a portion of the input units at training time, post Pooling and Dense layers, to 

avoid overfitting. 

             𝑦𝑖 = {
0, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

𝑥𝑖

1−𝑝
, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝       (4)         

Train CNN:  
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This uses pre-process image inputs to train the CNN. Suitably choose a loss function for updating model weights. 

Feature Extraction: 

After training, apply CNN to obtain feature vectors from images. These vectors would have been representations of the 

learned high-level features of the CNN. 

3.3.4 Classification with SVM 

Preparing Features:  

Input: Feed the feature vectors extracted from CNN into SVM classifier Train SVM 

SVM Training: Feed the feature vectors to SVM classifier for training. Choose an appropriate kernel, such as radial basis, 

and fine-tune SVM hyperparameters, like C and gamma, using grid search and cross-validation. 

Classification: Classification with trained SVM: Classify the feature vectors into the different classes - "very mild", "mild", 

"moderate", and "non-dementia". 

3.3.5 Evaluation & Post processing 

The effectiveness of the CNN-SVM model can be measured using different performance metrics by applying it on a test 

dataset that is not used during training. 

Analysing the Results: Overview of Classification Apart from measuring its overall performance, gain insight into how the 

model classifies cases and potential regions for improvement. 

Refine: Improve the model based on how good or bad the model is performing. 

4. RESULTS 

This model uses CNNs for salient feature extraction from magnetic resonance imaging (MRI) with a reduction in the 

dimensionality of features via PCA. 

 

Fig. 4. Sample Brain MRI predicted as non-demented 

Classification based on the reduced features. Accuracy and cross-validation score: the model reached a level of 92.30% and 

88.36%, respectively. Sample output is shown in Fig.4. 

4.1 Confusion Matrix 

A class represents a specific stage of cognitive impairment. The confusion matrix shows how accurately the model predicts 

each Alzheimer's stage, indicating classification errors and model performance. 
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Fig. 5. Confusion matrix of CNN-SVM multilayer model 

Class 0 

TP = 353(Predicted as 0, Actual 0)  

FN = 54 + 14 + 1 = 69(Predicted as 1, 2, or 3, Actual 0)  

FP = 14 + 3 + 0 = 17 (Predicted as 0, Actual 1 or 2 or 3)  

TN = 389 + 12 + 0 +2 + 347 + 0 + 109 = 859 

Class 1: 

TP = 389 (Predicted as 1, Actual 1)  

FN = 14 + 12 = 26 (Predicted as 0 or 2, Actual 1)  

FP = 54 + 2 + 0 = 56 (Predicted as 1, Actual 0, 2 or 3)  

TN = 353 + 14 + 1+ 2 + 347 + 0 + 109 = 826 

Class 2: 

TP = 347 (Predicted as 2, Actual 2)  

FN = 12 + 2 = 14 (Predicted as 0 or 1, Actual 2)  

FP = 14 + 54 + 0 = 68 (Predicted as 2, Actual 0 or 1 or 3)  

TN = 353 + 389 + 1 + 0 + 109 = 852 

Class 3: 

TP = 109 (Predicted as 3, Actual 3)  

FN = 0 (Predicted as 1, Actual 3)  

FP = 1 + 0 + 0 = 1 (Predicted as 3, Actual 0 or 1 or 2)  

TN = 353 + 54 + 14 + 14 + 389 + 12 + 2 + 347 = 1185 

4.2 Classification Report 

The below classification report gives a detailed overview of the performance of a predictive model over four classes labelled 

0, 1, 2, and 3. The different metrics precision, recall, as well as the F1-score, are calculated using (5), (6), (7) in addition to 

the model's overall accuracy and class averages. 
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                             𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                        (5) 

Calculates the number of correct positive results out of the total cases. 

                               𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                             (6) 

Calculates the ratio of actually recognized true positives to all existing actual positives. 

                         𝐹1 = 2 ×  
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
                       (7) 

It gives one measure that is equally balanced between recall and precision by computing the hormonic mean of the two. 

 

Fig. 6. Classification report determining the performance 

of the model. 

 

-Class 0, being the first category with an F1-score of 0.89, a 0.84 recall, and a precision of 0.95 

-Class 1, which has a lower metric with an F1-score of 0.82, precision of 0.87, and recall value of 0.79 

-Class 2, which has good performance with a recall of 0.99, a precision of 0.93 and an F1-score value of 0.96. 

-Class 3 is almost a perfect classifier, with F1-score = 1.00 and flawless precision and recall at 1.00. 

Overall, the accuracy of the model stands at 0.92 calculated using (8), which means that 92% of the predictions performed 

by the system are accurate.  

                𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                       (8) 

Average performance of every class is calculated by macro average, but it does not pay much heed to class imbalance. 

Whereas number of occurrences in each class is considered by the Weighted average and shows a relatively more balanced 

perspective of performance. 

This classification report thus underlines the fact that the model is very robust in the accurate classification of instances, 

especially in Class 3, but points to areas where performance may be improved in Classes 0 and 1.

 

4.3 Cross-Validation Accuracy: 

The graph below represents the cross-validation of a predictive model accuracy variation in relation to five folds. On the 

graph, the fold number is plotted versus the x-axis on the y-axis vs. accuracy. In this respect, it gives a picture about the 

stability of the model's performance, as well as its generalization concerning the different data subsets. 

              𝐶𝑉 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑘
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑗

𝑛
𝑗=1                      (9) 

where k is the number of folds, and Accuracy j represents the accuracy obtained from each fold j. 
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Fig. 7. Cross-validation accuracy of the model 

Ten subsets (folds) are created from the dataset in the case of 10-fold cross-validation (as shown in the graph). Iteratively, 

the model is tested on four subsets after being trained on the others, using each fold once for testing. The individual accuracies 

from these 10 folds are then averaged using the formula above to get the overall CV accuracy. 

The 10 Folds in the above graph Fig.6 represent:  

- Fold 1: Accuracy starts relatively high at around 0.89,  

showing a good initial performance.  

- Fold 2: The accuracy experiences a drop to approximately  

0.88, indicating some variability in performance.  

- Fold 3: There is another dip in accuracy, reaching the lowest  

point at around 0.88.  

- Fold 4: The accuracy significantly improves, surging to  

approximately 0.90, marking a positive recovery.  

- Fold 5: The accuracy rises further, peaking at around 0.91,  

the highest accuracy observed in this cross-validation  

process.  

- Fold 6: A moderate decline is observed, with accuracy  

dropping back to approximately 0.89.  

- Fold 7: Accuracy stabilizes at a similar level, remaining  

around 0.89, showing consistency.  

- Fold 8: A slight decline occurs again, bringing the accuracy  

to around 0.885.  

- Fold 9: A modest upward trend is seen, with accuracy  

climbing back to approximately 0.89.  

- Fold 10: Accuracy ends on a high note, reaching the  

maximum at 0.915, the highest value across all folds. 
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These fluctuations in accuracy across the folds indicate variability in the model performance perhaps caused by differences 

in the data subsets used in the different folds or perhaps by model sensitivity to specific data features. 

Accuracies at the bottom and the top are vastly different, making a case for studying model stability and data consistency. 

Accuracy recovery in Fold 4 from the drop in Fold 3 gives rise to the possibility of overfitting issues or that there might be 

outlier data affecting the predictions of the model. 

-Mean Accuracy: The average of the accuracies of each fold. For this case, it outputs roughly 0.902. 

-Range of Accuracy: The difference between its highest accuracy value and the smallest accuracy value obtained. For this 

data, the difference is calculated to be 0.035, meaning that there was a spread of model performance over different datasplits. 

The graph of cross-validation performance given here is a very essential tool for diagnostics, where areas are indicated that 

need tuning in the model, balancing in data, or additional feature engineering needs to be adjusted to optimize robustness 

and accuracy of prediction models. 

4.4 Receiver Operating Characteristic (ROC) Curve: 

The ROC curve plots the sensitivity and false alarm rate for every class in a classification model against each 

other, indicating the trade-off between the two. The Area Under the Curve (AUC) values, ranging from 0.97 to 1.0, 

demonstrate the model's high discriminatory power. AUC close to 1 indicates excellent performance, while curves above the 

diagonal random-guessing line confirm the algorithm’s reliability in differentiating between classes. This visualization 

validates the effectiveness of the CNN-SVM hybrid model for multi-class classification. 

 

Fig. 8. ROC Curve of CNN-SVM multilayer model 

ROC Curve Calculations: 

The ROC curve is produced by varying the classification decision threshold and recording the following values at each point. 

1. False Alarm Rate: 

This informs us how frequently negative cases are wrongly labeled as positive.  

𝐹𝑎𝑙𝑠𝑒𝑎𝑙𝑎𝑟𝑚𝑟𝑎𝑡𝑒 =   
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

2. Sensitivity : 

This quantifies how many true positive instances are correctly classified by the model. 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

The ROC curve plots TPR against FPR at various thresholds. 

AUC Metric: 



Dr. Kiranmayee B. V., Karthik Tsaliki, Rupa Yekbote, Vamsi Krishna Vadlamudi, 

Abhigna Kanduri, Greeshma Gudelli 
 

pg. 402 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 8s 

 

The Area Under the Curve (AUC) provides one value that estimates how well the classifier works. 

 An AUC of 1.00 indicates perfect classification with no errors. 

 An AUC of 0.50 represents random guessing. 

The AUC values for the four classes are shown in Figure 7. The key observations are as follows: 

 Class 0: AUC = 0.97, indicating excellent classification performance. 

 Class 1: AUC = 0.97, indicating excellent classification performance. 

 Class 2: AUC = 1.00, indicating perfect classification without false positives or false negatives. 

 Class 3: AUC = 1.00, also indicating perfect classification. 

The high AUC values for all classes suggest the classifier performs exceptionally well across all categories. Classes 2 and 3 

achieved perfect AUC scores, implying the classifier made no errors in predicting these classes. The slightly lower AUC 

values for Classes 0 and 1 (0.97) indicate a minimal rate of misclassification, which is still highly commendable 

4.5 Precision – Recall Curve: 

Precision - Recall (PR) curve gives a detailed analysis of the effectiveness of the CNN-SVM system by demonstrating the 

precision vs. recall trade-off for every class. High precision in the curves suggests the model's capability at minimum false 

positives for precise detection of positive instances. and high recall suggests its capability to include most of the true positive 

instances. The curves, near the top-right corner for all classes, illustrate the strength of the CNN-SVM system in finding the 

trade-off between recall and precision. These findings confirm the model's effectiveness in performing multi-class 

classification tasks. Slight decreases in precision at lower recall values for some classes indicate possible areas for further 

optimization to enhance the model's overall effectiveness 

PR Curve Calculations: 

The PR curve indicates the relation between precision and recall for varying classification thresholds., offering insights into 

the tradeoff between these two metrics. 

1. Recall :  

Recall measures the proportion of actual positive cases which are correctly classified. 

𝑇𝑃𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

2. Precision: 

Precision computes the proportion of those cases correctly classified as positive over all the positive cases predicted.  

𝑇𝑃𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

Fig. 9. PR Curve of CNN-SVM multilayer model 
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The PR curves for the four classes are shown in Figure 2. Key observations include: 

- Class 0: Precision and Recall are high but show a slight tradeoff at higher recall values. 

- Class 1: Similar to Class 0, with a good trade-off between recall and precision. 

- Class 2: Nearly perfect precision across all recall levels, indicating exceptional classification performance. 

- Class 3: Also demonstrates near-perfect precision and recall, with minimal tradeoff observed. 

Observations: 

 Class 2 and Class 3: classes exhibit near-perfect PR curves, reflecting the  ability of 

the classifier to correctly identify and distinguish positive instances with a minimum of false positives and false 

negatives. 

 Class 0 and Class 1: Minor decreases in accuracy        at higher recall levels indicate the performance of the 

classifier might be optimized for these classes.  

The PR curve analysis shows the good performance of the classifier on all classes with almost perfect precision and recall 

for Classes 2 and 3. Although Classes 0 and 1 also show good performance, slight improvements can be achieved in balancing 

precision and recall at higher thresholds. This analysis shows how good the classifier is, especially in imbalanced datasets, 

and gives a good understanding of how it acts in separating positive instances. 

4.6 Accuracy Vs PCA Retention Rate:  

The following bar plot illustrates the interaction between PCA retention rates and model accuracy. With an increase in PCA 

retention rate, model accuracy increases, showing that keeping more components results in the model's ability to capture 

more variance, thus improving performance. The accuracy percentages, from 84.9% to 92.3%, are labeled above every bar 

to give exact measures of the model's performance at various PCA retention levels. This chart illustrates the significance of 

PCA in reducing dimensions and optimizing the model. 

 

Fig. 10. Accuracy Vs Retention Rate bar plot of CNN-SVM multilayer model 

Principal Component Analysis (PCA) is a dimension reduction technique for  lower-dimensional projection of high-

dimensional data such that the projection retains as much information(variance) as possible. 

Step-by-Step Process: 

1. Standardize the Data: 

Center the data by subtracting the mean and, optionally, scale it to unit variance. 

𝑍 =  
X − μ 

σ
 

2. Compute Covariance Matrix: 

Calculate the covariance matrix to measure the relationships between features. 
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𝛴 =  
1 

n − 1
𝑍𝑇𝑍 

3. Perform Eigen Analysis: 

Determine the eigenvalues and eigenvectors of the covariance matrix.. 

a. Eigenvectors represent the directions of the principal components 

b. Eigenvalues (λ) are the amount of variance explained by each principal component. 

4. Select Principal Components: 

Retain a subset of principal components based on the desired variance retention rate. 

If k is the number of selected components, the cumulative variance is: 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 =  
∑ λ𝑖

𝑘
𝑖=1

∑ λ𝑖
𝑚
𝑖=1

 

5. Transform Data: 

Project the original data onto the selected principal components: 

Z𝑃𝐶𝐴 = 𝑍. W𝑘    

Where W𝑘contains the eigenvectors corresponding to the top k eigenvalues. 

Model Accuracy Analysis: 

- PCA Retention vs. Accuracy: 

As PCA retention rate increases, more information is preserved, allowing the model to better classify the data, 

resulting in higher accuracy. 

- Tradeoff: 

o Lower retention rates (e.g., 0.90, 0.95) reduce dimensionality more aggressively, leading to information loss 

and decreased accuracy. 

o Higher retention rates (e.g., 0.99, 0.999) retain nearly all information, enabling the model to maintain or 

improve accuracy. 

5. DISCUSSIONS 

5.1 Algorithm Performance: 

The CNN-SVM multimodal model demonstrates outstanding performance in AD detection from MRI images with a 92.3% 

accuracy, proving the system’s capability to cope with the intricacies of medical image classification. The integration of 

CNN and SVM enables the model to take advantage of the strengths of both methods. CNNs are particularly effective at 

extracting spatial and hierarchical features from MRI scans, detecting slight patterns that point to Alzheimer's development. 

The  features which are extracted are then fed to  SVM, which is specifically good at detecting accurate decision boundaries 

in high-dimensional feature spaces and improving classification performance. This synergy guarantees that feature extraction 

and classification are both tuned for the application. 

The robustness of the CNN-SVM model is further strengthened by attentive preprocessing methods and design decisions. 

Preprocessing methods include normalization, resizing, and scaling to cope with variability in MRI images. Not only does 

this enhance the system’s capability to generalize to novel data, but it also limits overfitting. The architecture of CNN is set 

up in order to obtain finer features with stacks of convolutional layers using ReLU activation succeeded by max-pooling to 

ensure the conservation of the most important features. The flattened feature vector is given as an input to the SVM, and 

thanks to the kernel trick, which allows for the non-linear transformation, it becomes capable of segregating Alzheimer's and 

non-Alzheimer's types efficiently. Such a two-step approach makes it both computationally light and accurate. 

The performance of the algorithm is a testament to the combination of DL and classical ML approaches. Through the 

integration of CNNs' capacity to process unstructured image data with SVMs' power of accurate classification, the model 

delivers outstanding accuracy despite the scarcity of labeled data. The application of hinge loss in SVM guarantees the fine-

tuning of decision boundaries to reduce misclassifications. Also, the hybrid model surpasses individual CNNs and other 

classifiers, and therefore it is a good and efficient solution for the prior detection of Alzheimer's. The 92.3% accuracy, 

coupled with the efficacy of the model, indicates its viability for practical use, especially in enhancing early diagnosis, 

supporting clinicians, and enabling timely medical interventions. 
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6. CONCLUSION 

In summary, this paper uses the novel integration of a CNN-SVM multi-layer model with MRI data and other non-invasive 

diagnostic modalities, such as speech analysis, saliva testing, and retinal imaging, to promote initial stage diagnosis and 

identification of AD. This combined approach intends to overcome limitations imposed by conventional diagnostic methods 

such as cerebrospinal fluid testing and PET scans. Through the high-end feature extraction properties of CNNs and the 

accuracy of SVMs in classification, , this method is able to effectively detect early Alzheimer's through minor brain structure 

patterns, thus distinguishing between diseased patients and normal subjects. The model provides an end-to-end, non-

invasive diagnosis tool that considerably boosts the diagnostic field. 

For making it precisely relevant, ADNI and OASIS datasets are utilized for calibration and validation of the system’s 

capability on a large scale to large datasets. This will finally enhance the efficiency of the model in actual clinical settings. 

Looking to the future, this study plans on integrating information from wearable devices, which would make it possible for 

continuous, non-invasive monitoring thus enhancing the rates of early diagnosis 

This study is a tremendous improvement over Alzheimer's diagnostics, as it offers a more accurate, cost-effective, and 

accessible option compared to conventional methods.By inc-reasing the diagnostic accuracy and expandability of this 

model,this paper establishes a good foundation for more personalized treatment strategies and better handling of 

AD, being a breakthrough in the combat against this debilitating condition 
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