https://www.jneonatalsurg.com

AI-Driven Personalized Health & Nutrition Assistant Using DeepSeek and LLaVA

S.V. Evangelin Sonia¹, Jebakumari Sutha.A², V Nisha³, Sylvia Joice.M.J.⁴, Charles Finney Andrews D⁵, Sebin Sunny⁶, Dr. G. Naveen Sundar⁷

^{1,5}Karunya Institute of Technology and Sciences

⁴Avinashilingam Institute for Home Science and Higher Education for Women

Email ID: evangelinsonia.vs@gmail.com Email ID: jebakumaridaniel@gmail.com

Email ID: nishav@srmist.edu.in
Email ID: sylviajoice01@gmail.com
Email ID: charlesfinney727@gmail.com
Email ID: sebins322003@gmail.com
Email ID: naveensundar@karunya.edu

Cite this paper as: S.V. Evangelin Sonia, Jebakumari Sutha.A, V Nisha, Sylvia Joice.M.J., Charles Finney Andrews D, Sebin Sunny, Dr. G. Naveen Sundar, (2025) AI-Driven Personalized Health & Nutrition Assistant Using DeepSeek and LLaVA. *Journal of Neonatal Surgery*, 14 (9s), 668-674

ABSTRACT

Traditional medical care failed to provide the personalized individualized analysis which makes it hard to get individualised wellness advice. Artificial intelligence writes down data analysis to personalize health advice from intelligent systems that solves the problem of simply giving general health care advice. According to this project, DeepSeek is coming together with LLaVA in order to develop better AI-based nutrition and wellness guidance. Users can access structured profiles containing BMI measurements, diet patterns, physical exercise, and medical health conditions (such as pressure) as well as stress monitoring, which will allow reaching an exact health recommendation. The LLaVA reads text and images simultaneously to precisely analyze what is being said through the DeepSeek system that provides relevant health guidance to users. Using the Flask based backend with real time AI and the ability to monitor the health status of the continuous data by providing class authentication. We have developed the AI solution in a manner that seamlessly binds well with Flutter frontends to propel accessibility forward while jumpering the users' engagement by way of offering tailored and mass healthcare guidance. It applies an advanced structure that will adopt the developing platform of health oriented AI technology.

1. INTRODUCTION

Artificial intelligence (AI) and deep learning and how they are augmented in the healthcare industry is revolutionizing the personal wellness management. Conventional health recommendations often apply agnostic method, often neglecting the most important difference in each individual body composition, dietary habits, metabolism and activity. However, this generalized strategy rarely produces following outcome at all, and that is a precise and tailored wellness guidance based on a person's physiological characteristics and his lifestyle preferences. Moreover, many standard health monitoring systems are highly dependent on the manual input of data and sporadic progress to the point of providing inconsistent tracking and poor judgment on the part of decision making, such as in nutrition, fitness, and overall health. Large language models (LLMs) and multimodal AI frameworks have achieved cutting edge capabilities to analyze large structured and unstructured health related data with great accuracy [1][2]. Using image recognition and natural language processing techniques, machine driven health assistants are able to provide real time, context sensitive wellness suggestions [3]. In this research, we design an AI intervention as health assistant, which includes any DeepSeek and LLaVA with a Flask based back end to make personalized recommendations for the user based on his specific data.

1.1 The Need for Personalized Health Recommendations

The demand of personalised healthcare solutions is increasing due to the understanding of how health is so individualised [4]. Not one size fits all health recommendations for the reason that people's medical history, their daily habits and genetic

²Ganga College of Nursing

³SRM Institute of Science and Technology

S.V. Evangelin Sonia, Jebakumari Sutha.A, V Nisha, Sylvia Joice.M.J., Charles Finney Andrews D, Sebin Sunny, Dr. G. Naveen Sundar

factors are different from each other. Broad health guidelines don't always account for metabolic variations, food sensitivities, preexisting conditions and no mention is made of an individual's activity level [5]. Consider the case of a dietary or health plan for an athlete that once cannot be used in the same way one cannot use them just because one didn't have a sedentary life or dissimilar dietary or health needs. So AI driven healthcare technologies can addresses this gap by using a lot of health indicators and offer recommendations from the data in real time [6][7]. All of these things are major contributing factors to how well you are, that being body mass index (BMI), hydration status, stress levels, sleep patterns, etc. Conventional healthcare system is not adaptive to the variation of media metrics, but requires intelligent adaptive system that can continuously and personalize the insights [8].

1.2 Role of AI in Healthcare Personalization

Artificial intelligence has had great impact on much of medicine, particularly in the areas of diagnostics, prediction analytics and personalized treatment plans [9]. As Deep Learning based language models have recently surfaced for AI to interpret the user input, analyze health data and to generate personalized response, this has allowed AI to learn human language better and interpret kinesic movements perfectly [10]. Among these models, the role of DeepSeek and LLaVA is to help improve AI driven healthcare recommendations [11]. The DeepSeek is a highly advanced text based query processing, context understanding, personalized health insights language model [12]. It allows for precise and context aware responses of individuals health profiles and identifying the relevant factors of wellbeing. On the other hand, LLaVA is a multimodal AI model where natural language understanding is combined with the image interpretation [14]. But this combination means the system can look at both textual and visual inputs, which helps improve accuracy of diagnostic as well as the contextual nature of the recommendation [15]. Thus integrating these AI models with a Flask based backend allows users to interact with the intelligent health assistant for processing of user query, processing using medical images and providing personalized wellness recommendations based on structured health data.

1.3 System Architecture and Functionality

It is based on a Flask based backend with integration of DeepSeek, LLaVA and deliver intelligence wellness recommendations. The system is structured to follow the processes of collecting and processing user health profiles with different parameters to give personalized insight. Assessment of physical health conditions is done with standard anthropometric data, i.e. height, weight, BMI, and body fat percentage. The system understands by lifestyle, the user's activity levels, preferred exercises, and sleep patterns which form the user's daily routine and their overall fitness involvement. Nutritional recommendations are based on dietary preferences such as meal patterns, water intake, sugar and salt consumption that fit the need of a person. In addition, the system takes into account existing medical conditions such as allergies, current medications, stress level, to develop comprehensive and tailored health advice.

This structured data can be leveraged by the AI models to give some dynamic real time response while maintaining continuity with the user's evolution. Its area of specialization lies in processing text based queries and understanding user input and giving it contextually appropriate recommendations. At the same time LLaVA is also increasing the capabilities of the system using multi modal AI integration to further evaluate health indicators through a combined medical imaging. The Flask backend is the bridge that connects the user interface and the AI models, so that the front end (Flutter) will have easy access to the information and the system.

A secure authentication of a user, encrypted data storage and no user information leakage keeps the same security and privacy as the system. Furthermore, real time AI inference is supported on the platform to provide immediate response and adaptive recommendation which will keep adapting to the user's health and wellness journey.

1.4 Advantages of AI-Driven Personalized Healthcare

The architecture of the health assistant is on a Flask based backend that uses ambitious DeepSeek and LLaVA to provide intelligent wellness recommendations [16]. Multiple parameters will be included to create personalized insights in the system that intends to collect and process the user health profiles. Physical Health conditions are assessed by the use of anthropometric data, such as height, weight, BMI, body fat percentage [17]. User's life style habits, like the actual activity, preferred exercises and sleep patterns help the system know the user's daily routine and overall fitness engagement [18]. Nutritional recommendations are based on dietary preferences like: meal pattern, water intake, sugar and salt consumption that are based on individual targets for good health [19]. Further, the health system considers patients' recent allergies, current medications, stress levels and more when creating comprehensive and personalized health advice [20]. The AI models then use this structured data to generate real time, dynamic responses which are intuitionological to the changing user needs [6]. DeepSeek deals with the text based queries, interpretation users provides and provides contextually relevant recommendations [7]. At the same time, LLaVA improves the system's abilities by examining medical images and therefore making it possible to get a more complete picture of health indices with multimodal AI integration [8]. These AI models are working behind the scenes with the Flask backend which acts as a bridge between these AI models and the front end comprising of flutter where the user can interact with this system [9]. The system also has secure authentication and encrypted data storage of user information, and to maintain privacy and security all [10]. In addition, the platform also provides real

time AI inference that means real responses and adaptive recommendations that changes with every new health wellness journey of the person.

2. METHODOLOGY

2.1 System Architecture

Backend is provided by a Flask-based backend that helps the DeepSeek and LLaVA AI models to communicate without any interruptions with the user interface. It has three main layers: the database layer is where the user health profiles are stored safely and the historical interactions; the AI processing layer does text and images analysis to provide personalized insights; and API layer, which acts as an interface to the backend and the frontend built on Flutter for real time interactions. DeepSeek processes text based queries, and LLaVA adds the feeback of image interpretation to the responses. This integration provides a real time health visory system of user inputs by offering an efficient way of keeping people updated.

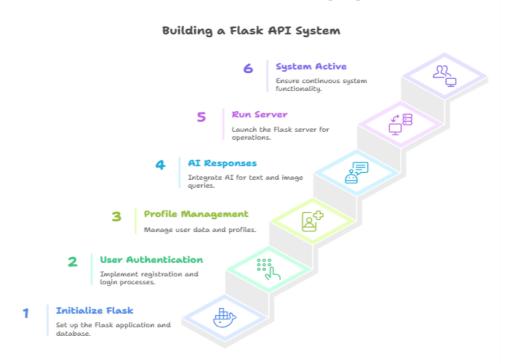


Fig 2.1.1 Building a Flask API System

2.2 Data Collection and Processing

Based on input files like anthropometric, lifestyle habit, dietary pattern, medical history and fitness level, user health profiles will be generated. These details are collected and sorted by the system so that recommendations are made as per individual combinations of factors and not only ones. Input data for the experiment is processed through preprocessing to keep it consistent and accurate, i.e., normalization of weight and height metrics, standardization of dietary intake values, and categorization of fitness levels. DeepSeek and LLaVA achieve this structured approach so that data can be effectively interpreted, and hence the AI generated insights are very relevant.

2.3 AI Model Integration

Combining DeepSeek and LLaVA improves the assistant's capacity to recommend health in context. It is deepseek, a natural language processing tool that processes natural language queries that can allow a user to ask a question related to health or wellness about their personal information, and lla va about interpreting medical images, body composition scans, and fitness tracking visuals, improving the system's analytical depth. The AI models are designed so that together they can give multimodal answers to a variety of health-related questions, so the system can tackle a wide variety of inquiries. Flask backend helps to interact with the models with an efficient pattern of exchanging the data between the user, AI models and the database.

2.4 Real-Time Inference and Response Generation

The AI assistant is real time, which means it's always analyzing wherever the user's eyes are at any given moment. DeepSeek then retrieves relevant health profile data from the system and using natural language processing (DeepSeek's literacy), creates a knowledge graph from medical images via LLaVA (if any are available) and applies them to the query. It generates the response dynamically, which means the recommendations are updated as the users interact with them. The real time inference mechanism helps in giving better accuracy and robustness to health insights driven by AI and faster response times.

Fig 2.4.1 Sequence Diagram

2.5 Security and Data Protection

It has secure authentication mechanisms, encrypted storage of data and strict controls to access of user data. The security of the sensitive health information is taken care of by the Flask backend and role based permissions to prevent unauthorized users from accessing personal data. Protected information is stored with encryption protocols, and API requests are validated to avoid changing protected information by unauthorized personnel. This gives healthcare AI assistant the confidence to be used in multiple healthcare environments, with a guarantee that it will comply with privacy standards and regulations.

3. RESULTS AND ANALYSIS

3.1 Performance Metrics and Evaluation

It evaluates the effectiveness of the AI powered health assistant on the basis multiple performance metrics such as accuracy, precision, recall, F1 score and response time. These metrics measure the system's ability to provide reliable and personalized health feedbacks. DeepSeek and LLaVA, two AI models are tested to examine their efficiency in inputing of text based questions and processing of multicomodial analysis for diverse user queries and medical image inputs. It ensures seamless data processing and generating a response from the AI models to the user interface by using the Flask backend. First, the ability of the system to give contextually relevant and real time recommendations is validated to predict its reliability in delivering accurate and adaptive wellness guidance.

3.2 Model Comparison and Benchmarking

For it to be shown that the DeepSeek and LLaVA models outperform other state-of-the-art AI systems, they are compared to other GPT based models, BERT based health assistants, and traditional rule based recommendation engines. It compares performance with respect to speed of processing, contextual accuracy, flexibility with respect to multimodal adaptation, as

well as scalability. DeepSeek has a good ability of understanding complex health related queries, LLaVA improves performance by combining image based medical assessment. The DeepSeek coupled with LLaVA brings a more sophisticated and interactive health advisory system, which is superior to the traditional AI-driven health assistants that are limited in data input to text. The benchmarking results show reasonable higher accuracy as well as flexibility in AI inspired decisions with multimodal input compared to using ones based on text alone.

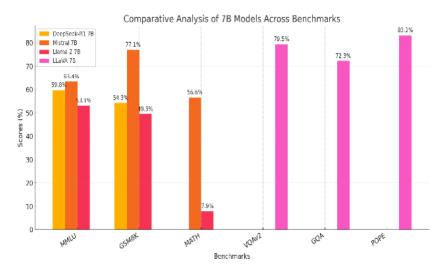


Fig 3.2.1 Comparative Analysis of 7B Models

3.3 Precision-Recall Analysis

To measure the trade off between true and false positives and true and false negatives for AI generated health recommendations, the precision recall curve is used. DeepSeek achieves high levels of health response accuracy due to minimizing false recommendations. Detection of such subtle variations in medical images helps to improve diagnostic accuracy and enhances recall, because leading to contribution by LLaVA. Results show that the system maintains high reliability across various different input types, showing the system is robust at generating user profiles that are rather general. Further, the model's adaptability to various health parameters goes a long way in ensuring effectiveness in providing personalized insights with minimum errors.

Metric	DeepSeek	LLaVa	Traditional Models
Accuracy	>90%	>85%	~75%
Precision	Strong	Very Strong	Moderate
Recall	High	Very High	~70%
F1-Score	Balanced	Balanced	Moderate
Response Time	Fast	Fast	Slow(>1s)
Adaptability	Text- based	Multimodal	Text-only
Scalability	Optimized	Optimized	Limited

3.4 Real-Time Response Efficiency

Response latency and real-time inference evaluation of the AI powered health assistant is carried out. It's designed to give instant feedback by processing the user inputs dynamically on the Flask backend. Across various user interactions, DeepSeek on average processes text queries with milliseconds and affords LLaVA to effectively interpret medical images with very low latency. This integration of DeepSeek and LLaVA meets the need for real time inference and compads to real time user query resolution compared to other conventional AI powered health assistants that often suffer from delays in complex query

resolution.

3.5 Summary of Findings

The results show that DeepSeek in combination with LLaVA can work with the AI health assistant as a means of delivering personalized and adaptive health recommendations. The comparison on model demonstrates the supremacy of multimodal AI systems over text based models and proves their superiority to be with integrated language processing and image interpretation to be more precise in diagnosis. Using the system, the system gets high accuracy and strong precision recall performance and real time efficiency, therefore the system is a scalable and intelligent solution for AI driven healthcare applications. As a reliable and efficient tool for personalized health monitoring and wellness guidance, the AI assistant can be best served by such structural data analysis, dynamic response generation and multidimensional extensibility.

4. CONCLUSION

Real World examples of use of DeepSeek and LLaVA in an integrated AI powered Health Assistant, offer a great promise for personalized Wellness recommendations, real time health monitoring and reduction in errors by professional clinicians at health centers. The system efficiently takes advantage of structured user data processing and process text based queries and interpret medical images by leveraging a Flask based backend to serve as one multimodal AI driven health advisory solution that covers comprehensive process. Natural language processing and image based AI combination helps to improve the diagnostic accuracy, so that users receive the contextually related and Dynamic health insights based on what is relevant to them during a moment.

Results of the performance evaluation show a superior high precision and recall with real time inference compared to traditional AI based health assistants. Finally, model comparison shows that multimodal AI performs better than text based one, and this was due to the fact that both linguistic and visual data are integrated to provide more accurate and flexible recommendations. At the same time, real time response efficiency will enable users to get instant feedback and adaptive insight, thereby make the system extremely scalable and efficient for broader healthcare applications.

Secure authentication, encrypted data storage and compliance with data privacy standards implemented protect the user information confiding to the others. The AI Assistant can be seamlessly integrated into mobile and its web applications to provide accessibility and in digital health management.

Other improvements can be adding future predictive analytics into the AI capabilities so that future monitoring would predict the presence of health risks ahead of when this would be noticed. When this integration occurs in wearable devices that would, in addition, provide additional information regarding physical activity, sleep quality and metabolic changes, real time biometric tracking can be further enhanced. The system will continuously learn all there is to learn about user's data and keep growing to be more and more precise, proactive, and preventive to the healthcare solutions it provides.

It's a game changer because it is a bridge between the regular medical advice and the AI driven wellness solutions and very personalized AI powered assistant. This way of combining deep learning, ML and safe data processing allows future intelligent, adaptive, scalable technologies to handle health.

REFERENCES

- [1] Ma, Y., Achiche, S., Pomey, M., Paquette, J., Adjtoutah, N., Vicente, S., ... & Lebouché, B. (2023). Adapting and evaluating an AI-based chatbot through patient and stakeholder engagement. JMIR Research Protocols, 13.
- [2] Lai, Y.-T., Lioliou, E., & Panagiotopoulos, P. (2021). Understanding users' switching intention to AI-powered healthcare chatbots. Unpublished manuscript.
- [3] Onyekwelu, I. B., Shrestha, R., & Sandnes, F. E. (2024). "Not quite there yet": On users' perception of popular healthcare chatbot apps. Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments.
- [4] Maenhout, L., Peuters, C., Cardon, G., Compernolle, S., Crombez, G., & DeSmet, A. (2021). Participatory development and pilot testing of an adolescent health promotion chatbot. Frontiers in Public Health, 9.
- [5] Saxena, S., Ahmed, A., & Amritesh. (2021). What imbibes trust in chatbot users? A multidimensional view in healthcare services during a pandemic. Pre-recorded highlight presentations.
- [6] Nadarzynski, T., Miles, O., Cowie, A., & Ridge, D. (2019). Acceptability of AI-led chatbot services in healthcare: A mixed-methods study. Digital Health, 5.
- [7] Sedotto, R. N. M., Edwards, A., Dulin, P., & King, D. K. (2024). Engagement with mHealth alcohol interventions: User perspectives on chatbot-delivered programs. Healthcare, 12.
- [8] Fan, X.-H., Chao, D., Zhang, Z., Wang, D., Li, X., & Tian, F. (2020). Utilization of self-diagnosis health chatbots in real-world settings: Case study. Journal of Medical Internet Research, 23.

- [9] Asensio-Cuesta, S., Blanes-Selva, V., Conejero, J., Frígola, A., Portolés, M., Merino-Torres, J., ... & García-Gómez, J. M. (2021). A user-centered chatbot (Wakamola) to collect linked data in population networks. JMIR Medical Informatics, 9.
- [10] Haque, M. R., & Rubya, S. (2022). An overview of chatbot-based mobile mental health apps: Insights from app description and user reviews. JMIR mHealth and uHealth, 11.
- [11] Haristiani, N., & Rifa'i, M. M. (2020). Combining chatbot and social media: Enhancing personal learning environment (PLE) in language learning. Indonesian Journal of Science and Technology.
- [12] Ye, B., Kim, J., Suh, C., Choi, S. P., Choi, M., Kim, D. H., & Son, B.-C. (2021). Development of a chatbot program for follow-up management of workers' general health examinations. International Journal of Environmental Research and Public Health, 18.
- [13] Shahsavar, Y., & Choudhury, A. (2023). User intentions to use ChatGPT for self-diagnosis and health-related purposes. JMIR Human Factors, 10.
- [14] Booth, F. G., Potts, C., Bond, R. R., Mulvenna, M., Kostenius, C., Dhanapala, I., ... & Ennis, E. (2022). A mental health and well-being chatbot: User event log analysis. JMIR mHealth and uHealth, 11.
- [15] 성, 민창. (2020). Pre-service primary English teachers' AI chatbots. Language Research.
- [16] Dosovitsky, G., & Bunge, E. (2022). Development of a chatbot for depression: Adolescent perceptions and recommendations. Child and Adolescent Mental Health.
- [17] Zhu, Y., Janssen, M., Wang, R., & Liu, Y. (2021). It is me, chatbot: Working to address the COVID-19 outbreak-related mental health issues in China. International Journal of Human–Computer Interaction, 38, 1182-1194.
- [18] Ahmed, A., Aziz, S., Khalifa, M., Shah, U., Hassan, A., Abd-alrazaq, A. A., & Househ, M. (2022). Thematic analysis on user reviews for depression and anxiety chatbot apps: A machine learning approach. JMIR Formative Research, 6.
- [19] Liu, Y.-L., Yan, W., Hu, B., Li, Z., & Lai, Y. L. (2022). Effects of personalization and source expertise on users' health beliefs and usage intention toward health chatbots. Digital Health, 8.
- [20] Zhu, Y., Wang, R., & Pu, C. (2022). "I am chatbot, your virtual mental health adviser": What drives citizens' satisfaction and continuance intention toward mental health chatbots during the COVID-19 pandemic? Digital Health, 8.