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ABSTRACT

Autonomous suturing is a critical advancement in robotic-assisted surgery, offering the potential to enhance surgical
precision, reduce workload, and improve patient outcomes. Traditional robotic-assisted suturing relies on human
teleoperation, which can introduce variability and fatigue-related errors. This paper explores the integration of reinforcement
learning (RL) and 3D visual feedback to develop a fully autonomous robotic suturing system. The proposed framework
consists of a robotic arm equipped with a needle driver, a 3D stereo vision system for real-time depth perception, and a deep
RL model optimized for suturing tasks. Our approach involves training a reinforcement learning agent in a simulated
environment, where it learns optimal suturing strategies based on trial-and-error interactions. The RL model considers needle
trajectory, suture tension, and tissue deformation while maximizing accuracy and minimizing tissue damage. The 3D vision
module provides high-resolution depth maps to guide the robot in real time, enabling precise needle insertion and suture
placement. The system is validated on synthetic tissue models, demonstrating superior performance in terms of precision,
suture uniformity, and adaptability to tissue variations. Experimental results indicate that our RL-based approach outperforms
traditional teleoperated suturing by achieving higher accuracy and reducing variability. Despite challenges such as real-time
computation constraints and dynamic tissue behavior, this research highlights the feasibility of autonomous robotic suturing.
Future improvements will focus on enhancing real-time adaptability, optimizing computational efficiency, and expanding
the system’s applicability to various surgical procedures. This study represents a significant step toward fully autonomous
robotic surgery.

Keywords: Autonomous Suturing, Robotic Surgery, 3D Vision, Al Surgery, Needle Control, Tissue Modeling, Surgical Al,
Real-Time Feedback, Suture Accuracy, Motion Planning, Medical Robotics.
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1. INTRODUCTION

Suturing is a fundamental skill in surgery, requiring precision, dexterity, and control to ensure effective wound closure and
healing. In recent years, robotic-assisted surgical (RAS) systems have revolutionized minimally invasive surgery by offering
enhanced dexterity, tremor reduction, and improved visualization. However, despite these advancements, robotic suturing
still heavily relies on teleoperation, where the surgeon manually controls the robotic arms using a console [1]. This
dependence on human input introduces challenges such as fatigue, inconsistencies in suture placement, and extended
operation times. Autonomous suturing, enabled by artificial intelligence (Al) and robotic learning, has the potential to
overcome these limitations and transform surgical procedures. Autonomous robotic suturing requires precise control over
the needle’s movement, accurate force application, and adaptability to dynamic tissue behavior [2]. Traditional automation
techniques, such as pre-programmed motion planning, struggle with the variability in biological tissues. Reinforcement
learning (RL), a branch of machine learning where an agent learns through interaction with the environment, provides a
promising alternative. RL enables robotic systems to learn optimal suturing strategies by maximizing a reward function that
accounts for factors such as suture precision, needle trajectory, and tissue deformation. By continuously refining its actions,
an RL-trained robot can develop human-level suturing skills and adapt to varying surgical conditions [3]. A crucial
component of autonomous robotic suturing is accurate visual feedback. Unlike industrial robotic systems that operate in
controlled environments, surgical robots must function in highly dynamic and unpredictable settings. Tissue properties vary
among patients, and real-time adjustments are necessary for precise needle insertion. 3D visual feedback, obtained through
stereo cameras or depth sensors, enhances robotic perception by providing detailed depth information about the surgical
field. This depth perception is essential for identifying tissue layers, detecting deformations, and ensuring proper needle
orientation [4]. By integrating RL with 3D visual feedback, robotic systems can achieve a level of perception and decision-
making that closely mimics human expertise. The primary challenge in developing an autonomous suturing system lies in
training the robot to perform consistently under real-world conditions. Directly training RL models in live surgeries is
impractical due to ethical and safety concerns [5]. Instead, robotic systems are first trained in simulated environments that
replicate surgical conditions, allowing them to learn optimal suturing techniques through extensive trial and error. These
virtual training environments use physics-based simulations to model tissue deformation, suture material properties, and
needle dynamics. Once the model achieves a sufficient level of proficiency in simulation, it is fine-tuned and tested on
synthetic tissue models before being considered for real-world surgical applications [6]. The integration of RL and 3D vision
in robotic suturing has the potential to significantly improve surgical outcomes. By reducing reliance on human operators,
autonomous suturing can minimize inconsistencies, decrease surgical fatigue, and shorten procedure times. Additionally,
automation can enhance the accessibility of complex surgical techniques, allowing less experienced surgeons to perform
high-precision suturing with the assistance of Al-driven robotic systems [7]. In emergency or remote medical scenarios,
where highly skilled surgeons may not be available, autonomous suturing could play a crucial role in improving patient care.
Despite its promise, several challenges remain in the development of fully autonomous suturing. One of the primary concerns
is real-time computation and decision-making [8].
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Figure 1. Basic Block diagram of Autonomous Robots Surgery System
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RL models require extensive data processing to analyze visual feedback and execute precise movements, necessitating high-
performance computing capabilities. Moreover, ensuring patient safety is paramount, as any failure in the robotic system
could lead to tissue damage or improper wound closure [9]. Addressing these challenges requires advancements in both Al
algorithms and hardware capabilities, including faster processing units and more robust robotic control systems. In this paper,
we propose an autonomous robotic suturing system that integrates deep reinforcement learning with real-time 3D visual
feedback. Our approach trains an RL agent to optimize suturing techniques in a simulated environment before deploying it
on a physical robotic system [10]. We evaluate the performance of our system on synthetic tissue models, measuring
accuracy, suture consistency, and adaptability. The results demonstrate the feasibility of RL-driven robotic suturing and
highlight its potential for improving surgical efficiency and precision (As illustrated in the above Figure 1). This study
contributes to the ongoing efforts in autonomous robotic surgery and paves the way for future advancements in Al-assisted
medical procedures.

2. CRITICAL EVALUATION OF LITERATURE

Automated surgical suturing has seen significant advancements, integrating robotics, artificial intelligence, and optimization
techniques to enhance precision, efficiency, and safety. Early research focused on developing mechanical suturing machines
that demonstrated improved accuracy and consistency over traditional hand-suturing methods [11]. Autonomous flexible
endoscopes were also introduced to facilitate minimally invasive procedures with enhanced safety and adaptability. To
replicate human suturing skills, trajectory learning and non-rigid registration methods were explored, where robots were
trained to perform suturing through pre-learned motion trajectories and deep reinforcement learning [12]. Optimization
techniques, such as mechanical needle guides and sequential convex optimization, further improved the accuracy and
efficiency of multi-throw suturing [13]. As automation in surgery progresses, ethical, legal, and regulatory considerations
become crucial to ensure safety, accountability, and compliance. Machine learning techniques have also been integrated into
surgical robotics, enabling real-time decision-making, enhanced visual perception, and improved dexterity in autonomous
suturing [14]. Vision-based guidance has played a key role in improving endoscopic tissue manipulation and needle tracking,
allowing for more precise and controlled robotic interventions. While these advancements hold great promise, challenges
remain in ensuring adaptability, regulatory compliance, and real-time responsiveness in complex surgical environments [15].
Future research should focus on refining Al-driven methodologies, improving real-time perception, and ensuring ethical
surgical automation to pave the way for fully autonomous robotic surgery.

Table 1. Summarizes the Literature Review of VVarious Authors

Area Methodology | Key Challenges Pros Cons Application
Findings
Automated Mechanical Improved Limited Reduces Less flexibility | Intestinal and
Suturing suturing accuracy and | adaptability surgical compared to | soft tissue
Machines devices  for | consistency | to  different | fatigue, human suturing | surgeries
intestinal over hand- | tissue types ensures
anastomosis suturing precision
Flexible Autonomous | Enhanced Integration Reduces Requires Gastrointestina
Endoscopic flexible safety and | with existing | complications | advanced | and
Assistance endoscope for | adaptability | surgical , improves | control systems | laparoscopic
minimally in  surgical | workflows access surgeries
invasive environment
surgery S
Trajectory Non-rigid Robots can | High Improves Difficult to | Robotic-
Learning in | registration learn human | computationa | accuracy, adapt to | assisted
Suturing and trajectory | suturing I cost, need | mimics expert | unforeseen suturing in soft
transfer motions for extensive | suturing surgical tissues
techniques through pre- | training data scenarios
learned
trajectories
Optimization Mechanical Enhanced Complexity Reduces Computationall | Multi-throw
in Multi- | needle guides | precision and | in robotic | errors, y intensive and multilateral
Throw and sequential | efficiency in | control and | increases suturing
Suturing convex multi- motion efficiency
optimization | threaded planning
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suturing
Ethical, Legal, | Review of Al | Addressed Legal Ensures Regulatory Al-driven
and safety, risks and | liability, patient safety, | delays, ethical | robotic surgical
Regulatory accountability | benefits  of | ethical provides legal | dilemmas procedures
Consideration |, and | autonomous | concerns over | framework
S compliance in | surgical full autonomy
robotic systems
surgery
Machine Al-driven Improved Need for | Enhances Requires Al-based
Learning in | decision- real-time large datasets, | precision, significant autonomous
Surgical making, deep | decision- potential improves computational suturing
Robotics reinforcement | making and | biases in Al | adaptability power
learning robotic models
dexterity
Vision-. Based | Image-based Improved Handling Enhances Dependent on | Laparoscopic
Guidance in | tracking, needle occlusions, control, high-quality and minimally
Surgery surgical tracking and | ensuring high | improves real- | imaging invasive
perception tissue frame rate | time systems surgeries
frameworks manipulation | processing monitoring
in real-time

Automated surgical suturing has evolved through various methodologies, ranging from mechanical enhancements to Al-
driven decision-making frameworks. Mechanical suturing devices have demonstrated improved accuracy and consistency
over traditional hand-suturing techniques, reducing surgical fatigue but lacking adaptability to different tissue types. The
introduction of autonomous flexible endoscopes has enhanced safety in minimally invasive procedures, although their
integration with existing workflows remains a challenge (As shown in the above Table 1). Trajectory learning techniques
have allowed robots to replicate human suturing motions using pre-learned pathways, significantly improving precision but
requiring extensive computational resources.

3. ROBOTIC PLATFORMS FOR SURGICAL AUTOMATION

Robotic platforms have significantly transformed the landscape of minimally invasive surgery (MIS) by enhancing precision,
dexterity, and control beyond the capabilities of the human hand. Among the many applications of robotic surgery, suturing
remains one of the most technically demanding due to the delicate handling of tissues, precise placement of sutures, and
intricate knot-tying procedures. As a result, the integration of automation into robotic platforms is gaining momentum to
support or even replace human intervention in such complex tasks. Several robotic systems have laid the groundwork for
these developments, with the da Vinci Surgical System and the Raven 11 being two of the most prominent and widely studied
platforms in this domain. The da Vinci Surgical System, developed by Intuitive Surgical, is the most widely used commercial
robotic surgery platform. It features a master-slave architecture in which the surgeon controls robotic arms from a console
equipped with high-definition 3D visualization. The system offers articulated instruments with seven degrees of freedom,
allowing for fine motor control and tremor filtration. While the da Vinci system has enabled a wide range of complex
procedures, such as prostatectomy, hysterectomy, and cardiac valve repair, its operations are fully teleoperated; all
movements are guided by the surgeon, with no autonomy involved. Despite its precision and control, the lack of automation
in suturing limits consistency, increases surgeon fatigue, and contributes to longer procedure times. To facilitate research in
robotic autonomy, platforms like the Raven Il have emerged as open-source alternatives. Developed by researchers at the
University of Washington and UC Santa Cruz, the Raven Il is a modular, lightweight, and portable surgical robot explicitly
designed for academic use. It features two 7-DOF robotic arms, cable-driven actuation, and a programmable control interface
that allows researchers to develop and test autonomous control strategies. The system integrates easily with middleware such
as the Robot Operating System (ROS), enabling seamless communication between perception modules, control algorithms,
and actuators. Due to its open design and community support, the Raven 11 has become a preferred platform for experimenting
with machine learning and reinforcement learning approaches in surgical automation, particularly in suturing and knot-tying
tasks. Other notable platforms include the Versius by CMR Surgical and the Senhance Surgical System by Asensus Surgical.
While both offer ergonomic improvements and advanced features like eye-tracking and haptic feedback, they remain
predominantly teleoperated systems with minimal autonomy. However, their modular architecture and data-rich interfaces
hold promise for integration with Al-based autonomous modules in the future. The integration of autonomous capabilities
into these robotic platforms typically requires modular add-ons or retrofitting. These enhancements include real-time visual
processing units, deep learning-based decision layers, and task-specific actuators. With recent advancements in deep
reinforcement learning, researchers are now focusing on embedding autonomous decision-making within robotic
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architectures, enabling platforms like the Raven Il to perform tasks such as needle insertion, tissue manipulation, and
continuous suturing with minimal human intervention.

4. SYSTEM ARCHITECTURE AND DESIGN

The development of an autonomous suturing system requires a tightly integrated hardware-software architecture capable of
precise manipulation, real-time perception, and intelligent decision-making. The architecture must effectively fuse
mechanical components, sensory systems, and computational intelligence to operate in the complex and delicate environment
of surgical procedures. In this work, we present a modular and scalable robotic suturing architecture that integrates a custom
robotic platform, a multi-modal 3D visual feedback system, and a reinforcement learning-based control algorithm. The
suturing system is built on a customized dual-arm robotic platform that replicates the functional capabilities of clinical robotic
surgery systems like the da Vinci Surgical System, but with increased flexibility for research integration. Each robotic arm
is equipped with seven degrees of freedom (DOF) to provide high dexterity and workspace reach. The end-effectors are
designed to accommodate surgical tools such as needle drivers, forceps, and grippers, tailored for needle manipulation and
thread handling during suturing as demonstrated below in figure 2. These end-effectors incorporate passive compliance to
account for minor tissue movement and positioning inaccuracies, reducing the risk of tissue damage.

Cloud Network for
Hospital Database Communication
System in Cloud o)

Network z

Slave Processing Unit
Robot Control
Unit

Robotic Arm System

é

Patient Real
Time Data

Proposed

Network

{ Haptic Device |

Image
Provided

~ Master | End —Effector

Position

Figure 2. System Architecture Overview

Actuation is achieved using high-precision harmonic drive motors, and the arms are equipped with encoders that provide
continuous feedback on joint positions and velocities. To ensure safety and motion constraints, a real-time collision detection
and soft limit enforcement mechanism is implemented, allowing for smooth operation within the surgical field. The arms are
mounted on an adjustable base that can be positioned around a surgical phantom or cadaver model, replicating realistic
operating room conditions.

A. Hardware Integration: End-Effectors and Visual Sensing

A crucial component of the system is the integration of stereo vision and depth-sensing to enable accurate 3D feedback. Two
high-resolution RGB cameras, positioned at a fixed stereo baseline, capture the surgical field. The cameras are calibrated
using standard stereo vision calibration techniques, which allow for real-time depth mapping through disparity computation.
In addition, a structured light depth sensor is incorporated to enhance 3D reconstruction accuracy, particularly in regions
with low texture where stereo vision may struggle. The visual sensing system provides continuous feedback on the position
of the surgical needle, tissue surface, and suture entry and exit points. Marker less object detection is performed using a deep
convolutional neural network (CNN) trained to identify relevant surgical landmarks. The CNN is fine-tuned using annotated
datasets of surgical scenes and can detect needle orientation, suture location, and anatomical features critical for suturing. To
facilitate the needle-thread interaction, the end-effectors are equipped with force-torque sensors at the wrist. These sensors
provide haptic data that, while not directly fed into the reinforcement learning model, are used for safety thresholds and
failure detection, such as excessive tissue pulling or slippage during thread handling. The feedback is also logged for potential
use in future reinforcement learning reward shaping or hybrid learning models.

B. Software Stack and Control System
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The software architecture is designed using a layered modular framework, enabling decoupled development of perception,
planning, and control modules. At the base is the Robot Operating System (ROS) middleware, which handles communication
between sensors, actuators, and control algorithms. The ROS nodes are responsible for streaming visual data, synchronizing
motor commands, and logging telemetry for analysis and model training. The reinforcement learning control module is
implemented using PyTorch and integrated with the robotic platform through ROS interfaces. The environment for training
and testing the RL agent is simulated using Gazebo with physics parameters calibrated to match real-world surgical
interactions. The RL agent is trained using a Soft Actor-Critic (SAC) algorithm, chosen for its sample efficiency and stability
in continuous control tasks. The agent receives as input the 3D coordinates of the needle, tissue surface points, and target
suture points, processed from the visual feedback pipeline. The action output corresponds to Cartesian displacement vectors
and rotation commands for each arm, which are converted into joint-space commands via inverse kinematics solvers. The
high-level planning system oversees task segmentation and sequencing—such as driving the needle through the tissue,
rotating for reorientation, and performing the thread pull-through. These discrete sub-tasks are managed using a finite state
machine that interacts with the RL controller to generate fluid motion sequences. The use of a hybrid control strategy—
combining RL for fine manipulation and traditional task planning for sequencing—allows for robust and adaptive
performance. A supervisory control dashboard allows operators to visualize the robot's internal states, camera feeds, and
system diagnostics. This interface also provides override capabilities for safety intervention during physical experiments.

5. 3D VISUAL FEEDBACK MODULE

The success of autonomous suturing hinges significantly on the accuracy and robustness of visual perception, particularly in
three-dimensional space. Unlike traditional industrial environments, the surgical setting presents dynamic, deformable, and
partially occluded scenes that require real-time adaptation. The 3D visual feedback module developed in this research plays
a critical role in enabling the robot to perceive its environment with high spatial resolution and temporal coherence. It
supports both the localization of surgical instruments and anatomical landmarks as well as the real-time assessment of task
progress, such as needle trajectory and thread tension. The visual system comprises a pair of high-definition RGB cameras
configured in a stereo vision setup, mounted in fixed positions above the surgical field to provide continuous observation of
the operative workspace. These cameras are precisely calibrated using Zhang’s method for stereo camera calibration,
ensuring the computation of accurate depth maps through disparity estimation. The calibration process includes rectification
and synchronization to address lens distortions and temporal offsets between the stereo pair. To complement stereo vision, a
structured light-based depth sensor is integrated into the system to enhance depth perception, especially in low-texture
regions such as smooth tissue surfaces. This hybrid setup improves the robustness of 3D reconstruction by fusing disparity-
based and structured-light depth information. A Kalman filtering-based sensor fusion algorithm is employed to merge these
depth data sources, reducing noise and compensating for minor tracking loss due to occlusions or lighting inconsistencies.
The combined visual data is used to build a real-time 3D point cloud of the surgical environment. Using the Point Cloud
Library (PCL), the system generates and updates a dense 3D mesh that includes the tissue surface, instruments, and other
relevant entities such as suture entry and exit points. This mesh is continuously updated at approximately 30 frames per
second, providing the robot with near-real-time situational awareness. Surface normal and curvature information are
extracted from the mesh to aid in identifying suitable needle insertion trajectories and to maintain proper alignment with
tissue contours As illustrated in the above Figure 3). For tool tracking, a deep learning-based approach is employed to
localize and estimate the 6-DoF pose of the surgical instruments. A customized YOLOv8-based convolutional neural network
is trained on a dataset of annotated surgical images to detect keypoints on the needle, suture thread, and forceps.
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Figure 3. 3D Visual Feedback Pipeline
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These 2D detections are back-projected into 3D space using the depth map, allowing for accurate estimation of the instrument
poses relative to the tissue. The visual feedback system is also tasked with identifying the suture path by locating predefined
anatomical points or user-annotated targets on the tissue surface. Once these points are detected, the system computes an
optimal curved trajectory for the needle to pass through, taking into account tissue thickness, curvature, and required bite
depth. The trajectory is represented as a Bezier curve fitted through the entry and exit points, ensuring a smooth and
biologically appropriate suture path. During needle insertion, the visual system continuously monitors the needle tip and
shaft to ensure that the robot follows the precomputed trajectory. Deviation from the path triggers corrective motions through
the RL controller, which uses the visual error as part of its state vector. The system also evaluates suture quality post-
completion by checking for symmetric needle penetration, uniform bite size, and minimal thread slack. Given that the
surgical environment is prone to occlusions caused by the robot’s own tools, thread movement, or tissue deformation, the
visual feedback module incorporates predictive tracking mechanisms. A Kalman filter is used to extrapolate the pose of
temporarily occluded tools based on prior motion, while a neural re-identification module helps resume tracking once the
object reappears in the frame. Additionally, tissue deformation is modeled using a physics-informed mesh that updates
dynamically based on tool-tissue interaction forces. This adaptive 3D model ensures the robot has an up-to-date
representation of the tissue surface, even as it deforms due to manipulation. The entire 3D visual pipeline operates in real
time with latency constrained under 100 milliseconds, ensuring that the robot’s actions are informed by timely and accurate
sensory data. This responsiveness is critical for maintaining the precision and safety required during autonomous suturing.

6. RESULTS AND INTERPRETATIONS

The proposed autonomous robotic suturing system was evaluated in a controlled experimental setup using synthetic tissue
models. The performance metrics included needle placement accuracy, suture spacing uniformity, completion time, and
adaptability to tissue variations. The results indicate that the integration of reinforcement learning (RL) and 3D visual
feedback significantly enhances suturing precision compared to traditional teleoperated robotic suturing. The autonomous
system demonstrated consistent suture patterns, reduced human intervention, and improved efficiency in handling complex
suturing tasks.

Table 2. Accuracy Comparison of Suturing Methods

Suturing Method Needle Placement | Suture  Spacing | Successful Suture Completion
Accuracy (%) Uniformity (%) Rate (%0)

Autonomous RL-Based | 96.8 94.2 98.5

Teleoperated Robotic 90.5 88.7 95.2

Manual (Human | 87.3 85.9 91.4

Surgeon)

This data presents a comparative analysis of three suturing methods: autonomous RL-based suturing, teleoperated robotic
suturing, and manual suturing by human surgeons. The needle placement accuracy of the RL-based system is 96.8%, which
is higher than teleoperated robotic suturing (90.5%) and manual suturing (87.3%). Similarly, suture spacing uniformity,
which measures the evenness of stitches, is highest in the RL-based system (94.2%), indicating superior consistency. The
successful suture completion rate, reflecting the percentage of sutures executed correctly without errors, is 98.5% for the
autonomous system, surpassing teleoperated (95.2%) and manual (91.4%) methods (As shown in the above Table 2). These
results suggest that reinforcement learning improves precision, ensuring more reliable suturing performance compared to
human-controlled techniques.
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Figure 4. Pictorial View of Accuracy Comparison of Suturing Methods

One of the key findings was the system’s ability to adapt to varying tissue properties. Unlike pre-programmed motion
planning, which struggles with dynamic changes in soft tissue deformation, the RL-based approach allowed the robotic arm
to adjust its suturing strategy in real time. The 3D visual feedback provided depth perception and continuous monitoring of
tissue deformation, enabling the model to optimize needle insertion angles and force application. As a result, the robotic
system achieved a higher success rate in completing sutures without causing excessive tissue stress or misalignment. Another
notable observation was the reduction in variability across multiple trials. In traditional robotic-assisted suturing, human
operators exhibit slight inconsistencies in needle placement due to fatigue or variations in manual control (As illustrated in
the above Figure 4). In contrast, the RL-trained model executed suturing motions with remarkable consistency, ensuring
uniform suture spacing and proper wound closure. The standard deviation in needle positioning was significantly lower in
the autonomous system compared to teleoperated methods, indicating higher repeatability and reliability.

Table 3. Suturing Efficiency and Time Taken

Suturing Method Average Time  Per | Total Suturing Time | Reduction in Operation
Suture (seconds) (minutes) Time (%)

Autonomous RL-Based | 4.2 8.5 32.0

Teleoperated Robotic 5.8 11.2 15.2

Manual (Human | 6.3 125 0.0

Surgeon)

This data compares the efficiency of suturing methods by measuring the average time per suture and total suturing time. The
RL-based system takes 4.2 seconds per suture, significantly faster than teleoperated (5.8s) and manual suturing (6.3s).
Consequently, the total suturing time is reduced to 8.5 minutes for the RL-based system, compared to 11.2 minutes for
teleoperated and 12.5 minutes for manual suturing. The reduction in operation time, which impacts overall surgical duration,
is 32.0% for the autonomous system, compared to 15.2% for teleoperation (As shown in the above Table 3). The efficiency
gains are attributed to RL’s optimized movement planning, which reduces unnecessary repositioning and improves workflow
speed, ultimately lowering the strain on surgeons and enhancing patient outcomes.
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Figure 5. Pictorial View of Suturing Efficiency and Time Taken

The experimental trials also revealed improvements in suturing speed without compromising accuracy. On average, the
autonomous system completed suturing tasks faster than human-operated robotic systems. This efficiency can be attributed
to the RL model’s ability to refine its movements through iterative learning, minimizing unnecessary repositioning and
optimizing motion trajectories (As illustrated in the above Figure 5). The reduction in operation time is particularly beneficial
in surgical settings, where shorter procedure durations can lead to reduced anesthesia exposure and lower risk of
complications.

Table 4. Consistency and Variability in Suture Placement

Suturing Method Standard Deviation in | Standard Deviation in Needle | Consistency
Suture Spacing (mm) Depth (mm) Improvement (%)

Autonomous RL- | 0.21 0.34 41.3

Based

Teleoperated Robotic | 0.38 0.51 16.4

Manual (Human | 0.45 0.57 0.0

Surgeon)

This data examines the standard deviation in suture spacing and needle insertion depth, which reflect consistency in suturing
performance. The RL-based system demonstrates the lowest variation in suture spacing (0.21 mm) and needle depth (0.34
mm), highlighting its precise control. In contrast, teleoperated robotic suturing shows higher deviations (0.38 mm and 0.51
mm), while manual suturing exhibits the highest variability (0.45 mm and 0.57 mm). The consistency improvement, which
quantifies how much the RL-based system reduces variability compared to manual suturing, is 41.3%, significantly higher
than teleoperated suturing (16.4%) (As shown in the above Table 4). These results confirm that the RL-based approach
ensures greater uniformity in suture placement, reducing errors associated with human fatigue and inconsistencies.
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Figure 6. Pictorial View of Consistency and Variability in Suture Placement

Despite these promising results, certain challenges were identified. One of the primary limitations was real-time processing
speed. The RL model requires substantial computational power to analyze 3D visual feedback and execute precise motor
commands. In some instances, minor delays were observed in decision-making, which could impact the overall
responsiveness of the system (As illustrated in the above Figure 6). Future improvements in hardware acceleration, such as
the use of specialized Al chips or parallel processing units, may enhance the real-time performance of the system.

Table 5. Adaptability to Tissue Variability

Tissue Type Needle Misalignment | Suture Tension Inconsistency | Adaptability Score (O-
Rate (%) (%) 100)

Soft Synthetic Tissue | 2.8 3.5 94.6

Medium Elastic | 4.1 5.2 89.7

Tissue

Highly Elastic Tissue | 6.8 7.9 84.2

This data evaluates the adaptability of different suturing methods by analyzing needle misalignment rate, suture tension
inconsistency, and an overall adaptability score across different tissue types. The RL-based system performs best on soft
synthetic tissue, with a low misalignment rate (2.8%) and suture tension inconsistency (3.5%), leading to a high adaptability
score of 94.6. As tissue elasticity increases, the error rates rise slightly, with medium elastic tissue showing 4.1%
misalignment and 5.2% inconsistency (adaptability score: 89.7) and highly elastic tissue exhibiting the most errors (6.8%
and 7.9%) (adaptability score: 84.2) (As shown in the above Table 5). The results suggest that while RL-based suturing
excels in handling soft to medium tissues, further improvements are needed for highly elastic and complex biological tissues.
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Figure 7. Pictorial View of Adaptability to Tissue Variability

Another challenge involved the complexity of suturing irregular or highly elastic tissues. While the RL model performed
well on synthetic tissues with relatively uniform properties, more complex biological tissues, such as those with varying
elasticity or internal structural inconsistencies, posed difficulties. The model occasionally required additional iterations to
adjust for unexpected tissue deformations. Enhancing the system with more diverse training data, including real surgical
scenarios, could improve its ability to generalize across different tissue types. Safety considerations remain a critical aspect
of deploying autonomous robotic suturing in clinical settings. While the RL model demonstrated high accuracy, any
unexpected system failure could lead to improper suture placement or tissue damage. Implementing fail-safe mechanisms,
such as real-time monitoring by a human surgeon and emergency stop features, is essential for ensuring patient safety (As
illustrated in the above Figure 7). Additionally, incorporating haptic feedback and predictive modeling could further refine
the system’s ability to detect and correct errors before they impact the surgical outcome. Overall, the results of this study
highlight the feasibility of autonomous suturing using reinforcement learning and 3D visual feedback. The system
successfully demonstrated improvements in precision, consistency, and efficiency, laying the groundwork for future
advancements in Al-driven robotic surgery. With further refinements, such as enhanced real-time processing, broader
training datasets, and robust safety mechanisms, autonomous suturing could become a viable tool for assisting surgeons in
complex procedures. This research represents a significant step toward reducing surgical workload, improving patient
outcomes, and advancing the capabilities of autonomous robotic systems in healthcare.

7. CONCLUSION

The integration of deep reinforcement learning and 3D visual feedback presents a transformative step toward fully
autonomous robotic suturing in surgical environments. This study demonstrates that a robotic system trained using
reinforcement learning can achieve human-level proficiency in suturing tasks, while offering enhanced consistency, reduced
operation times, and superior adaptability to tissue variability. By leveraging high-resolution 3D visual feedback, the system
maintains real-time perception of the surgical field, enabling precise needle control and dynamic response to tissue
deformation. Experimental evaluations on synthetic tissue models validate the system's effectiveness, showing notable
improvements over traditional teleoperated and manual methods in terms of suture accuracy, uniformity, and completion
rate. The results affirm that autonomous suturing not only enhances surgical precision but also minimizes variability caused
by human fatigue or inconsistency. Furthermore, the RL-based system exhibits substantial gains in efficiency, reducing
average suturing time and improving workflow, which are critical in high-stakes clinical procedures. Its ability to maintain
consistent suture spacing and needle depth even across trials and tissue types reflects its robustness and potential for broader
clinical deployment. Despite these advancements, challenges remain. Real-time computation and visual processing demand
high-performance hardware, and adaptability to more complex biological tissues still require improvement. Safety and ethical
concerns also necessitate the inclusion of robust fail-safe mechanisms and human oversight, particularly in unpredictable
surgical scenarios. Overall, this research provides a strong foundation for the next generation of intelligent surgical systems.
Future work should aim to enhance the real-time responsiveness of the system through hardware acceleration, expand the
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model’s training on real surgical data, and explore multimodal integration with haptic feedback for even finer control. As
the field progresses, autonomous robotic suturing has the potential not only to assist surgeons in routine tasks but also to
democratize access to complex surgical procedures in resource-limited or remote settings. This work marks a significant
milestone in the journey toward intelligent, safe, and fully autonomous robaotic surgery.
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