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ABSTRACT 

With the rapid expansion of internet usage and continuous technological progress, mobile network operators are compelled 

to enhance their investments in network infrastructure. Emerging technologies such as Cloud Radio Access Networks (C-

RAN) and Software Defined Networking (SDN) are increasingly viewed as viable solutions to lower operational costs and 

improve scalability in fifth-generation (5G) mobile networks. A typical base station comprises two critical components: the 

baseband unit (BBU) and the remote radio head (RRH). Variations in data traffic can lead to network inefficiencies, including 

issues like call drops and call blocking. As traffic patterns fluctuate, system performance may degrade if not properly 

managed. To address this, self-optimizing network strategies are essential for redistributing the load from heavily burdened 

eNodeBs, which experience high call blocking rates, to underutilized ones with spare capacity. The primary goal of these 

self-organizing networks is to balance the traffic load and minimize call blocking incidents. In this work, an improved version 

of the Cat Swarm Optimization (CSO) algorithm—referred to as Enhanced Cat Swarm Optimization (ECSO)—is introduced. 

Managed by the host controller, ECSO identifies the optimal BBU-RRH pairings by assessing quality-of-service (QoS) 

metrics from various configurations. The optimization process evaluates each user connection by analyzing QoS data for 

every potential BBU-RRH combination. Simulation outcomes indicate that ECSO outperforms existing Particle Swarm 

Optimization (PSO) and standard CSO methods by reducing blocking probability by 10%, increasing throughput by 8%, and 

decreasing response time by 7%. 

 

 

1. INTRODUCTION 

Mobile network operators are facing a significant surge in data traffic due to the growing number of mobile device users and 

the increasing demand for high-speed data services, particularly in multimedia applications. To accommodate this rising 

demand, wireless access technologies have evolved from third-generation (3G) to fifth-generation (5G) networks, providing 

widespread service access for a variety of mobile devices. Two major strategies shaping next-generation wireless networks 

are the deployment of small cells and the exploration of high-frequency radio bands. As smart devices proliferate and diverse 

air interface standards emerge, mobile internet traffic continues to rise. Consequently, operators are under pressure to increase 

both capital investments and operational expenditures to meet user expectations. However, the average revenue per user 

often falls short of covering these rising infrastructure costs. Addressing the challenges posed by increased traffic requires 

highly scalable connectivity solutions, especially for the expanding landscape of IoT-based mobile applications. Performance 

enhancements can be achieved through advanced technologies such as multiple-input multiple-output (MIMO) systems, 

cloud radio access networks (C-RAN) [1], and millimeter-wave communication, all of which offer greater scalability, 

flexibility, and efficiency. Another approach involves breaking down large cells into smaller units and reusing frequencies 

more intensively, which, although improving coverage, can lead to higher interference levels and increased network 

management and operational costs. Fifth-generation wireless systems are designed to support an ever-growing number of 

mobile devices with seamless service access. To achieve the vision of 5G, two critical technologies have been identified 
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: ultra-dense small cell deployment and distributed computing. Small cells, in particular, enhance the received signal quality 

for users by reducing the transmission distance, thereby improving bits-per-second (BPS) performance [2]. 

The 5G network architecture integrates two key technologies to address modern communication challenges: (i) ultra-dense 

small cell deployment, which minimizes the distance between users and their respective base stations, thereby improving 

signal reception, and (ii) cloud computing, which helps mitigate inter-cell interference often caused by dense cell layouts. 

By utilizing Cloud Radio Access Networks (Cloud-RAN), base station functionalities are virtualized, allowing for dynamic 

load distribution and enhancing both energy and spectrum efficiency. This approach effectively addresses critical concerns 

such as resource allocation, security, system monitoring, and load balancing. Among these, load balancing plays a crucial 

role as it directly influences computational resource utilization and fairness in service delivery. Improved load distribution 

contributes to enhanced Quality of Service (QoS) by optimizing resource management and minimizing response times. Since 

users submit tasks with varying resource demands, cloud data centers need adaptive strategies to handle fluctuating 

workloads and prevent QoS degradation [3-5]. Load balancing techniques often employ virtual machine (VM) scheduling, 

where VMs are allocated to different hosts to ensure an even workload. In metaheuristic algorithms, a centralized controller 

manages operations like mutation, crossover, and swapping processes to optimize VM placement, aiming for efficient host 

assignment and reduced system load. 

Cloud-RAN (Radio Access Network) represents a modern approach to base station functionality by leveraging cloud 

computing to virtualize key operations. Instead of processing baseband and upper-layer functions locally at individual 

wireless access points, these tasks are handled by centralized, general-purpose processors within a cloud infrastructure. In 

this setup, the access points are simplified to primarily perform radio functions, eliminating the need for traditional, fully-

equipped base station components. This results in an alternative network architecture where low-cost units, known as Remote 

Radio Heads (RRHs), manage wireless access and are centrally controlled by a cloud-based management system, often 

referred to as the control unit (CU). At its core, Cloud-RAN is considered a key element for implementing network 

performance virtualization (NPV) techniques. Through high-capacity backhaul links connecting base stations and centralized 

processing units, Cloud-RAN facilitates joint encoding and decoding across multiple cells, improving overall network 

efficiency. As 5G networks increasingly rely on smaller cell sizes to support higher data rates, Cloud-RAN plays a critical 

role in addressing inter-cell interference and ensuring efficient system performance [6-8]. Additionally, Coordinated Multi-

Point (CoMP) transmission, commonly known as a multi-input multi-output (MIMO) system, further enhances network 

capabilities by improving coverage and throughput. By optimizing load balancing within Cloud-RAN architectures, service 

providers can significantly lower both capital and operational expenditures in multicast network environments. In 5G Cloud-

RAN systems, techniques such as statistical multiplexing and dynamic load balancing are key to maximizing efficiency and 

performance. This study introduces an improved cat swarm optimization algorithm specifically designed to enhance load 

balancing and reduce call blocking in Cloud-RAN environments [9]. 

2. LITERATURE SURVEY 

Researchers [10-12] have developed an architectural framework for 5G Cloud-RAN that integrates computational 

intelligence with software-defined networking (SDN). Within this system, dynamic mapping between Baseband Units 

(BBUs) and Remote Radio Heads (RRHs) was optimized through load balancing techniques based on both objective and 

subjective Quality of Experience (QoE) predictions. This adaptive mapping was crucial for supporting applications like ultra-

high-definition (UHD) video streaming. The intelligent SDN-based system forecasted the users' Mean Opinion Score (MOS) 

during UHD video transmissions over the Cloud-RAN infrastructure. Load balancing policies were implemented within the 

SDN framework to enhance the QoE for video streaming services, while the BBU pool was organized through SDN control 

components. Simulation outcomes demonstrated significant improvements, with performance gains of 130% in scenarios 

involving new BBU activation, and 60% without additional activation. 

The authors in [13] introduced an inter-BBU load balancing mechanism that relied on virtual base station (VB) live migration. 

Their approach considered two BBUs within a single pool, enabling timely resource allocation with predicted completion 

times and migrations driven by utilization rates. This strategy effectively addressed load imbalances by increasing BBU 

utilization through efficient resource distribution and load balancing. The use of live migration, combined with cloud 

computing, minimized both server downtime and migration delays. 

In another study [14], researchers proposed a Heterogeneous Radio Access Network (H-RAN) architecture that incorporated 

newly designed edge nodes and local processing units within the RRHs. These enhancements led to greater network capacity 

and reduced latency. In the H-RAN model, centralized BBU control and processing tasks were handled using multiple VBs 

situated in the local processing units. A dynamic base station switching algorithm was introduced to optimize load 

distribution and power consumption. Performance evaluations between Cloud-RAN and H-RAN, under identical traffic 

conditions, demonstrated that the addition of local processing units and an intermediate edge layer at the RRH reduced both 

call blocking probability and waiting times in comparison to conventional Cloud-RAN systems. 

The authors [15] explored the use of swarm intelligence algorithms to improve load balancing and minimize call blocking 

within BBU networks. Their implementation of the Particle Swarm Optimization (PSO) algorithm began with a group of 
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candidate solutions, each representing a particle with random speed and position. Communication among these particles 

helped identify both local and global optima for balancing loads across different BBUs and RRHs. The simulation results 

showed that this approach effectively minimized blocked calls and achieved more uniform load distribution, thereby 

improving overall Quality of Service (QoS). 

Additionally, an edge computing framework [16] leveraging cloud computing principles was proposed to reduce latency in 

mobile networks. This Mobile Edge Computing (MEC) solution aimed to offload computational tasks from resource-limited 

edge devices to edge servers within the network. A key challenge addressed was the design of an offloading strategy for 

multi-user, resource-constrained environments. In industrial applications, task migration from edge devices was optimized 

using PSO algorithms to allocate workloads to edge servers with higher energy efficiency and reduced delays. The multi-

objective optimization strategy focused on minimizing energy consumption, task execution costs, and response times. Each 

particle in the PSO algorithm evaluated the total cost associated with task offloading to different MEC servers. Simulations 

demonstrated that the proposed PSO-based strategy outperformed both genetic algorithms and simulated annealing 

techniques, achieving lower server delay, better energy consumption balance, and more efficient resource allocation. 

3. SYSTEM ARCHITECTURE 

The primary goal of this study is to address the issue of load imbalance and minimize call blocking within the network. To 

achieve this, an improved Cat Swarm Optimization (CSO) algorithm is introduced to enhance load balancing efficiency. The 

system architecture of the proposed Cloud-RAN model is depicted in Figure 1. 

In the Cloud-RAN environment, cloud computing plays a crucial role in optimizing the performance of the 5G network 

infrastructure. The system architecture is composed of virtual Baseband Units (BBUs), physical BBUs, cloud controllers, 

Remote Radio Heads (RRHs), and general-purpose processors (GPPs). Digital IQ data is transmitted to RRHs via a 

standardized public radio interface. The BBUs, which are pooled together, are interconnected and managed by a centralized 

host controller. This host manager is responsible for monitoring the load distribution across the BBUs and selecting the 

optimal BBU-RRH pairing to ensure efficient resource utilization. 

Each BBU manages multiple sectors simultaneously, with each sector comprising several RRHs. The BBUs’ resources are 

fully utilized to serve the RRHs assigned within their sectors. An RRH is dedicated to one sector at a time, and the load on 

a BBU is determined by the number of active users it supports. The system imposes a hard capacity limit for each sector, 

restricting the number of active users based on the underlying hardware or software capabilities. 

The BBU pool functions [19] as a centralized data processing hub, hosting shared and virtualized units that allocate resources 

dynamically according to fluctuating user demand. These virtual BBUs are interconnected and can support numerous RRHs 

simultaneously. Communication between BBUs is facilitated through the X2 interface, while connectivity with the core 

mobile network is established via the S1 interface, also known as the backhaul link. Real-time virtualization is employed on 

high-performance processors within the BBUs, and these BBUs operate on virtual machines hosted in a cloud data center, 

utilizing physical computing cores to deliver scalable and efficient network services [20]. 

 

Figure 1: Cloud Radio Access Network System Architecture 
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In 5G networks, efficient load balancing is essential for delivering real-time, carrier-grade services within a cloud-RAN 

environment. To address this, an improved Cat Swarm Optimization (CSO) algorithm has been introduced. The eNodeB 

control center is responsible for managing all Layer-2 (L2) control functions and maintains data for a significant number of 

users. Various applications operate within the L2 layer, all managed by a centralized control unit. Based on user requirements, 

appropriate frequency bands are assigned. These requirements are represented by the user equipment (UE) context [18]. 

Instead of dedicating a separate physical machine to each cell in the BBU pool of cloud-RAN, processing tasks are handled 

by a group of virtual machines hosted on centralized servers. Each virtual machine is allocated its own local cache, which 

stores the UE context, ensuring quicker data access and reducing latency. Effective load balancing hinges on properly 

assigning each UE context to the appropriate virtual machine. This ensures minimized processing delays and faster response 

times. Several sophisticated and intelligent load-balancing algorithms have been developed for distributed systems and 

network infrastructures. 

The main focus of this study is to analyze and understand the nature of actual network traffic loads in terms of UE contexts 

to optimize cloud-RAN deployment in 5G networks. To tackle the challenges in load balancing, an Advanced Cat Swarm 

Optimization (ACSO) algorithm has been applied, as illustrated in Algorithm 1. 

Algorithm 1: Load Balancing and Traffic Allocation for RRHs in Cloud-RAN 

Step 1: Start the process. 

Step 2: For each Remote Radio Head (RRH), calculate its total capacity, denoted by C. 

Step 3: Determine the total traffic load I generated in each time period (e.g., per year). 

Step 4: Select an RRH, referred to as RRHj, for evaluation. 

Step 5: Compare the capacity Cj of RRHj with its traffic load Ij: 

• If Cj ≥ Ij (the RRH is underloaded or balanced), 

→ Proceed to Step 6. 

• Else, 

→ Reallocate excess users to other RRHs with available capacity, then return to Step 4. 

Step 6: Assign the traffic load to RRHj. 

Step 7: Forward the traffic for processing at the Baseband Unit (BBU). 

Step 8: End the process. 

1. Advanced Meta Heuristic Algorithm 

 In the proposed algorithm, the two primary behaviors observed in cats are tracking and seeking are used as the foundation 

for two distinct sub-models. By combining these two behavioral modes in a user-defined ratio, the Advanced Cat Swarm 

Optimization (ACSO) algorithm achieves improved efficiency. The first step in Advanced involves determining the number 

of cats to be used in the optimization process. Each cat functions as a potential solution in the problem-solving mechanism 

of the algorithm. 

Every cat's position is defined in an M-dimensional space, where each dimension is assigned its own velocity and fitness 

value. These parameters help determine the cat’s state, whether it should enter the seeking mode or the tracing mode, based 

on its evaluation of the fitness function. The process continues through iterative updates, gradually moving toward identifying 

the optimal position held by one of the cats. 

ACSO operates as a continuous and single-objective optimization algorithm inspired by the contrasting behaviors of cats 

when they are resting and when they are actively pursuing a target. While typically stationary and alert, cats react swiftly 

when a target appears, shifting to an active pursuit. This concept is mirrored in the two modes of ACSO. 

 Initialization:  

• Define the population size of cats, denoted by N. Each cat represents a candidate solution in the search space. 

• Each cat is initialized with: 

o Position Vector: 

Xᵢ = (xᵢ₁, xᵢ₂, …, xᵢₘ), 

where i = 1, 2, ..., N, and M is the dimensionality of the problem (number of BBUs or RRHs). 

Velocity Vector: 

Vᵢ = (vᵢ₁, vᵢ₂, …, vᵢₘ) 
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• Mode Flags are assigned for each cat to determine whether it operates in Seeking Mode (SM) or Tracking Mode 

(TM). 

• Set parameters: 

o SMP (Seeking Memory Pool) 

o SRD (Seeking Range of the Selected Dimension) 

o CDC (Counts of Dimension to Change) 

o MR (Mixture Ratio) determines the proportion of cats in SM and TM. 

Fitness Function:  

The fitness function evaluates the load balancing efficiency across all BBUs. It considers both load distribution and resource 

utilization. One common fitness function for load balancing can be: 

Fitness Function Equation:  

f(Xᵢ) = 1 / (1 + (α × LB + β × CBR)) 

Where: 

• LB: Load Balancing index, calculated as the standard deviation of the loads across all BBUs. LB = √( (1 / M) Σ (Lⱼ 

- 𝐿̄)² ) 

o Lⱼ: Load on BBU j 

o 𝐿̄: Average load across all BBUs 

• CBR: Call Blocking Rate, defined as: CBR = (Number of Blocked Calls) / (Total Number of Call Requests) 

• α, β: Weight coefficients to balance the importance of LB and CBR. 

The goal is to maximize the fitness, which minimizes both LB and CBR. 

Seeking Mode (SM):  

In Seeking Mode, cats search locally around their current positions to find a better solution. Steps are: 

Step 1: Generate SMP copies of the current position. 

Step 2: For each copy: 

• Randomly select CDC dimensions. 

• Modify these dimensions by a random value within the range defined by SRD. xᵢⱼ' = xᵢⱼ × (1 + r × SRD)  

o r is a random number in the range [-1, 1]. 

Step 3: Evaluate the fitness of each candidate position. 

Step 4: Select the best candidate position and update the cat’s position accordingly. 

Tracking Mode (TM):  

In Tracking Mode, cats move toward the best global position found so far. 

Velocity Update Equation              

                  vᵢⱼ(t+1) = vᵢⱼ(t) + r₁ × c × (X_bestⱼ - xᵢⱼ(t)) 

Where: 

• vᵢⱼ(t): Current velocity of cat i in dimension j. 

• r₁: Random number in the range [0, 1]. 

• c: Acceleration coefficient. 

• X_bestⱼ: Best position found in dimension j. 

Position Update Equation                                      xᵢⱼ(t+1) = xᵢⱼ(t) + vᵢⱼ(t+1) 

This guides the cat towards the global best solution, promoting global exploration. 

Termination:  

• Repeat the SM and TM updates for a predefined number of iterations or until convergence criteria are met. 
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• The best solution obtained from all cats is selected as the optimal load balancing configuration in the Cloud-RAN 

system. 

4. RESULTS EVALUATION  

This section presents the simulation outcomes of the proposed approach, which were generated and analyzed using MATLAB 

R2020a [17]. In the model, each BBU is responsible for managing three sectors, with the number of active users in each cell 

varying between 40 and 70. Additionally, the maximum capacity for each sector is set at 150 users. A traffic shaping 

mechanism is implemented to restrict traffic flow once it surpasses the predefined threshold. The evaluation focuses on a 

single hexagonal cell comprising 10 RRHs. The idle power consumption of the General Purpose Processor (GPP) is set at 

120 Watts, while its peak power consumption is 215 Watts. Within the cell, a total of 75 users are considered for the 

simulation. 

Blocking Probability:  

Blocking probability is an important metric used to evaluate the efficiency of resource allocation in a network. It indicates 

the proportion of service requests that are denied access due to insufficient available resources. It is calculated by dividing 

the number of blocked service requests by the total number of service requests received. The formula is expressed as: 

Blocking Probability = Sbs / Srs 

Where: 

Sbs = Number of blocked service requests Srs = Total number of service requests received 

Response Time and Throughput:  

Response time, measured in milliseconds (ms), refers to the time difference between when a user makes a service request 

and when the system responds to that request. 

Throughput is the amount of data successfully transmitted over a network within a specific time period. It is measured in 

Megabits per second (Mbps) and is calculated using the following formula: 

Throughput = Transmitted data (bytes) / Time taken for transmission 

The Advanced Cat Swarm Optimization (ACSO) algorithm has been assessed to determine the global optimal cat position 

by adjusting cat velocity across different scenarios. The evaluation covers blocking probabilities between 0.05 and 0.5. 

Additionally, traffic load levels vary from 0.1 to 0.9, during which a noticeable decrease in blocking probability is observed, 

as presented in Table 1. The ACSO algorithm demonstrates improved response times when tested under traffic load 

intensities ranging from 0.1 to 0.95, detailed in Table 2. Furthermore, the throughput performance increases significantly, 

rising from 900 Mbps to 1700 Mbps, as the traffic load intensity extends from 0.1 up to 1.2, as shown in Table 3. 

Table 1. Relationship between Blocking Probability and Traffic Load. 

Blocking Probability Traffic Load (PSO) Traffic Load (CSO) Traffic Load (ACSO) 

0.05 0.22 0.15 0.10 

0.10 0.53 0.39 0.20 

0.15 0.57 0.46 0.25 

0.20 0.61 0.47 0.30 

0.25 0.66 0.53 0.42 

0.30 0.71 0.55 0.45 

0.35 0.78 0.72 0.67 

0.40 0.85 0.77 0.70 

0.45 0.89 0.80 0.76 

0.50 1.10 1.00 0.90 
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Table 2. Traffic load corresponding to response time. 

Response Time (s) Traffic Load (PSO) Traffic Load (CSO) Traffic Load (ACSO) 

0.098 0.45 0.38 0.10 

0.099 0.54 0.41 0.15 

0.100 0.66 0.53 0.23 

0.101 0.72 0.60 0.29 

0.102 0.77 0.68 0.36 

0.103 0.83 0.75 0.41 

0.104 0.89 0.81 0.59 

0.105 0.95 0.90 0.63 

0.106 1.03 0.99 0.78 

0.107 1.10 1.05 0.81 

0.108 1.15 1.08 0.95 

 

Table 4. Traffic load corresponding to throughput. 

Throughput (Mbps) Traffic Load (PSO) Traffic Load (CSO) Traffic Load (ACSO) 

900 0.05 0.08 0.10 

1000 0.12 0.15 0.20 

1100 0.23 0.39 0.40 

1200 0.59 0.65 0.70 

1300 0.64 0.73 0.80 

1400 0.78 0.81 0.95 

1500 0.81 0.94 0.97 

1600 0.90 0.99 1.08 

1700 1.00 1.10 1.20 

 

The proposed approach implements the ACSO optimization algorithm, in contrast to the existing techniques that utilize CSO 

and PSO algorithms. A comparative evaluation of the proposed ACSO method with the existing methods is illustrated in 

Table 1, highlighting the relationship between blocking probability and traffic load. 

Table 1 illustrates a comparison of blocking probability between the proposed approach and the existing techniques, namely 

CSO and PSO. The blocking probability in the experimental analysis ranges from 0.05 to 0.5. As the blocking probability 

increases, the corresponding traffic load also rises. At a blocking probability of 0.05, the traffic load for the proposed method 

is observed to be 0.1, whereas for the existing PSO and CSO methods, the traffic loads are 0.22 and 0.154, respectively. 

When the blocking probability is 0.15, the proposed method achieves a traffic load of 0.25, while the PSO and CSO methods 
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reach traffic loads of 0.57 and 0.46. Additionally, when the blocking probability is 0.2, the proposed method demonstrates a 

traffic load of 0.3, compared to 0.47 and 0.61 for CSO and PSO, respectively. At a blocking probability of 0.3, the traffic 

loads are 0.45 for the proposed approach, and 0.55 and 0.71 for CSO and PSO, respectively. These results clearly show that 

the proposed method delivers superior performance when compared to the existing techniques. Furthermore, Table 2 presents 

a comparative evaluation of response time relative to traffic load for both the proposed and existing methods. 

In addition, a comparative study of throughput versus traffic load for both the proposed and existing methods is illustrated 

in Table 3. This comparison highlights the performance differences in terms of throughput between the proposed approach 

and the conventional methods. The throughput is measured for the entire network and is calculated at the BBU pool. During 

the experimental analysis, throughput values range from 900 Mbps to 1700 Mbps. When the throughput is 900 Mbps, the 

corresponding traffic load values are 0.1 for the proposed method, 0.05 for PSO, and 0.08 for CSO. At a traffic load of 0.4 

in the proposed method, the existing methods record traffic loads of 0.23 (PSO) and 0.39 (CSO), with the throughput 

measured at 1100 Mbps. For a throughput of 1300 Mbps, the traffic load is 0.8 for the proposed approach, while PSO and 

CSO yield 0.64 and 0.73, respectively. At a traffic load of 0.7 in the proposed method, PSO and CSO report higher traffic 

loads of 0.81 and 0.94, respectively, when the throughput reaches 1500 Mbps. Finally, at 1700 Mbps throughput, the 

proposed method achieves a traffic load of 1.2, whereas PSO and CSO reach 1 and 1.1, respectively. These results 

demonstrate that the proposed method provides significantly improved throughput compared to the existing techniques. 

5. CONCLUSION 

The proposed approach effectively addresses the issue of blocked calls and enhances load balancing by utilizing an Advanced 

Cat Swarm Optimization (ACSO) algorithm. This enhanced optimization technique focuses on maximizing Quality of 

Service (QoS) by reducing the call blocking probability. The current BBU-RRH (Baseband Unit–Remote Radio Head) 

architecture is first evaluated to assess QoS metrics, which are then leveraged in the optimization process to select optimal 

BBU-RRH configurations tailored to individual user requirements. The advanced CSO algorithm implemented in this study 

successfully minimizes call blocking while maximizing QoS. Experimental results demonstrate the superiority of the 

proposed method when compared to traditional Particle Swarm Optimization (PSO) and standard CSO algorithms. 

Specifically, the Advanced CSO (ACSO) reduces call blocking probability by 10% in comparison to PSO and CSO. 

Additionally, the throughput is improved by 8%, ranging from 900 Mbps to 1700 Mbps, outperforming existing approaches. 

The proposed algorithm also achieves a 7% reduction in response time under increasing traffic load conditions when 

compared to conventional methods. Future work will focus on further optimizing load balancing in BBU-RRH combinations 

by incorporating advanced cooperative techniques. 
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