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ABSTRACT 

The field of image-based steganography has been widely used, because of the advancement of steganography methods and 

their applications. In today's world, image-based exploits are used by the steganography approaches in the publicly available 

dataset. This dataset is used for data modeling to tune the model for high accuracy, robustness, and other best-fit parameters. 

So, this paper aims to introduce a novel way of approaching hybrid-based steganalysis, including two algorithm blocks. The 

first block consists of JPEG-based pre-processing as an initial-level stego cross-verification match using multi-domain 

steganalysis such as statistical, structural, and frequency. The second block consists of a custom-based fusion feature 

extraction and meta-feature analysis stage based on the statistical measure evaluation with the machine-level models and 

their stacked ensemble classification, which improved the analysis of the stego and cover images. As a result, our approach 

would be lightweight for integration modules for different areas like the initial level for data security to minimize individual 

and organizational hardware-level stego JPEG-image-based exploits with exception flow management, our model will 

enhance computational efficiency and higher performance scores of steganalysis. 

 

Keywords: multi-domain steganalysis, fusion feature extraction, hybrid optimization search-classifier, optimal stacking 

ensemble model. 

1. INTRODUCTION 

Today’s world widely uses the internet to communicate from one point to another point for faster transmission of information. 

By using an application, internet communication is established between the sender, receiver, server, and client. That 

application supports different types of multimedia like text messages, audio, images, videos, etc. As part of the security of 

data transmission over the network, nodes must be included to avoid data leaks and public visibility. The researcher 

developed different methods like watermarking, cryptography, and steganography, which are related and have different 

purposes of usage in real-time communication. 

Watermarking is the process of embedding external information like textual, metadata, or logos into the multimedia of 

images, videos, audio, or documents. Here, the main purpose of watermarking is to protect the user's uniqueness by offering 

the ownership of assert, intellectual property rights, or tracking their media over the medium. The watermarking can be 

applied visibly or invisibly, which does not affect the visual or auditory experience of the main image. This can be used for 

content authenticity. Cryptography is used for securing communication over the network using the different mechanisms 

types. It involves techniques like encryption-decryption, digital signatures, and hashing. Here the data will be transformed 

from normal data to an unrecognizable form with a key. This can provide the privacy of users, data integrity, and authenticity. 

Whereas, steganography is the art and science of hiding the secret information within a multimedia such as images, audio, 

or video file. The main goal of steganography is to hide data in media, and in case the transmission is leaked by the attacker, 

secret data will be hidden and unknown to them. Unlike watermarking, which may be visible or invisible based on the user 

choice, it can easily be detectable as compared to steganography, and also data capacity is lower. On the other hand, compared 

to cryptography, it focuses on making data unreadable to the attacker and unauthorized users over the communication 

channel, whereas steganography is lightweight and focuses more on the attacker's ability to detect the hidden data pattern 

techniques used.  

In the modern world, looking forward to improving the data modeling using various datasets available publicly. This can be 

the chance for the hackers to take over individual and small capital organizations over their control by using the advantages  
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of steganography techniques to inject malicious secret code into the dataset images. Because these tampered datasets are 

undergoing different stages and deployed on the user type of local system level and production server to fine-tune the 

automation model causes huge damage and losses. Therefore, in this paper, we propose an approach of a two-stage blocks 

integrated algorithm that combines cross-verification of stego and cover jpeg images using multi-domain correlation and 

improvised stacked ensemble classification with fusion feature extraction for improved steganalysis. The total number of 

important feature selections is designed to reduce the computation and optimize resource management for the stack model. 

We also constructed the meta-model learner component to reduce the dimensionality and prevent overfitting in the model. 

The main contributions of our proposed approach are as follows below: 

1) The initial block approach is designed based on the multi-domain of steganalysis to cross-verification for preprocessing 

the jpeg image into simulated folders as proposed. 

2) The fusion feature extraction is implemented for the initial block’s output to train-test several base classifiers and stack 

ensembles to further compare their accuracy. 

3) We constructed a meta-model using four components that can be used for the important feature selection to prevent 

excess training and improve the overall model stability. 

• The rest of this paper is organized as follows. In Section Ⅱ, the related research works of steganography and 

steganalysis. In Section Ⅲ, The proposed approach of steganalysis two-stage block is described. In section Ⅳ, 

implementation of the proposed approaches algorithm. In Section Ⅴ, experimental analysis and their results. In 

section Ⅵ, we give details about the conclusion and future work of this research paper directions. 

2. RELATED WORKS 

This section provides an overview of steganography and steganalysis works done by various research authors in information 

security. 

The origin of the steganography process existed in an ancient place called the land of the Greeks, as evidenced by Herodotus' 

stories. In one of the cases, Histiaeus tattooed a message to Aristagoras on the shaved head of a slave and waited for the hair 

to grow back before sending him to deliver it. Demaratus warned Greece of an impending assault by writing on the wooden 

back of a wax tablet before adding the beeswax surface. Aeneas Tactician recommended utilizing women's jewelry to conceal 

secret information and pigeons to transmit secret communications. 

Johannes Trithemius used the term “steganography” for the first time in early writing in 1499 when he wrote Steganographia, 

a tract on cryptography and steganography that was passed off as a book about magic [18]. Additionally, Trithemius created 

the "Ave-Maria-Cipher" in his work Polygraphiae, which conceals information in Latin acclaim for God. Even though 

Trithemius was reluctant to publish his work at first, it was finally done so after he died in 1606. Then, the growing 

steganography in many methods for embedding messages in other media has been developed over time. Microdots, music 

ciphers, invisible ink, and Morse code on yarn worn by a courier are a few examples. Women spies knitted uneven stitches 

or purposefully left holes in the cloth to transmit signals throughout both World Wars. The use of personal computers for 

traditional steganography applications started around 1985. 

The information security (InfoSec) [5] field is to protect analog and digital information, not unclassified data. The InfoSec 

includes steganography, cryptography, mobile computing, social media, steganalysis, organization’s infrastructure, 

networks, etc. Here, we are going to understand some of the recent steganography approaches. According to Touhid Bhuiyan 

et al. [3], image steganography of the spatial domain is based on the LSB (Least Significant Bit) of the RGB (Red, Green, 

and Blue) component using XOR (Exclusively-OR) between the 7th and 8th bits. Their approach achieved a higher Peak 

Signal-to-Noise Ratio (PSNR) and lower MSE (Mean Squared Error), indicating a better subtlety. However, it was limited 

to payload capacity compared to other methods mentioned and also vulnerable to advanced statistical attacks. 

In paper [6], they have overcome the high capacity using stochastic computing in image steganography. They proposed a 

technique that cover-image pixels and converts them to stochastic streams that can enable the embedding of multiple secret 

images, and achieve payloads up to 40 bpp. The proposed techniques are based on the algorithm of LSFR (Linear Feedback 

Shift Register), which utilizes stochastic computing and a probabilistic approach to hide multiple secret messages. However, 

the overhead from seed image transmission and lower PSNR range from 30-71dB at high payloads. For the secure JPEG 

(Joint Photographic Experts Group) steganography [16], proposed LSB+ matching and multi-banding algorithmic approach. 

This approach modifies the JPEG image's DCT (Discrete Cosine Transform) block coefficients. Those DCT coefficients 

were further divided into four frequency bands and applied the selection strategy coefficient to make the secret message 

hidden, which leads to less detectability. At embedding, efficiency is decreased, which leads to a loss in statistical 

preservation. 

In paper [19], discusses the wavelet transform domain in steganography for hiding the audio signal of any format into an 

image. Initially, audio is encrypted using XOR operation and then embedded with approximation coefficients in the DWT 
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(Discrete Wavelet Transform) of chrominance channels. Finally, at the metric evaluation, the PSNR was 41.6 dB, and the 

SNR (Signal-to-Noise Ratio) was 38.3 dB. Its limitations include complex implementation with multiple transforms and 

fixed payload with a size of 512 * 512. Likewise, various classifications for stego images of JPEG-based to the own 

steganographic methods like OutGuess, Jphide, Steghide, Jsteg, and F5. In [14], a novel algorithm was proposed for 

multiclass detection using current steganographic methods for JPEG-based images. Their algorithm extracts the 109-

dimensional features and trains a SVM (Support Vector Machine) to classify all kinds of stego images and standard JPEG 

images based on the re-steganography with high precision. The dimensional handling of huge datasets leads to model 

complications, and the process is too fussy. 

For the efficient processing cost and robustness of secure steganography, a new perfect hashing approach was proposed by 

Imran Sarwar Bajwa et al. [2]. The algorithm was applied to the grayscale image of JPEG and GIF (Graphics Interchange 

Format) due to their small size. The algorithm process includes a random number for the hash key and an implemented hash 

function named ‘gpref,’ which withstands the hash collusion. However, it is slower for large-size images and byte-level 

secret message embedding. To overcome the byte level to block the pixel. This paper [17] introduced the region selection 

rule for hiding the secret message. The region considers three factors: HD (Horizontal Difference), VD (Vertical Difference), 

and RZ (Region Size). This approach can hide the secret message with an approximation of 45% as compared to other 

methods. However, the identification of the selection block utilizes more computation. 

Finally, in the new era of steganography, which utilizes automation models like machine learning, deep learning, etc. Ru 

Zhang et al. propose [11] a novel CNN (Convolutional Neural Network) architecture named ISGAN (Invisible 

Steganography Via Generative Adversarial Network) to hide a secret image in the grayscale image into the color cover image 

from the sender side and revert to the receiver side without any changes. The model performance tests on the LFW, PASCAL-

VOC12, and ImageNet datasets. In the process of steganography, the image will lose its pixel values, leading to a loss of 

image quality information. 

We discussed some of the recent research on steganography approaches for undetectable secret messages. The steganography 

methods are also used for various attacks like image exploits, reverse engineering, etc. by hackers or cyber-attackers [15]. 

To defend and understand the pattern, steganalysis comes into the picture. In [13], they propose a method for improving the 

performance of image steganalysis using Siamese networks. The method uses image segmentation and padding to 

encapsulate both global information and boundaries. These can be employed in four symmetric sub-networks to extract 

comprehensive steganographic features, image segmented with shared parameters. It is limited to focusing on homogeneous 

images. To address the challenge of heterogeneous images, the FACSNet (Forensic-Aided Content Selection Network) 

proposed by Siyuan Huang et al. The author [8] also aims to improve the detection accuracy by up to 7.14% points in tough 

scenarios by implementing algorithms consisting of a Forensics aided module and content selection module into the FACSnet 

scheme and utilizing parallel processing of training with steganalyzer to classify the cover images and stego images. 

However, the performance might depend on the pre-categorization, and complexity may increase due to additional modules. 

Looking over the feature selection to improve the efficiency of steganalysis by proposing adaptive feature selection [1]. This 

addresses the challenges of high time costs and restricted scope in existing feature selection methods for classification 

metrics. Another view on feature mining and pattern classification is to detect the LSB matching in grey-scale images. This 

[9] introduces five types of features and compares different learning classifiers. However, this is limited to a lack of fine-

tuning and performance variation on different datasets of image types such as grayscale. To enhance the color image, 

steganalysis [7],[23] proposes a machine-learning approach that makes use of curvelet transformations for feature extraction 

and SVM for classification. This can achieve high classification accuracy but requires high computational costs for huge 

datasets. 

Utilize the statistical parameter with the fine-tuning model, which results in the robust model for blind approach image 

steganography. In the paper, [12] uses the statistical features extraction from the GLCM (Gray Level Co-occurrence Matrix) 

and classifies them using Naive Bayes classifiers. The feature extraction might be expensive in terms of processing units. To 

overcome that [4,10], work on the adaptive residual extraction and residual co-occurrence probability. Their advantages 

show higher accuracy and address the limitations of traditional methods. However, they have mentioned in further studies 

that research to generalize findings over the careful selection parameters. 

3. PREPARE YOUR PAPER BEFORE STYLING 

The proposed design flow is shown in Fig. 1 and studies a new way of jpeg-based image steganalysis by understanding the 

selective GLCM features concepts (e.g. energy, entropy contrast, correlation, variance, etc.) gives a novel integrated 

mathematical improvised evaluation into our proposed blocks of cross-verification using multi-domain correlation and fusion 

feature extraction process to reducing overfitting, false-positive and false-negative cases. The flow will go with completing 

the multi-domain correlation cross-verification block task, then the result will be stored in the respective two simulated 

folders cover_image and stego_image. These simulated folders will be the input for data processing of our whole enhanced 

classification block of the ensemble stacking. This classification was extracting fusion features of statistical edge-texture, 

wavelet, and pixel relationships in inputted images and tuning the model. The ensemble classification block utilizes the base 
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classifiers of RF (RandomForest), XGB (eXtreme Gradient Boosting), and LGBM (Light Gradient Boosting Machine) 

further for optimal stacking ensemble process. For a more detailed block analysis of preprocessing and classification refer to 

section Ⅲ (A) and section Ⅲ (B). 

 

Fig. 1.  Process of proposed block-level steganalysis flow design. 

A. Cross- Verification of JPEG Image Preprocessing Using Multi-domain Correlation 

Data cross-verification is crucial to our data modeling through multi-domain correlation as a composite anomaly reporting 

block. The input includes a mix of cover and stego images with different formats like jpg/jpeg, png, etc. Therefore, here data 

refers to the jpeg/jpg images only and ignores other types of formats using the image validation unit of .jpg or .jpeg format 

as input of the function. In the initial block, where we concentrated on evaluating the hybrid steganalysis cross-verification 

of jpg/jpeg formats only.  

Before understanding the approach of multi-domain correlation steganalysis part. We need to focus on the input image and 

understand which channel was used to evaluate. The analysis of images is transformed to grayscale and YUV (Luma, blue-

luminance, and red-luminance) channel. From the YUV channel Y channel is also called the luminance channel which 

represents the intensity of a pixel in an image. This can be used in the multi-domain correlation to analyze the image and 

finally save it to the simulated storage folders. From here onwards, we were deep-diving into the multi-domain correlation 

computation. It consists of LSB Variance, Histogram, Metadata inspection, and a hybrid model of DCT+DWT analysis to 

flag it as a stego anomaly. This can result in the composite anomaly reporting block, which consists of all detected anomalies 

collected from multi-domain correlation into a log file such as a .csv sheet. Every analysis uses dynamic thresholds based on 

image properties or observation value of images and represented over individual mathematical representation. 

The mathematical formulation represented with the different equation representational numbering and their results in 

combining with the multiple analysis paradigms to match a unique fingerprint pattern for steganographic flag content. Firstly, 

in the enhanced LSB analysis stage, instead of just variance, we computed the Shannon entropy of the Y-channel distribution 

and then combined it with the variance of pixel counts. Therefore, Eq. (1) represents the weighted sum of variance and 

entropy, compared against an adaptive threshold that uses harmonic mean evaluation of image area in pixels. 

𝛬 =  (2𝜎2 ⋅ 𝐻)/(𝜎2 + 𝐻) (1) 

Where 𝛬 is the LSB anomaly score, 𝜎2 represents the variance of pixel value counts, 𝐻 is the Shannon entropy of the Y-

channel distribution, and the threshold of the LSB anomaly score should be 𝛬 <  25 ⋅ ( 𝐴/106 ). Here ′𝐴′ it refers to the 

area of the image in pixels to calculate it. The formula is  𝐴 =  ℎ ∗ 𝑤 , here h, and w are representative image dimensions. 

 

Fig. 2.  Images cross-verification using multi-domain correlation analysis block. 
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For histogram analysis, perform the chi-square test with the observed histogram with the expected uniform distribution 

(Poisson distribution). Further, adding skewness evaluation to the Poisson test of mean count results in better histogram 

analysis as shown in Eq. (2). 

𝜙 =  𝑥2 + |𝑌3| (2) 

The intermediate calculation of chi-square 𝑥2 = 𝛴[(ℎ𝑖 − 𝜆)2/𝜆] here 𝜙 represents the divergence metric, 𝑥2 is chi-square, 

 𝜆 represents the Poisson test, 𝑌 is the skewness coefficient, and the threshold between 𝜙 ≤ 499 ∨ |𝑌| ≥ 2.4. 

In the next stage of analysis, the computation of energy concentration utilization by DWT components with DCT analysis 

represents the multi-layer frequency analysis. Instead of a traditional standard deviation and variance of individual 

approaches, here we computed the DWT components ratio of energies between the subbands of LH (Low-High), HL (High-

Low), HH (High-High) with the sub-band of LL (Low-Low). Then the kurtosis of the DCT coefficients is calculated and 

combines the DWT energy ratios shown in Eq. (3). This can lead toward the stego pattern in images with the weighting 

factors.  

𝛹 = 𝛼 ⋅ 𝐸𝑅 + 𝛽 ⋅ 𝜅 (3) 

The intermediate calculation of the energy ratio 𝐸𝑅 =  (𝐸_𝐿𝐻 +  𝐸_𝐻𝐿 +  𝐸_𝐻𝐻)/𝐸_𝐿𝐿. Here 𝛼 , 𝛽 are the weighting 

factors, 0.7 and 0.3. 𝛹 refers to the multi-layer frequency anomaly index of the DWT component over the DWT energy and 

𝜅 is the excess kurtosis of DCT coefficients. The threshold between 𝛹 ≤  0.14 ∨ |𝜅| ≥ 4.  

Finally, for improving the overall analysis, the metadata inspection is important to check the multiple fields like EXIF data, 

comments, and look for unusual strings like binary data extracted using the PIL python package and analyze them as shown 

in Eq. (4). 

𝑀 = 𝛴[𝐻(𝑚𝑖)] (4) 

Here 𝑀 is the metadata entropy score with each unique frequency list to the length of the number of metadata fields as 

mathematical representation is 𝐻(𝑚𝑖) =  −𝛴𝑝𝑗𝑙𝑜𝑔2𝑝𝑗 and threshold should be between 𝑀 >  3.5 ⋅  𝑁𝑚𝑒𝑡𝑎 to flag the 

anomaly, where 𝑁𝑚𝑒𝑡𝑎 is the number of metadata fields obtained from the software stack of PIL package. 

     To understand the dynamic threshold, let's go with a simple example, usually calculating the average variance of the cover 

image from the dataset and setting the thresholds relative to that. But here we weren’t going through any modeling training 

phase, this created a complex situation. Alternatively, perform the threshold adjustment based on image size. For the larger 

images that may have a higher variance, the thresholds for the type of image could be varied and scaled accordingly. 

However, implementing dynamic thresholds required more complex calculations. To reduce the complexity and keep it 

simple, adjust the thresholds based on the image dimensions. For a sample example of dynamic threshold implementation, 

variance threshold = 50 * (total_pixels / 100000). Assuming that an image of 100000 pixels has a threshold of 50, scaled 

accordingly.  

This block is used if the input dataset includes stego and cover images with different formats and is stored in a single folder. 

So, the multi-domain correlation reduces the complexity of the preprocessing computation at modeling by segregating them 

into respective folders of cover_dir and stego_dir based on the steganography multi-domain analysis anomaly flag pattern as 

a result represented in Table 2. 

B. Multi-Layer Feature Fusion Extraction 

This represents the flow of the classification execution pipeline which loads data of cover images and stego images of JPEG 

from the Ⅲ(A) simulated storage respective folders. This pipeline flow includes the extraction of fusion features, stratified 

train and test splits, Further training of the models, evaluating them, and saving the model (e.g. To test single images, check 

for the program-level or web interface-level). As we know preprocessing, normalization, and standardization of the dataset 

images has been done at section Ⅲ(A). 

Firstly, we were looking into the fusion feature extraction process, which initially here reads the images from the simulated 

storage folder of the cover and stego images. Further, the process at multiple scales, such as the original and the half size, 

such as resizing to 512*512 using multi-scale processing (s) of 1.0 high quality (HQ) and 0.5 low quality (LQ) of scaled 

images else reject them if the condition is not met. Each scaled image goes through orthogonal DCT analysis, Benford’s law 

with DCT blocks, dual-tree complex wavelet transforms, and noise residual analysis, then returns all these fused features 

into the result fusion feature list block. The fusion feature representation is shown below: 

 For each scale 𝑠 𝜖 {1.0,0.5}: 

𝐹𝑠 = [∪𝑘=1
𝑁𝑏 𝐹𝐷𝐶𝑇

𝑘 ] ⊕ 𝐹𝐵𝑒𝑛𝑓𝑜𝑟𝑑𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ⊕ 𝐹𝑊𝑎𝑣𝑒𝑙𝑒𝑡 ⊕ 𝐹𝑁𝑜𝑖𝑠𝑒𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  

𝑤ℎ𝑒𝑟𝑒 𝑁𝑏 = (
𝑊𝑠

8
) × (

𝐻𝑠

8
)  𝑏𝑙𝑜𝑐𝑘𝑠 𝑝𝑒𝑟 𝑠𝑐𝑎𝑙𝑒 
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Fig. 3.   Multi-scaled image preprocessing and fusion feature extraction. 

To understand the scaling up and fusing features, we explained the process of a single image point of view, and it repeats the 

same for the other images in the respective folders. Firstly, the DCT analysis computes an 8*8 block then DCT represents 

2D and is applied twice, once on the transpose, which is equivalent to applying it along both axes of a 2D point of the input 

image representation. The formula for 2D DCT is well known, but our algorithm uses orthogonal normalization. So, each 

element in the DCT block was computed as the sum over the image block multiplied by the cosine basis and scaled befittingly 

which was utilized to extract the magnitude and phase features evaluated through a statical calculation of mean, std, skew, 

kurtosis, and median phase as some features of DCT analysis. On the other hand, for remaining features, we further developed 

the novel 2D adaptive DCT with the contrast weighting for the image block using the sigmoid adaptation. Here firstly, the 

contrast calculation computes the standard deviation (𝜎) of the image block(𝐼𝑏) as a contrast. Then, adaptive alpha contrast 

weighting (𝛼𝑐) is a sigmoid-like scaling. So, the below mathematical representation 𝛼𝑐 would involve the hyperbolic tangent 

function applied to the contrast normalized by 25 which represents the empirical normalization constant from image 

dynamics shown in Eq. (5).  

𝛼𝑐 = 1 + 𝑡𝑎𝑛ℎ (
𝜎(𝐼𝑏)

25
) (5) 

Next, the weighted block is the image block multiplied by 𝛼𝑐. This calculated weighted block will be used to evaluate the 

directional DCT decomposition of dct_h (horizontal), and dct_hv (both horizontal and vertical) directions. Then find the 

absolute value of dct_h and the angle of dct_hv for evaluating the phase coherence weighting as shown in the below 

mathematical Eq. (6-7). Then calculate the weighted magnitude by multiplying the magnitude with phase coherence 

weighting.  

Directional DCT Decomposition: 

𝐶ℎ𝑣(𝑢, 𝑣) = ∑ [∑ 𝛼𝑐𝐼𝑏(𝑥, 𝑦)𝑐𝑜𝑠 (
(2𝑦+1)𝑣𝜋

16
)7

𝑦=0 ] 𝑐𝑜𝑠 (
(2𝑦+1)𝑣𝜋

16
)7

𝑦=0  (6) 

Phase-coherent Magnitude Weighting: 

𝑀𝑤𝑒𝑖𝑔ℎ𝑡(𝑢, 𝑣) = |𝐶(𝑢, 𝑣| ⋅ [1 +
1

2
𝑐𝑜𝑠(𝜙(𝑢, 𝑣))] (7) 

Here 𝜙(𝑢, 𝑣) = 𝑎𝑟𝑔(𝐶(𝑢, 𝑣)) 

For calculating the remaining features, apply the entropy of phase-entangled magnitude as shown in Eq. (8), and the mean 

of phase coherence index value represented as Eq. (9), and compute the sum of elements within a weighted magnitude greater 

than the mean of weighted magnitude. Finally, return all these features into the result fusion feature block. 

Phase-Entangled Magnitude Entropy: 

  𝐻𝑝 = − ∑
𝑀𝑤𝑒𝑖𝑔ℎ𝑡(𝑢,𝑣)

𝑀𝑤𝑒𝑖𝑔ℎ𝑡
𝑙𝑜𝑔2

𝑀𝑤𝑒𝑖𝑔ℎ𝑡(𝑢,𝑣)

𝛴𝑀𝑤𝑒𝑖𝑔ℎ𝑡
𝑢,𝑣  (8) 

Phase Coherence Index: 

  𝛤𝜙 =
1

64
∑ [1 +

1

2
𝑐𝑜𝑠(𝜙(𝑢, 𝑣))]𝑢,𝑣  (9) 
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Here phase-magnitude coupling, the 𝑐𝑜𝑠(𝜙) term emphasizes coefficients with aligned phase angles and the modulation 

factor 𝜀 [0.5,1.5]preserves the original magnitude relationships. 

After DCT analysis, we computed the Benford divergence with statistical validation Eq. (11), which uses Benford’s law. 

This law says that “The first digit distribution follows 𝑙𝑜𝑔10(1 + 1/𝑑), here d is the range”. This evaluation took the DCT 

block coefficients to extract the first digits by ignoring the small coefficients (like higher power algebraic coefficient 

consideration) and checking the input Coeff ‘c’ for the digit validity check of Benford’s divergence evaluation follows as 

Eq. (10). 

First Digit Extraction (FDE): 

  𝐹𝐷𝐸(𝑥) = [10{𝑙𝑜𝑔10𝑥}] (10) 

Here, {𝑥} = 𝑥 − |𝑥|  

  𝑉𝑎𝑙𝑖𝑑𝐶𝑜𝑒𝑓𝑓(𝑐) = {
𝐹𝐷𝐸(|𝑐|)   𝑖𝑓 |𝑐| > 1 

𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

Then, the observed distribution is computed and compared with the expected distribution using improved KL divergence 

(Kullback-Leibler) with smoothed probability divergence(𝐷𝑆𝐾𝐿), JS divergence (Jensen-Shannon) with balanced 

divergence(𝐷𝐵𝐽𝑆), and chi-square evaluated for dimensionally adjusted statistics(𝜒2) as represented in equations below Eq. 

(12-14). 

  𝐷𝑆𝐾𝐿 = ∑
𝑂𝑑+𝜖

𝑇
 𝑙𝑛 (

𝑂𝑑+𝜖

𝑇⋅𝐸𝑑
)9

𝑑=1  (12) 

Here 
𝑂𝑑+𝜖

𝑇
 is the smoothed probability with Benford’s theoretical probability 𝐸𝑑 = 𝑙𝑜𝑔10 (1 +

1

𝑑
). Where 𝑂𝑑 is the observed 

count of leading digit d, 𝜀 = 10−6 of smoothing constant for zero-count protection, and total adjusted observations 𝑇.   

  𝐷𝐵𝐽𝑆 =
1

2
[∑

𝑂𝑑+𝜀

𝑇
 𝑙𝑛 (

𝑂𝑑+𝜖

𝑇⋅𝐸𝑑
)9

𝑑=1 + ∑ 𝐸𝑑𝑙𝑛 (
𝐸𝑑

𝑀𝑑
)9

𝑑=1 ]  (13) 

The key feature of 𝐷𝐽𝑆 measuring symmetric treatment of observed and theoretical distributions. The intermediate term 𝑀𝑑 =
1

2
(

𝑂𝑑+𝜀

𝑇
+ 𝐸𝑑) refers to the midpoint distribution between smoothed observations and Benford's law. 

  𝜒2 = ∑
(𝑂𝑑+𝜖−𝜇𝑑)2

𝜇𝑑

9
𝑑=1  (14) 

Note that unlike traditional 𝜒2 tests, our formulation uses smoothed observations 𝑂𝑑 + 𝜀 and scaled Benford probabilities 

𝐸𝑑 by the total observations T. This can maintain dimensional consistency between the terms. Here “𝜇𝑑" refers to the 

expected count calculation 𝜇𝑑 = 𝐸𝑑 ⋅ 𝑇. 

Further, to calculate dual-logarithmic weighting w(d) which combined upon the information-theoretic  𝑙𝑜𝑔2(𝑑 + 1) and 

Benford-based significance of digit weights represented as Eq. (15). 

  𝑤(𝑑) = 𝑙𝑜𝑔2(𝑑 + 1) ⋅  𝑙𝑜𝑔10(1 +
1

𝑑
) (15) 

Then computes an adaptive significance-weighted null model(𝑃𝑚𝑜𝑑(𝑑)) where expected digits are scaled by these weights 

and Benford’s law is represented as Eq. (16)  

  𝑃𝑚𝑜𝑑(𝑑) =
𝑤(𝑑)

𝛴𝑘=1
9 𝑙𝑜𝑔2(𝑘+1) ⋅ 𝑙𝑜𝑔10(1+

1

𝑘
)
 (16) 

The original Benford’s law is multiplied by its digit weights and normalized for adding two new divergence metrics of 

weighted cubic (𝐷𝑐𝑢𝑏𝑖𝑐) and harmonic (𝐷ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐) divergences. The cubic term in the numerator and the denominator with 

sqrt(n), and the harmonic divergence is the sum of absolute differences over the sum of observed and expected plus one as 

both represented below as Eq. (17-18). 

  𝐷𝑐𝑢𝑏𝑖𝑐 = ∑
(𝑂𝑑−𝑛𝑃𝑚𝑜𝑑(𝑑))3

𝑛𝑃𝑚𝑜𝑑(𝑑)+√𝑛

9
𝑑=1  (17) 

  𝐷ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = ∑
|𝑂𝑑−𝑛𝑃𝑚𝑜𝑑(𝑑)|

𝑂𝑑+𝑛𝑃𝑚𝑜𝑑(𝑑)+𝜀

9
𝑑=1  (18) 

Finally, the statistical measures between observed and predicted probabilities (KL, JS, and chi-squared), cubic, and harmonic 

divergences were all scaled up to represent our Benford divergence feature result stored into the result fusion feature block. 

For DT-CWT (Dual Tree-Complex Wavelet Tree) analysis, A 2D transformer on a scale of images with four levels 

(nlevels=4).  Then it retrieves features from the first four layers' highpass coefficients.  The characteristics include the mean 

absolute value and standard deviation of the angles for each highpass sub-band. Just recall that classic wavelet 
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transformations had problems with shift variance and lack of directionality.  Our improved DT-CWT overcomes this by 

employing two distinct wavelet trees that produce complex coefficients.  DT-CWT uses two filter banks for real and 

imaginary parts. For each level, the transform decomposes the image into multiple directional sub-bands. This provides 

improved directional sensitivity and shift-invariance. 

For an image 𝐼𝑚𝑔(𝑥, 𝑦), the 2D DCWT for each directional subband 𝐻𝑙
𝑑  decomposition at level ′𝑙′ , direction ′𝑑′ produces. 

The complex coefficients are represented as  𝐶𝑙
𝑑 = 𝑅𝑙

𝑑 + 𝑗𝐼𝑙
𝑑, here 𝑅𝑙

𝑑 real tree coefficients and 𝐼𝑙
𝑑 imaginary tree coefficients 

for the directions 𝑑 𝜖 {±15∘, ±45∘, ±75∘}. 

Directional Energy Ratio (DER): 

  𝐷𝐸𝑅𝑙
𝑑 =

𝛴|𝐻𝑙
(𝑑)

|2

𝛴|𝐻𝑙−1
𝑑 |2+𝜀

⋅ 𝑡𝑎𝑛ℎ(
𝑠𝑡𝑑(𝜃𝑙

𝑑)

𝜋
) (19) 

Here, 
𝛴|𝐻𝑙

(𝑑)
|2

𝛴|𝐻𝑙−1
𝑑 |2+𝜀

 is energy scaling & 𝑡𝑎𝑛ℎ(
𝑠𝑡𝑑(𝜃𝑙

𝑑)

𝜋
) is phase modulation. 

Magnitude-Phase Covariance (MPC): 

  𝑀𝑃𝐶𝑙
𝑑 =

1

𝑁
𝛴(𝑥,𝑦)(|𝐻𝑙

𝑑(𝑥, 𝑦)| ⋅ 𝑐𝑜𝑠𝜃𝑙
𝑑(𝑥, 𝑦)) − (

1

𝑁
𝛴|𝐻𝑙

𝑑|)(
1

𝑁
𝛴𝑐𝑜𝑠𝜃𝑙

𝑑)  (20) 

Harmonic Phase Coherence (HPC):  

  𝐻𝑃𝐶𝑙
𝑑 = |

1

𝑁
𝛴(𝑥,𝑦)(|𝐻𝑙

𝑑(𝑥, 𝑦)| ⋅ 𝑒𝑗2𝜃𝑙
𝑑(𝑥,𝑦)| (21) 

Wavelet characteristics in the code are computed for each highpass sub-band.  The highpass coefficients from DT-CWT 

contain magnitude and phase.  The characteristics capture the average intensity (mean of magnitudes) and phase variability 

(standard deviation of angles) for each directional sub-band. The overall feature vector composition is represented in the 

mathematical formulation as follows below Eq. (22). 

For each decomposition level (0-3) and direction (6 directions in DT-CWT): 

  WaveletFeatures = ∪ ∪ [𝑀𝑃𝐶𝑙
𝑑, 𝐻𝑃𝐶𝑙

𝑑 , 𝐷𝐸𝑅𝑙
𝑑]6

𝑑=1
3
𝑙=0   (22) 

Before understanding the final feature of noise residual analysis. We need to go through the two custom filters of 

EDGE_FILTER and TEXTURE_FILTER that were designed by us. Let’s look into their structure and computation, these 

are 3*3 kernels sized. Firstly, the EDGE_FILTER has a center of 4 and is surrounded by -2s and 1s. This seems to be like a 

Laplacian edge detector but with specific weights to highlight the areas of high variance, which might emphasize the edges. 

The TEXTURE_FILTER has a center of -4, with 2s and -1s around. This could represent capturing the texture variations by 

returning to a pattern of high frequency. 

For EDGE_FLITER 3*3 alias 𝐾𝑒𝑑𝑔𝑒  

𝐾𝑒𝑑𝑔𝑒 =  [[1, −2,1], [−2,4, −2] , [1, −2,1]] 

For TEXTURE_FILTER 3*3 alias 𝐾𝑡𝑒𝑥𝑡𝑢𝑟𝑒 

𝐾𝑡𝑒𝑥𝑡𝑢𝑟𝑒 =  [[−1,2, −1], [2, −4,2] , [−1,2, −1]] 

In mathematical terms, applying a filter is equivalent to convolution.  Each kernel is convolved with the representing the 

image and yielding a residual. Applying these filters to an image will highlight edges and textures in the noise residual.  

Steganographic methods frequently change the noise patterns, hence these filters aid in detecting such abnormalities.  They 

𝐾𝑒𝑑𝑔𝑒  would increase edge-related noise, whereas they 𝐾𝑡𝑒𝑥𝑡𝑢𝑟𝑒  would emphasize texture-related noise.  

This 𝐾𝑒𝑑𝑔𝑒  is different because we consider each point (i,j) in the kernel, we think of the coefficients as a function of their 

distance from the center. The center value is 4, the neighboring pixels (up, down, left, and right) are -2, and the diagonals 

are 1. This might be a discrete approximation of the sum of the second derivatives in the x and y axes, along with some 

diagonal components. Alternatively, it is a scaled-up Laplacian. In comparison to the standard Laplacian kernel 

[[0,1,0], [1, −4,1] , [0,1,0]]. Let's know about our 𝐾𝑒𝑑𝑔𝑒 , sum of the coefficients: 1-2+1 = 0 for the first row, similarly for 

the others. The total sum is 0, which is correct for a high-pass filter. The difference is that the 𝐾𝑒𝑑𝑔𝑒  are higher absolute 

values in the corners. So, the 𝐾𝑒𝑑𝑔𝑒  kernel is the outer product of the 1D second derivative kernel [1, -2, 1] and itself. 𝐾𝑒𝑑𝑔𝑒   

is calculated mathematically as v * v^T, where v ranges from 1 to -2.  This would improve edges in both directions and their 

intersections, including diagonals.  Thus, the 𝐾𝑒𝑑𝑔𝑒  is a 2D second derivative operator that responds strongly to edges in all 

directions, with the magnitude determined by curvature. The equation is represented as follows below as Eq. (23). 

  𝐾𝑒𝑑𝑔𝑒  (𝑖, 𝑗) =  𝑣(𝑖) ⋅ 𝑣(𝑗) (23) 
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They 𝐾𝑡𝑒𝑥𝑡𝑢𝑟𝑒  designed to respond to specific texture patterns, such as those with periodic variations. The kernel's structure 

was a combination of high-pass and band-pass filters. For example, the negative center with positive surroundings in cross 

directions and negative on diagonals. This enhances areas where there's a transition from the center to the adjacent pixels in 

horizontal/vertical directions but opposite in diagonals. This 𝐾𝑡𝑒𝑥𝑡𝑢𝑟𝑒 is derived from the 𝐾𝑒𝑑𝑔𝑒  by applying horizontal and 

vertical edges over diagonal ones by combining different second derivatives, which capture texture patterns that have more 

horizontal/vertical components. The mathematical formulation is represented as Eq. (23). 

  𝐾𝑡𝑒𝑥𝑡𝑢𝑟𝑒 = 2 ∗ ( 𝐾ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 + 𝐾𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙) − ( 𝐾𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙1 + 𝐾𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙2 )  (24) 

Here 𝐾ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙  , 𝐾𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 , 𝐾𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  are the horizontal, vertical, and diagonal second derivatives  

To represent the convolved filters with the image as shown below: 

  𝑅𝑒𝑑𝑔𝑒 =  𝐼 ∗ 𝐾𝑒𝑑𝑔𝑒  (25) 

  𝑅𝑡𝑒𝑥𝑡𝑢𝑟𝑒 =  𝐼 ∗ 𝐾𝑡𝑒𝑥𝑡𝑢𝑟𝑒 (26) 

The 𝑅𝑒𝑑𝑔𝑒 And 𝑅𝑡𝑒𝑥𝑡𝑢𝑟𝑒, here 𝑅 represents as residual and these parameters capture several elements of the noise residual, 

including overall response, variability, and typical magnitude, which are calculated through respective statistical measures 

such as mean, standard deviation, and median. Finally, all four analyses will be scaled and concatenated into the result fusion 

feature block. 

C. Steganalysis Classification Modelling 

Here we started with the initialization of model components and the hyperparameter grid using the __init__(self) method 

within the class of the proposed Advanced_Steganalysis_Model. The key components of the __init__ method were base 

classifier, parameter grids, and special initializations. Let’s look into each component, the base classifier consists of 

RandomForest, XGB, and LGBM. The parameter grids for each classifier are different. The grid’s hyperparameters will be 

noted down while testing the models. Special initializations include the best_models to store optimized base models and their 

optimized parameter grid values, the stack_model enabled the final ensemble model, and the StandardScaler ensured gradient 

stability and normalized the features extracted from section Ⅲ(B).  

 

Fig. 4. The flow of our classification model. 

The next method was optimize_models (self, X_train, y_train) for optimizing the base models and building the stack_model 

for the ensemble. The flow of this method starts with cross-validation using StratifiedFold with 7 folds for computational 

efficiency and maintains class distribution in splits. Then, the hybrid optimization was designed, a combination of 
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HalvingGridSearch with CalibratedClassifierCV. It uses the HalvingGridSearch, which focuses on precision to reduce false 

positives and further hyperparameter tuning for each classifier, which is optimized with their respective parameter grid values 

for resource-aware elimination (reduces search space early and prevents premature stopping). Then the method does the best 

model calibration using the CalibrationClassifierCV with the sigmoid method and 3-fold calibration to fit the X_train and 

y_train for better probability estimation and performance maintenance. Next, the stacked feature engineering will be 

evaluated for the stack_train feature based on the best model's values. This can create the meta-features from the base model 

probabilities and uses positive loss probabilities only. In the next step, the feature selection is evaluated by RandomForest-

based importance calculation using the median threshold, which removes 50% of the least important features and reduces 

overfitting. The final step in the optimize_models method is ensemble training, which utilizes the stack_model with tuned 

parameter grid values. This ensemble training uses GradientBoostingClassifier for early stopping with a 20% validation 

holdout with a tolerance of 0.0001 for loss improvement and a subsample of 89% of data for diversity. 

𝑃𝑠𝑡𝑎𝑐𝑘 = [𝑝𝑅𝐹 , 𝑝𝑋𝐺𝐵,𝑝𝐿𝐺𝐵𝑀 ] 

Here, 𝑃𝑠𝑡𝑎𝑐𝑘  is probabilities of stack model and 𝑝𝑅𝐹 , 𝑝𝑋𝐺𝐵,𝑝𝐿𝐺𝐵𝑀  is the base classifiers probabilities. 

For performance analysis, the evaluate_performance (self, X_test,y_test) method is designed, which consists of base model 

metrics, stacked model processing, and ensemble prediction. In model metrics, precision focuses on minimizing false alarms, 

recall will ensure the detection of true positives, F1-score, and the AUC score is mapped for the overall ranking capability 

represented in the Ⅴ(D) section. The stacked model processing applies the identical transformation pipeline of feature 

selection and standard scaling in the optimization_models method detailed and explained in the experimental section of Ⅴ(C).  

For ensemble evaluation, use calibrated probabilities from the scaled fusion feature of section Ⅲ(B) and meta-feature from 

section V(C). 

4. PROPOSED TWO-STAGE BLOCK ALGORITHM 

In this section, we present the proposed algorithms in two-stage blocks as cross-verification of JPEG images using a multi-

domain correlation and multi-layer feature fusion extraction with a novel Ensembling model. The proposed algorithm 1 and 

2 follows as below with input, output, and steps. 

Algorithm 1: Cross-verification of JPEG images using multi-domain correlation 

Input: Given the input of a mixed set of clean and stego images from Kaggle and generated images by Table 1 stego 

generation protocol. 

Output: To obtain the stego_dir and cover_dir images, and the log_files for Algorithm-2 as input of data loading. 

Steps:  

# System initialization 

function Cross_Verification_Analysis(): 

 # input of all images dataset 

  img_dir=” path/image_dataset/all” 

# Initialize output directory path  

if not created then 

output_dir=” path/image_outputs” 

end if 

else 

 none/continue 

# output directory structure → stego_images & cover_images 

# Validation input images with extensions of (.jpg/.jpeg) only into the image_paths 

# Initialize the cross-verification analysis log spreadsheet. 

 log_file=(output_dir,”cross-verification_analysis_log.xlsx”) 

# After all required initialization is done, then call the cross-verification image processing 

 function image_processing_pipeline (image_paths,output_dir,log_file)  # Function 1.1 

Function 1.1: image_processing_pipeline(image_paths,output_dir,log_file) 

Input: image_paths consists of the dataset path of jpeg/jpg images only. Output_dir is used to store segregated images for 
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the steganalysis pipeline. Log_file with empty tables is used to store the type of image analyzed. 

Output: Output_dir is used the segregate input dataset images into the stego_dir and cover_dir images. For evidence 

preservation, the log_file will be used for model improvements also. 

Steps:  

# Result store path of simulated folders initialization → stego_dir & cover_dir in (output_dir) 

# jpg/jpeg file validation unit 

# Verify file readability 

loop img_path in image_paths: # Check image corruption 

 Try: 

  img=cv2read(img_path,read_color) 

  if img is none then  

reject the unprocessed files of img 

  end if    

 # Preprocessing stage  

  Extract y_channel from img_YUV of img 

Create a gray image from BGR_GRAY of img  

Then calculate the image dimension and compute the area of a pixel of (img) 

h,w = img.shape[:2] 

area=h*w 

 # [Spatial domain probe] 

  # LSB variance analysis 

  Calculate pixel_distrubtion 

  unique_counts = np.unique(y_channel) then find the variance of it. 

  pix_distr = unique_counts/(area+1e-10) 

  Compute the variance entropy harmonic mean of pix_distr 

if adaptive threshold as equation (1) true then  

findings.append( LSB_Anomoly ) 

 end if 

# Histogram statistical analysis 

Calculate the histogram of the image using cv2 

hist=cv2.calchist(img).flatten() then find the hist_diff 

Build the intensity distribution of poisson_test, expected of poisson_test 

For chi-square to Poisson distribution and skewness analysis, use the equation(2) 

if chi-square or abs(hist_skewness) threshold as equation (2) true then  

findings.append( Histogram_Anomoly ) 

 end if 

# [Frequency domain scan] 

# Wavelet component analysis using DWT subband energies 

Decompose (gray_img) using bior 1.3 wavelet 

Calculate LL/LH/HL/HH subband 

For energy ratio calculation, refer to the equation (3) of (ER) formula 

# DCT coefficient analysis 
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Computed the wavelet components & mean of deviation refers to the equation (3) 

if ER or dct(co_effi) compare against the threshold as equation (3) true then 

  findings.append( Frequency_domain_Anomoly ) 

end if 

# [Metadata Inspection] 

Extract EXIF/XMP/IMPC data using Image.information 

Then analyze binary patterns using UTF-8 to decode the unique values 

if meta_entropy compare against mentioned equation (4) payload then 

findings.append( Metadata_Anomoly ) 

 end if 

except Raise an Exception for value error type. 

# Decision logic sub-block for Anomaly aggregation 

analysis_result=’’no_anonaly” & flag =’’negative’’ #initally  

Collect all the appended findings and join with the OR decision 

if findings then 

 analysis_result=” | ”.join(findings)  

 flag=’’positive’’ 

end if 

# File categorization 

if the flag is positive then 

pass (img) into Stego_dir  

end if 

else  

pass the (img) into Clean_dir. 

end else 

# Evidence previsioning 

 #Save the process of image copy with the log 

end loop 

return the updated (output_dir, log_file) and release the system resources 

Algorithm 2: Multi-layer feature fusion extraction with novel ensembling model 

Input: From the algorithm-1, we get input data for this data loading. Then it evaluates the fusion-based feature extraction 

and train_test_split the model by using stratified cross-validation.  At the final evaluation, the individual models of RF, XGB, 

LGB, and stack_ensemble_model will undergo the performance metrics after the model training.  

Output: The model will be saved at the end of the process using the joblib package for steganalysis classification of the 

jpeg/jpg input to it. 

Steps: 

function Execute_StegoAnalysis_Pipeline(): 

#Data_Loading 

cover_img_dir=”path/simulated_folder/cover_jpeg_images” 

stego_img_dir=”path/simulated_folder/stego_jpeg_images”  

#Fusion_feature_extraction 

Initialize the list variable type {X,y} for features and label of images 
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loop path, label in {cover and stego directories → 0,1} 

loop img_file in {respective_path directory} 

 features= Extract_fusion_scaled_features(os.path.join(path,img_file)) # Function 2.1 

 if feature is !(None) then 

  X.append(features) 

  y.append(label) 

 end if 

end loop 

end loop 

#list converted to Numpy array (X,y) because it is used for homogeneous data storing 

X=np.array(X) 

y=np.array(y) 

#Train_Test_split 

X_train,X_test,y_train,y_test=train_test_split(test=0.3, stratify=y,random_state=42) 

#Model training 

analyzer=Advanced_steganalysis_Model() # Class 2.1 

analyzer.optimize_models(X_train,y_train) 

#Evaluation 

performance_metrics=analyzer.evalute_performance with the parameter of (X_test,y_test) 

finally visualize the metrics with the parameter of (y_test,perfomance_metrics,analyzer) 

#For Save model 

joblib.dump(analyzer.stack_model, ‘Fusion_advance_steganalysis_model.pkl’) 

#Main function call 

if __name__=’__main__’ then 

Execute_StegoAnalysis_Pipeline() 

end if 

Function 2.1: Extract_fusion_scaled_features(img_path) 

Input: Image_paths consists of the dataset path of jpeg/jpg images only. This function is used to extract the feature using 

multi-domain analysis of the statical fusion feature  

Output: Finally return the appended feature from four analyses and homogenous those to fuse into one array block. 

Steps: 

Read the image from img_path then apply padding/resize greater or smaller than 512*512 

Processed the img for multi-scale processing of scale [1.0,0.5] to obtain scaled_img 

#The below 4-analysis in-detailed calculation which represents in 4.2 

#Multi-scale DCT analysis 

loop over 8 *8 block of scaled_img 

dct_blocks ← extract the dct block from img block and store 

append the dct_blocks 

Extract the feature from magnitude, phase, and novel 2D adaptive DCT with contrasting and weighting  

Extend the dct statical feature to fused_feature_list 

end loop 

#Benford’s divergence analysis of dct_block 
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Extract the coefficient from the np.concatenate( dct_block.flatten() loop dct_block in dct_blocks) 

#Benford’s law verification 

if coefficients(<100 valid digits) then 

 Skips this analysis 

end if 

else  

compute the smoothed KL, balanced JS, dimensional chi-square, and novel divergence metric using the adaptive 

significance-weighting null model. 

end else 

Extend Benford’s statical feature to fused_feature_list 

#Dual tree complex wavelet transform 

Extract coefficient for wavelet features by dctwt.transfrom2d of scaled_img with the nlevels=4 

Apply wavelet statical on the coefficient highpasses[0-3] of absolute and angle.  

Extend the dt-cwt statical feature to fused_feature_list 

#Noise Residual analysis 

loop kernel in [Edge_filter, Texture_filter] 

 residual=cv2.filter2D(scaled_img,kernel) 

 Extend noise statical feature to fused_feature_list 

end loop 

return fused_feature_list 

Class 2.1: Advanced_steganalysis_Model() 

Input: passing the features and labels extracted from function-1 of algorithm-2 as X,y. Further, they split into train-test with 

the train_size of 0.7 and test_size of 0.3 with the stratified 

Output: evaluation of the model with visual metric will be projected in the plot manner which includes model comparisons 

with precision, recall, and f1-score. Further AUC curve is based on the threshold values for confusion matrix analysis and 

utilizes important features while tuning the model.  

Steps: 

function __init__(self): 

#Initialize base classifiers  

self.classifiers={ RandomForestClassifier, XGBClassifier, LGBMClassifier} 

self.param_grids # Tuned for hyperparameter for each classifier such as n_estimators, learning_rate, etc. 

Initializing the self.best_models={} 

self.stack_model=None # stacking initialization for Ensemble 

self.scaler = initialization with StandardScaler 

function optimize_models(self, X_train,y_tarin): 

skf= StratifiedKFold(splits=7,Shuffle=true) 

optimized_params={‘RF’,’ XGB’, LGBM’} # optimized Tuned for hyperparameter for each classifier such as n_estimators, 

learning_rate, etc. 

loop name in self.classifies: 

 # faster search HalvingGridSearchCV used 

search= HalvingGridSearchCV( self.classifiers[name], optimized_params/param_grids 

[name],cv=skf,scoring=’precision’,njobs=-1,aggressive_elimination=True) 

Search.fit(X_train,y_train) 
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self.best_models[name]=calibratedClassifierCV(search.best_estimator_,cv=3, method=‘sigmoid’).fit(X_train,y_train) 

end loop 

# Gradient Boosted Stacking with Early Stopping 

stack_train=column_stack([ model.predict_proba(X_train)[:,1] loop model in self.best_models.values()]) 

# Feature Selection for stacking 

self.selector=SelectFromModel(RandomForestClassifier(n_estimators=100, random_state=42 

),threshold=’median’).fit(stack_train,y_train) 

stack_train_scaled= selector.transform(stack_train) 

# Early-stopped Gradient boosting parameter  

self.stack_model=GradientBoostingClassifier( parameters) 

stack_model.fit(stack_train_scaled,y_train) 

Then perform to Prune the unused estimators for stack_model.set_params 

#Function to evaluate the evaluate_performance(self,X_test,y_test) for precision,recall,F1-score, and AUC visualize them 

on plot. 

#Plot the feature importance analysis (RandomForest) 

5. EXPERIMENT & RESULTS 

A. Dataset Design 

From the Kaggle website, the public dataset of images consists of 500_cover_images and 500_stego_images. The remaining 

images are generated using the below-mentioned methods in Table 1. For cover images, we have downloaded from our local 

machine’s Omen wallpaper application with the resolution stratification of 512*512. So, these cover images undergo the 

stego generation protocol of embedding different methods such as LSB replacement, DCT coefficient, wavelet domain, and 

metadata injection. 

TABLE 1.  Stego image generation data 

Embedding Method Tool Payload Density Samples input of 

cover images 

Stego images 

generated 

LSB Replacement Steghide v1.3 0.1-1.0 bpp 200 200 

DCT coefficient F5 v2.2 QF=75, 50% capacity 100 100 

Wavelet Domain OutGuess 0.2 3-level DWT embedding 100 100 

Metadata Injection ExifTool 12.6 Random binary payloads 100 100 

 

B. Parameter Space Exploration for Cross-verification Analysis Block 

After completing the dataset preparation, the algorithm-1 and its functions are written in the Python script that uses various 

image processing techniques to cross-verify the dataset of images to simulate them into the respective folders of cover and 

stego as the aim. Here, this experiment checks for LSB anomalies, histogram abnormalities, frequency domain anomalies, 

and metadata entropy for jpeg/jpg images. The main function (algorithm 1) images from the directory, analyzes them, and 

categorizes them further, logging the results. In this, we proposed the adaptive threshold for LSB anomalies and DWT 

components on the DCT for the multi-layer frequency analysis. As per our testing, we consider the below-mentioned 

threshold sensitivity analysis and wavelet configuration testing, these combinations are called parameter space exploration 

as shown in Table 2. This experiment tests these thresholds to see how changing these values affects cross-verification with 

prior merged into one folder of cover and stego images before and after testing for correctly cross-verified . This will be used 
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during the pre-classification of the model to improve the overall steganalysis classification model with the best-fit model and 

better F1 score. 

TABLE 2.  Parameter Space Exploration 

Type of Analysis Threshold 

values 

Before cross-

verfication images are 

available in a separate 

folder count. 

After merging the 

available images into 

one folder, and cross-

verify them 

correctly, then 

segregate them into 

the respective 

folders. 

Consideration for the 

cross-verified images for 

the ensemble 

classification model.  

Cover Stego Cover Stego 

LSB coefficient 15 100 

 

100 70 60   

25 91 93   

35 85 90   

Chi-square limit 300 100 100 73 69   

500 90 94   

700 82 88   

DCT kurtosis bound 3 100 100 80 76   

5 89 92   

7 72 69   

Meta Pattern 2.5 100 100 85 79   

3.5 92 90   

4.5 82 80   

Wavelet types 

{bior1.3, haar, db4, 

sym5}  

(DL= Decomposition 

Level) 

DL = 1 100 100 73 69   

DL = 2 82 86   
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DL = 3 93 96   

The public dataset of 

Kaggle undergoes the 

above analysis 

Considered 

  threshold 

values 

500 500 495 498   

 

C. Classifier Models Training and Ensemble Stacking Analysis 

From Table 2 we selected the image curation as protocol to proceed with the input to algorithm 2. The Sources include 

cover_images and stego_images which already strict image validation adheres to the exclusion of monochrome/synthetic 

images using entropy thresholding because these can't possess actual steganalysis in a real-time environment. So, real-time 

images are taken into consideration, and then the processing stage of all images is converted to 8-bit grayscale matrices in 

6.2. But here we are multi-scale by applying a pad of non-512*512 images with mirrored content. To maintain the tile grid 

of 8*8 and clip limit to 2.0 by applying CLAHE for illumination normalization. Then feature extraction of JPEG images 

which includes DCT analysis per 8*8 block, Benford’s law compliance analysis check, Dual tree-CWT analysis, and noise 

residual analysis represented at 4.2.  These fusion features will be split for a train-test of 70-30 stratified which maintains 

35% stego in both sets using cryptographic RNG seeding. The model ran on the hardware configuration of NVIDIA RTX 

4050 GPU with CUDA 11.2, 16GB of DDR5 RAM with zRAM swap compression, and storage of 1TB NVMe space, for 

the memory-efficient workflow batch processing is used to extract features in 100-image chunks and utilize the data type of 

float32 for features of native GPU precision synchronization. To avoid the isolation processing unit, we used the concept to 

implement the parallelism of 16 CPU threads for feature extraction with the 1 GPU stream per model. 

In algorithm 2 analyzer calls the Advanced_steganalysis_Model() (class 1) for optimized model training and evaluation. But 

in this section, we are going to understand the model classifier tuning. Initially, we need to prepare three tree-based-classifiers 

of RandomForest (RF), XGBoost (XGB), and LightGBM (LGBM). Here we designed different classifiers in such a way that 

can be utilized in our proposed algorithm. The RF uses class weighting to handle imbalanced datasets with the 

hyperparameter search design composite of 48 combinations (3*2*4*2 grid). The XGB is optimized for GPU accelerated 

with the hyperparameter search design composite of 36 combinations with early pruning. The LGBM implements gradient 

boosting with leaf-wise growth with the hyperparameter search design composite of 24 combinations by using Bayesian 

optimization. The overall hyperparameter search design was placed with the termination criteria of <1% precision 

improvement over 5 iterations and GPU memory usage >80%. The custom hypermeter search design for each model varies 

in depth (10-15), and subsampling rates (0.7-0.9) and balances the overall model complexity (n_estimates:200-500) with 

training time. For resource-efficient search we used HalvingGridSearch instead of standard grid search because three factors 

progressively eliminate weak parameter combinations, allocate more resources to promising job candidates, and which an 

aggressive_elimation parameter for faster pruning. 

 

Fig. 5.  Stacking model’s important feature selection 

Here we are constructing the meta-model construction using four components meta-feature creation, feature selection, feature 
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scaling, and GradientBoosted meta-learner. Firstly, the meta-feature creation collects class probabilities (column 1) from all 

based classifier models and forms a new dataset of N-samples * features of one per classifier. Then feature selection uses the 

SelectFromModel with RF to retain the features with an importance ≥ median value which leads to reduced dimensionality 

while preserving the signal as shown in Fig. 5. As the third component feature scaling applies StandardScaler to normalize 

meta-features and is critical for gradient-based optimization in subsequent steps. The Gradient Boosted Meta-Leaner 

initialized by GradientBosstingClassifer with a large tree count of 2000 for capacity. The n_iter_no_changes=50 is early 

stopping to prevent overfitting in the model and shallow trees (max_depth=3) for smooth decision boundaries. This Gradient-

boosted meta-learner automatically determines the optimal stopping point and prunes the excess tree post-training for 

efficiency. 

D. Models Evaluation and Comparsions 

In algorithm 2 the evaluate_performance is used to calculate the base model’s assessment for each classifier (RF, XGB, 

LGBM), ensemble model validation which generates the class predictions, and calculates the precision (𝑃𝑚), and recall(𝑅𝑚) 

to evaluate F1-score as shown in Fig. 6, and AUC_ROC of thresholds shown in Fig 7 for the performances. In steganalysis, 

both FP (cover images labeled as stego) and FN (stego images labeled as clean) can have significant consequences. So, the 

F1- score is used to strike a balance between these two errors. We need to understand further the impacts on balanced and 

imbalanced datasets given to our model as input. In the view of balanced datasets precision and recall are equally important 

which means a good model balance both (e.g. F1-score). Whereas imbalance datasets possess high precision and low recall 

which refers to common when the minority class is rare/lower and implies the false positives are costly. The other case for 

recall is low precision and high recall which refers to when missing positives are worse than false indications[20]. Here our 

model evaluates for a balanced dataset but the RF model is built for an imbalanced dataset and the other two models are 

strictly built for the balanced dataset. This type of ensemble model will help to steganalysis model give best-fit results at the 

end as shown in Table 3. 

  𝑃𝑚 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (27) 

  𝑅𝑚 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (28) 

Where TP, FP, FN, and TN represent True Positive, False Positive, False Negative, and True Negative are the basic terms of 

the confusion matrix terms. Here the “m” represents the models.  

 

Fig. 5.  Comparison of models. 

  𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑚 × 𝑅𝑚

𝑃𝑚 + 𝑅𝑚
) (29) 

Here, 𝐹1𝑠𝑐𝑜𝑟𝑒  is the harmonic mean of 𝑃𝑚 & 𝑅𝑚. If F1 is high, it directly represents a balanced model (values closer to 1 are 

better than the model). 

TABLE 3. Model-Specific Analysis 
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Our Custom 

Model 

Fig. 6 comparison represents an optimized 

parameter grid value test with some 

variation in different devices. 

Strength Weakness 

Precisi-on Recall F1-score 

RF 0.76±0.07 0.72±0.07 0.74±0.04 Best recall & good F1 Moderate precision 

XGB 0.86±0.05 0.68±0.06 0.76±0.02 Balanced F1 & good 

for general use 

Slightly lower recall 

than RF 

LGBM 0.89±0.02 0.71±0.04 0.79±0.03 High precision but 

fewer False Positive 

Weakest recall and F1 

Ensemble/Stack 

Ensemble 
0.93±0.01 0.70±0.03 0.80±0.01 Robust precision and 

stable predictions due 

to high F1 

Slight requires more 

resources 

As Fig 7 represents the thresholds of axes X & Y are TP and FP rates. These threshold adjustments represented for 

classification thresholds were lowered to reduce false negatives, directly boosting recall [21],[22]. To understand, we derive 

a relationship connecting AUC (computed from two threshold rates) to precision, recall, and F1-score using geometric and 

harmonic principles.  Threshold 1 has FPR=0.0 and TPR=0.0 which is a use case to avoid all false positives (FPR=0) but 

fails to detect any true positives (TPR=0). Whereas threshold 2 of models defines the relaxed threshold allowing some FP/TP 

trade-off and balancing the steganalysis (TPR) and false alarms indication (FPR). 

 

Fig. 6.  Optimal thresholds of 1 and 2 for model performance analysis. 

The derivation for thresholds 1 and 2 (triangle for 2 points) with the geometric relationship of AUC is the area of the triangle 

formed by (0,0), (𝐹𝑃𝑅2,0), and (𝐹𝑃𝑅2,𝑇𝑃𝑅2). 

𝐴𝑈𝐶𝑚 =
1

2
× 𝐹𝑃𝑅2 × 𝑇𝑃𝑅2 (30) 

Linking 𝐴𝑈𝐶𝑚 to 𝐹1𝑠𝑐𝑜𝑟𝑒 , by using 𝐹1𝑠𝑐𝑜𝑟𝑒 the formula, substituting 𝑅 = 𝑇𝑃𝑅2, rewrite Eq. (27) as  𝑃𝑚 =
𝐹1𝑠𝑐𝑜𝑟𝑒 × 𝑅

2𝑅 − 𝐹1𝑠𝑐𝑜𝑟𝑒
, and 

substitute 𝑇𝑃𝑅2 = 𝑅  in Eq. (30). Then 𝐴𝑈𝐶𝑚 =
1

2
× 𝐹𝑃𝑅2 ×  𝑅 rewrite as 𝐹𝑃𝑅2 =

2 × 𝐴𝑈𝐶𝑚

𝑅
. Therefore, the final relationship 
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of Eq. (30) after deriving is represented below with Eq. (31).  

𝐴𝑈𝐶𝑚 =
𝐹𝑃𝑅2 × 𝐹1 × 𝑅

2(2𝑅 − 𝐹1𝑠𝑐𝑜𝑟𝑒)
 (31) 

Here the model is evaluated to two thresholds, where we obtained to better F1 score analysis for model evaluation and 

performance. The interpretation of 𝐴𝑈𝐶𝑚 vs 𝐹1𝑠𝑐𝑜𝑟𝑒 indicates that higher 𝐴𝑈𝐶𝑚 requires either higher 𝐹𝑃𝑅2 or 𝑇𝑃𝑅2, but 

this conflicts with precision (𝑃𝑚  𝛼 
1

𝐹𝑃𝑅2
). As the trade-off to optimizing the 𝐹1𝑠𝑐𝑜𝑟𝑒  balances 𝑃𝑚 and 𝑅𝑚, while 𝐴𝑈𝐶𝑚 

penalizes high 𝐹𝑃𝑅2.  

6. CONCLUSION AND FUTURE WORK 

We conclude that the stego-based image exploits make the data modeling vulnerable and the area of other fields also. To 

overcome that we proposed an approach of two-block integrated algorithms consisting of cross-verification images using 

multi-domain correlation and improvised stacked ensemble classification for steganalysis. Here the block works to separate 

for image preprocessing and utilizes the image properties to calculator the statical, structural, and frequency domain to 

segregate the images into simulated folders of cover and stego directory. This process reduces computation resources by 

utilizing the multi-domain and their mathematical evaluation. Then come to the block of stacked ensemble classification 

utilizing the base classifiers. Here we designed approaches as follows firstly, the initial processing image undergoes through 

multi-scale processing to capture the artifact at varying resolutions.  

The hybrid logarithmic weighting, phase-entangled magnitude, non-linear context adaption, cross-level energy tracking 

between adjacent scales, the custom filters for noise residual, and many more enhance the fusion features. Then the model 

evaluation we used the efficient techniques of halvingGridSearch and GPU rendering with robust statical practices including 

calibrations classifier, stratification specially designed for steganalysis unique challenge of the subtle signal of high 

dimensional spaces, and probability refinements. The dimensionality control uses median RF feature selection to reduce the 

overfitting and standard scaling ensuring the gradient boosted for meta-featuring. Here the model is a limited to moderate 

dataset and the two thresholds we evaluated to better F1 score analysis for model evaluation and performance. We can also 

take more thresholds based on the above mathematical calculation equation. Our proposed algorithms though have significant 

changes to reduce computational resources and build for balanced datasets to handle small variations in imbalance datasets 

only processed as input to have stable prediction in our novel ensemble modeling. This can lead to one of the approaches in 

the machine learning model for the steganalysis field. To improve the limitations in the future we are going to work with the 

deep learning model to adapt more fusion features, improve threshold optimization, and more to handle the imbalance dataset 

of other image formats also. 
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