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ABSTRACT 

Real-time physiological monitoring during brain surgery is critical for ensuring intraoperative safety and precision. 

Traditional centralized artificial intelligence (AI) models, although powerful, pose challenges related to data privacy, latency, 

and network reliability—factors that are particularly sensitive in neurosurgical environments. This paper proposes a novel 

architecture that integrates federated learning with wireless sensor networks (WSNs) to enable secure, decentralized, and 

intelligent intraoperative monitoring. In the proposed system, distributed sensor nodes equipped with local AI models 

perform real-time analysis of neurophysiological signals such as electroencephalography (EEG) and intracranial pressure 

(ICP). Model updates are shared instead of raw data, preserving patient privacy while enabling collaborative learning through 

federated averaging. Experimental simulations demonstrate that the federated learning approach achieves comparable 

prediction accuracy to centralized models while significantly reducing communication overhead and enhancing data security. 

The architecture also supports scalability, resilience to single-point failures, and adaptability across varied surgical contexts. 

This study lays the groundwork for deploying privacy-preserving AI systems in high-stakes surgical procedures and paves 

the way for intelligent, edge-enabled brain-computer interfaces. 

Keywords: Brain surgery, Wireless sensor networks, Artificial intelligence, Federated learning, Neurophysiological 

monitoring, Intraoperative decision support, Edge computing, EEG, Data privacy, Decentralized learning 

1. INTRODUCTION 

Brain surgery is a highly complex and delicate procedure that demands continuous, real-time physiological monitoring to 

guide intraoperative decisions and prevent life-threatening complications. Signals such as electroencephalography (EEG), 

intracranial pressure (ICP), and cerebral oxygen saturation are critical for assessing the patient's neurological status during 

surgery. Timely interpretation of these data streams allows neurosurgeons to detect anomalies, anticipate adverse events, and 

adapt their operative strategies accordingly (Topol, 2019). However, traditional monitoring systems often rely on  
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This case study shows a great degree of clinical suspicion is needed to diagnose such cases and also the need for 

multidisciplinary approach for the management of such cases. 

Wireless sensor networks (WSNs) offer a promising alternative by enabling distributed data collection and edge-level 

processing within the surgical environment. WSNs consist of spatially distributed, lightweight sensors that can acquire and 

transmit real-time physiological signals with minimal delay. When integrated with AI capabilities, WSNs become intelligent, 

context-aware networks capable of assisting in decision support, risk detection, and intraoperative analytics (Chen et al., 

2021). However, centralized AI models remain incompatible with the distributed nature of WSNs, limiting their effectiveness 

in neurosurgical contexts. 

To address these challenges, this paper proposes the use of federated learning as a privacy-preserving and resilient learning 

paradigm for WSN-based brain surgery monitoring. This decentralized approach enhances privacy, reduces communication 

overhead, and ensures robustness against single points of failure (Li et al., 2020). Moreover, it enables adaptive learning 

across heterogeneous sensor nodes, allowing the AI system to generalize across different surgical settings and patient 

conditions. 

The primary objective of this paper is to design and evaluate a federated learning-enabled wireless sensor architecture tailored 

for secure and intelligent intraoperative monitoring during brain surgery. The system aims to support low-latency, high-

reliability signal interpretation while maintaining strong guarantees for data privacy and operational resilience. By integrating 

edge AI with decentralized learning, this architecture contributes to the advancement of safe, intelligent, and real-time 

surgical support systems. 

2. RELATED WORK 

Wireless Sensor Networks (WSNs) have played a pivotal role in enhancing healthcare monitoring, particularly in domains 

requiring continuous physiological data collection such as postoperative care, cardiovascular tracking, and neurocritical 

monitoring. In neurosurgery, WSNs are increasingly utilized for intraoperative signal acquisition—such as 

electroencephalography (EEG), intracranial pressure (ICP), and cerebral perfusion metrics—due to their scalability and low-

latency characteristics (Pantelopoulos & Bourbakis, 2010). However, these networks often operate as passive conduits for 

data transmission and lack embedded intelligence at the node level. 

Artificial intelligence (AI) techniques have shown significant promise in interpreting neurophysiological signals. Models 

such as CNNs, SVMs, and LSTM networks have been applied for classifying EEG signals, predicting seizure onset, and 

modeling ICP fluctuations (Roy et al., 2019). These models typically require centralized architectures and large annotated 

datasets, which can introduce latency, data privacy concerns, and dependency on constant connectivity—factors that are less 

suitable for intraoperative applications. 

In medical domains, federated learning has been applied to electronic health record (EHR) analysis, medical imaging, and 

disease prediction, allowing multiple clinical centers or devices to collaboratively learn without exchanging raw data (Sheller 

et al., 2020). This paradigm supports data privacy, personalization, and system resilience—qualities essential for surgical 

environments where data sensitivity and network instability are common. 

In the context of neurosurgery and brain-computer interfaces, privacy-preserving AI techniques have gained traction to 

minimize data leakage risks. Approaches such as secure aggregation, differential privacy, and federated averaging have been 

explored to ensure data integrity while maintaining clinical relevance (Kaissis et al., 2021).  

However, the complexity of real-time synchronization and hardware heterogeneity across sensor nodes continues to pose 

implementation challenges. Traditional centralized learning frameworks still dominate surgical AI systems due to their 

unified control and ease of deployment. Nevertheless, they suffer from limitations in scalability, real-time adaptability, and 

privacy preservation. These shortcomings have motivated the shift toward decentralized, edge-intelligent systems. Table 1 

summarizes the comparative landscape of these key technologies, highlighting their application domains, benefits, and 

inherent limitations. As shown, while WSNs and centralized learning are foundational, federated learning and privacy-

preserving AI represent the most promising direction for building resilient and intelligent brain surgery monitoring systems. 

 

Category Application Domain Key Benefits Limitations 

Wireless Sensor 

Networks (WSNs) 

Remote patient 

monitoring, 

intraoperative sensing 

Scalable, low-latency 

sensing 

Limited local processing 

and intelligence 

AI for 

Neurophysiological 

Analysis 

EEG classification, ICP 

trend prediction 

High-accuracy signal 

interpretation 

Requires annotated 

datasets, subject to noise 
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Federated Learning in 

Medicine 

Diabetes, cancer 

diagnostics, EHR 

analytics 

Privacy, personalization, 

decentralized learning 

Communication 

overhead, system 

heterogeneity 

Privacy-Preserving AI in 

Surgery 

Brain-computer 

interfaces, robotic 

surgery 

Minimized data 

exposure, local 

autonomy 

Complex coordination, 

hardware variability 

Centralized Learning 

Frameworks 

General hospital 

analytics, centralized 

cloud AI 

Central control, model 

uniformity 

Privacy risk, dependence 

on connectivity 

Table 1. Comparison of Key Approaches in Related Domains 

3. SYSTEM ARCHITECTURE 

The proposed system integrates a wireless sensor network (WSN) with a federated learning framework to enable real-time, 

privacy-preserving brain surgery monitoring. The architecture is designed for distributed physiological sensing, local AI 

model inference, and collaborative model optimization without centralized data aggregation. 

At the core of the system is a network of wireless edge devices, each embedded with biomedical sensors capable of capturing 

neurophysiological signals such as EEG, ICP, or cerebral blood flow. These edge devices operate autonomously and are 

placed strategically around the surgical field or on the patient’s body, depending on the clinical use case. Each node 

preprocesses the signal locally and performs lightweight inference using a compact neural network model adapted to its 

sensing function. 

The federated learning infrastructure connects these edge devices to a central coordination server, which manages the training 

workflow without collecting raw patient data. In this setup, each edge node acts as a client, training its local model on real-

time data collected during surgery.  

This federated scheme ensures that all learning occurs at the edge, preserving data privacy while enabling collective 

intelligence. The communication flow includes secure protocols for update transmission, model synchronization, and error 

handling to support fault tolerance and network variability. 

The data flow, as illustrated in Figure 1, begins with sensor-level signal acquisition, followed by preprocessing and local 

inference. These processed results and model updates are exchanged with the server during federated rounds, enabling 

iterative model improvement across all nodes without compromising patient confidentiality. 

 

Figure 1. Federated Learning Model Update Sequence 

4. AI MODELS AND SIGNAL PROCESSING 

The effectiveness of the proposed wireless sensor network depends heavily on the types of physiological data it collects and 

how that data is processed and learned from in real time. The primary modalities used for intraoperative brain monitoring 

include electroencephalography (EEG) for neural oscillations, intracranial pressure (ICP) for pressure variations during 

tumor or hematoma manipulation, and cerebral hemodynamics (e.g., tissue oxygen saturation, blood flow velocity). These 

signals provide rich, time-series data essential for real-time assessment of brain function during surgery. 
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To ensure accurate downstream inference, raw sensor data must undergo preprocessing and transformation. For EEG and 

neural signals, this includes noise filtering, artifact removal (e.g., muscle activity, eye blinks), normalization, and frequency 

band extraction (delta, theta, alpha, beta, gamma). ICP and hemodynamic signals are smoothed using moving average filters 

and are often transformed using first-order derivatives or wavelet analysis to detect rapid physiological changes. The resulting 

features are standardized and formatted into sliding windows suitable for neural network inputs. 

Each sensor node is equipped with a lightweight local AI model, capable of real-time signal analysis and anomaly detection. 

Model architecture selection depends on the nature of the data: 

Convolutional Neural Networks (CNNs) are used for spatial pattern detection in EEG time–frequency maps. 

Long Short-Term Memory (LSTM) networks are deployed to model sequential dependencies in time-series signals like ICP 

or cerebral perfusion. 

Autoencoders are used for unsupervised anomaly detection by reconstructing normal physiological patterns and flagging 

deviations. 

The FedAvg (Federated Averaging) algorithm is used at the central aggregation server to combine local model updates into 

a global model, which is then redistributed to all clients for the next training round. This approach ensures continuous model 

refinement while maintaining full compliance with data privacy constraints. 

The provided pseudocode outlines a decentralized training loop using the Federated Averaging (FedAvg) algorithm, which 

enables collaborative learning across multiple wireless sensor nodes without sharing raw surgical data. Initially, a global 

model is deployed by a central server and distributed to selected sensor nodes within the network. Each selected node receives 

the global model and performs localized training using its own neurophysiological data—such as EEG or intracranial 

pressure (ICP) signals—captured in real time during brain surgery. After local optimization, only the updated model 

parameters (not the raw data) are transmitted back to the server.  

This ensures strict data privacy while still enabling model improvement. The server then aggregates all updates using 

FedAvg, which computes a weighted average based on the contribution of each node. The resulting global model is 

redistributed to all clients, completing one training round. Over multiple rounds, the model progressively adapts to diverse 

intraoperative scenarios while remaining compliant with privacy constraints and bandwidth limitations. This distributed 

learning strategy offers a secure, scalable, and adaptive AI pipeline ideally suited for dynamic, high-stakes environments like 

brain surgery. 

 

Initialize global model G 

for each federated round t = 1 to T: 

    selected_clients = randomly_sample(sensor_nodes) 

    for each client k in selected_clients: 

        receive G from server 

        G_k = LocalTrain(data_k, G)  # Train locally on sensor node 

        send G_k to server 

    G = Aggregate({G_k for all k})  # FedAvg: weighted average of local models 

    broadcast G to all sensor nodes 

Table .2. Pseudocode of the Proposed Approach 

5. SECURITY AND PRIVACY FRAMEWORK 

The proposed architecture prioritizes security and privacy by design, particularly given the sensitivity of physiological data 

collected during brain surgery. One of the foundational principles of this framework is data isolation, wherein raw signals 

such as EEG and intracranial pressure are never transmitted outside the originating sensor node. Instead, each edge device 

performs local computation, and only model updates or gradients are shared with the central aggregator. This strategy 

effectively eliminates the risk of direct data leakage, a common vulnerability in traditional centralized learning frameworks. 

To further strengthen privacy guarantees, the system can incorporate differential privacy mechanisms or secure aggregation 

protocols. Differential privacy adds statistical noise to model updates before transmission, ensuring that no individual data 

point can be inferred from the aggregated results. Alternatively, secure aggregation techniques allow the server to compute 
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the combined updates without ever accessing individual contributions, preserving confidentiality even in the presence of 

semi-trusted aggregators. 

The decentralized nature of federated learning also offers enhanced resilience against targeted attacks and system failures. 

Since no single node has full visibility into the entire dataset or model, adversarial attacks such as data poisoning or model 

inversion are significantly more difficult to execute. Additionally, the system supports fault tolerance by allowing partial 

participation in each round of training. Nodes that experience hardware failure, signal dropout, or energy constraints can be 

temporarily excluded without halting the global learning process. 

As illustrated in Table 2, centralized learning systems pose greater risks in terms of data exposure, single-point failure, and 

attack surface area. In contrast, federated systems improve security by distributing computation, isolating data, and reducing 

dependency on continuous connectivity—making them better suited for high-stakes clinical applications like intraoperative 

neurosurgical monitoring. 

 

Aspect Centralized Learning Federated Learning 

Data Exposure High – raw data transferred to server Low – data remains on local devices 

Privacy Control Centralized and vulnerable to 

breaches 

Decentralized with local control 

Attack Surface Broad – single point of attack Narrow – distributed nodes with partial 

views 

Fault Tolerance Low – server or network failure halts 

operation 

High – nodes can drop out without 

interrupting system 

Regulatory 

Compliance 

Difficult due to data movement Easier due to in-place data processing 

Table 2. Comparison of Security Risks: Centralized vs Federated Systems 

6. EXPERIMENTAL SETUP AND RESULTS 

To evaluate the proposed federated learning-enabled wireless sensor architecture, a comprehensive experimental setup was 

designed using a combination of simulated neurophysiological data and publicly available clinical datasets. The primary data 

sources included synthetic EEG and intracranial pressure (ICP) signals modeled after real intraoperative patterns using 

Gaussian noise overlays and realistic temporal artifacts. These simulations were calibrated against segments of the CHB-

MIT Scalp EEG Database to ensure authenticity and variability. Each dataset instance consisted of multichannel, time-series 

signals with annotated labels for normal and abnormal events such as seizures, pressure spikes, or perfusion drops, enabling 

both supervised and unsupervised learning scenarios. 

The deployment environment consisted of ten virtual sensor nodes, each simulating the behavior of edge devices embedded 

in different regions of the patient’s scalp or brain monitoring apparatus. These nodes operated asynchronously to mimic real-

world network irregularities and varying signal conditions. The communication latency was bounded to under 150 

milliseconds, ensuring that the update cycles remained viable for intraoperative settings. Federated rounds were conducted 

every 30 seconds, simulating a continuous learning environment across multiple surgical phases. Each local model was 

constrained to execute within low-compute environments to reflect the capabilities of embedded medical devices. 

The system was evaluated across three key tasks: classification, anomaly detection, and temporal prediction. Classification 

focused on identifying specific neurophysiological states such as seizure onset or cerebral ischemia. Anomaly detection was 

carried out using autoencoders trained to reconstruct normal signal patterns and flag deviations beyond learned thresholds. 

Temporal prediction, implemented using LSTM-based architectures, aimed to forecast future values of ICP or EEG trends 

for proactive intervention. Performance metrics included accuracy, F1 score, response time, communication overhead, and 

local memory usage. This experimental design allowed for a robust assessment of the system’s viability under practical 

neurosurgical conditions and its ability to deliver real-time, privacy-preserving AI support. 

Figure 6.1 presents a comparative analysis of EEG classification accuracy over 20 federated rounds for three learning 

strategies: the proposed Federated LSTM, a Centralized LSTM, and a Federated CNN model. The accuracy of all models 

improves over time, but the federated LSTM consistently outperforms the others, achieving ~89.5% accuracy by round 20. 

This reflects its ability to model long-term temporal dependencies in EEG signals while preserving privacy through 

decentralized training. 

In contrast, the Centralized LSTM benefits from access to pooled data and achieves around 83.1%, but it lacks the real-time 
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adaptability and privacy safeguards of the federated model. The Federated CNN, while lighter and faster, struggles to capture 

sequential patterns as effectively, plateauing at around 76.8% accuracy. 

This figure underscores the strength of combining federated learning with LSTM architecture in neurophysiological time-

series applications—achieving both performance and privacy in a real-time surgical context. 

 

Figure 6.1. EEG Classification Accuracy vs Federated Rounds Across Algorithms 

Figure 6.2 compares the inference latency of three model configurations: the proposed Federated LSTM, a Centralized 

LSTM, and a lightweight Edge-only CNN. The latency is measured in milliseconds (ms) and reflects the time taken from 

signal acquisition to prediction output. 

The Federated LSTM model demonstrates a balanced latency of approximately 140 ms, offering a trade-off between real-

time responsiveness and temporal modeling complexity. The Centralized LSTM, which requires transmission of data to a 

remote server, exhibits significantly higher latency at 320 ms, making it less suitable for real-time intraoperative use. On the 

other hand, the Edge-only CNN is the fastest, with a latency of 95 ms, but it sacrifices temporal depth and overall accuracy. 

This figure highlights the advantage of federated architectures in delivering low-latency AI for critical surgical applications 

while maintaining privacy and computational distribution.  

 

Figure 6.2. Inference Latency Comparison: Federated vs Centralized Models 

Figure 6.3 compares the model convergence time—defined as the time taken for each learning method to reach stable 

performance—for three variants: the proposed Federated LSTM, a Centralized LSTM, and a Federated LSTM without 

aggregation (i.e., local-only training with no global model synchronization). 

The Federated LSTM demonstrates the fastest convergence at 48 seconds, owing to the collaborative effect of periodic model 
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aggregation that rapidly integrates diverse learning experiences from each sensor node. The Centralized LSTM requires 72 

seconds to converge due to its dependence on cloud communication and centralized processing bottlenecks. The non-

aggregating federated variant shows the slowest convergence at 95 seconds, as local models evolve independently without 

shared updates, limiting collective learning. 

 

Figure 6.3. Model Convergence Time Across Sensor Nodes 

Figure 6.4 compares the communication cost per training round across three different learning approaches: our proposed 

Secure Federated Averaging (FedAvg), raw gradient sharing, and centralized model training via direct data upload. 

 

Figure 6.4. Communication Overhead per Round Across Learning Approaches 

The proposed Secure FedAvg method has the lowest communication overhead, averaging around 1.2 MB per round, thanks 

to transmitting only compact model updates with privacy-preserving compression. Raw gradient sharing, a less optimized 

federated strategy, requires approximately 3.8 MB per round, since it shares higher-dimensional raw gradient vectors without 

aggregation. The centralized upload method incurs the highest cost—7.5 MB per round—as it transmits full raw EEG data 

to a remote server for every training step. 

This figure demonstrates that federated learning with secure aggregation not only protects privacy but also minimizes 

bandwidth consumption, making it ideal for resource-constrained surgical settings with strict real-time and data security 

requirements. 
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Figure 6.5 compares the energy consumption per training round for three approaches deployed on sensor nodes: the proposed 

Federated LSTM, a Centralized LSTM, and a No Learning strategy that transmits raw data to a remote server. 

 

Figure 6.5. Energy Consumption per Node During Training and Inference 

The Federated LSTM approach demonstrates the lowest energy usage at approximately 85 millijoules per round, due to its 

on-device computation with lightweight model updates. In contrast, the Centralized LSTM consumes around 260 millijoules, 

as it requires repeated uplink transmissions of intermediate outputs and constant model synchronization. The No Learning 

approach, which offloads raw sensor data without any local processing, is the most energy-intensive at 390 millijoules, due 

to the high data volume and transmission frequency. 

This figure illustrates that federated learning not only safeguards privacy and improves model performance but also 

significantly enhances energy efficiency, making it ideal for battery-operated medical sensor deployments in surgical 

environments. 

Figure 6.6 presents an ablation study evaluating how different architectural components affect the EEG classification 

performance of the system. The full model, which combines federated updates with local model training, achieves the highest 

classification accuracy of 89.5%, demonstrating the effectiveness of integrating both learning mechanisms. 

 

Figure 6.6. Ablation Analysis: Impact of Federated and Local Components 

When federated updates are removed, performance drops to 84.6%, indicating that local models alone struggle to generalize 

across distributed data variations. In the local-only setting—where each sensor trains independently without any 

communication or global coordination—the accuracy falls further to 80.1%, highlighting limited learning capacity in 

isolation. On the other hand, the centralized-only model, which relies on pooled data but lacks real-time personalization, 

achieves 83.1%, better than local-only but still behind the full hybrid strategy. 
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This figure reinforces the conclusion that both local adaptation and global knowledge sharing are essential for building an 

accurate, decentralized brain monitoring system using wireless sensors. 

Figure 6.7 presents a confusion matrix that illustrates the classification performance of the proposed Federated LSTM model 

for seizure prediction based on EEG signal analysis. The matrix captures the model’s ability to distinguish between two 

critical classes: Normal and Seizure. Out of the evaluated samples, the model correctly identified 92 normal events and 94 

seizure events, indicating strong overall sensitivity and specificity. There were 8 false positives, where normal signals were 

mistakenly classified as seizures, and 6 false negatives, where seizures were misclassified as normal. This balanced 

performance reflects the model’s robustness in both minimizing missed critical events and avoiding unnecessary alerts. 

 

Figure 6.7. Confusion Matrix for Seizure Prediction Using Federated LSTM 

To enhance the readability and aesthetic clarity of the matrix, the color scheme uses a modified version of MATLAB’s 

default parula colormap, in which the intense yellow tones have been softened. This adjustment helps reduce visual glare 

while maintaining high contrast between cell values, allowing clinicians and researchers to more easily interpret the 

distribution of predictions. The result is a clinically intuitive and visually accessible visualization that effectively conveys 

the strengths of the federated learning approach in high-stakes, real-time seizure prediction scenarios. 

Figure 6.8 illustrates the effect of communication frequency on the F1 score of three different learning strategies: the 

proposed Adaptive Federated Learning (FL) approach, Static FL, and a Centralized Model. Communication frequency refers 

to how often local nodes synchronize with the central server to update the global model. The frequencies evaluated range 

from every round to every 10 rounds. 

 

Figure 6.8. F1 Score vs Communication Frequency Across Algorithms 

The proposed adaptive FL model consistently achieves the highest F1 scores across all settings, maintaining performance 

above 0.86 even with reduced communication intervals. This demonstrates its ability to selectively prioritize critical updates 
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while minimizing bandwidth usage. In contrast, the Static FL model shows a sharper decline in performance as the update 

interval increases, dropping to 0.812 at 10-round intervals. The Centralized Model, which does not rely on round-based 

updates, shows very little variation but also lacks the personalized adaptation benefits of FL. 

This figure emphasizes the resilience of adaptive FL under communication constraints and validates its suitability for 

deployment in bandwidth-limited, privacy-sensitive environments such as brain surgery monitoring.  

The results presented across Figures 6.1 to 6.8 provide compelling evidence for the practical effectiveness of the proposed 

federated learning framework in neurosurgical environments. The consistent gains in classification accuracy, convergence 

speed, and inference latency reflect the system’s ability to deliver high-performance predictive analytics under strict real-

time and privacy constraints. Notably, the ablation study and F1 score comparisons underscore the critical role of both local 

adaptation and global synchronization in achieving robust model generalization across heterogeneous surgical sensor nodes. 

Federated learning proves especially advantageous in neurosurgical contexts, where real-time monitoring and privacy 

preservation are paramount. By allowing on-device learning without transferring raw EEG or ICP data, the framework 

upholds clinical confidentiality while also improving personalization to the local physiological patterns of each patient. This 

decentralized intelligence fosters continuous intraoperative learning, enabling AI systems to adapt to subtle variations in 

patient state or surgical phase, thereby enhancing intraoperative decision support. 

Despite these benefits, challenges remain in real-world deployment. Hardware limitations on sensor nodes—such as 

restricted computational power and memory—can hinder the complexity of models that can be executed locally. 

Additionally, intermittent network connectivity in operating rooms can disrupt federated training cycles, particularly in 

bandwidth-constrained environments. These issues necessitate careful scheduling of communication rounds, selective model 

updates, and the use of lightweight architectures tailored to edge computing conditions. 

Another crucial consideration is the trade-off between model complexity and battery life. While deeper models like LSTMs 

offer improved temporal reasoning and accuracy, they also consume more energy and processing resources. Balancing this 

trade-off is essential to ensure that the system remains operational throughout extended procedures without requiring frequent 

battery replacements or recharges. These discussions highlight that while federated learning is a promising solution for 

intelligent, real-time neurosurgical support, its design must be aligned with the constraints and nuances of surgical practice. 

7. CONCLUSION  

This research article presents a novel federated learning-enabled wireless sensor architecture tailored for real-time 

neurosurgical monitoring and decision support. By integrating on-device AI with privacy-preserving model aggregation, the 

system effectively balances performance, data confidentiality, and energy efficiency. Experimental results demonstrated 

strong classification accuracy, reduced communication overhead, and improved convergence time compared to centralized 

and non-federated alternatives. The architecture's ability to maintain high F1 scores under varying communication 

frequencies further validates its robustness in dynamic operating environments. 

The key contribution lies in designing a system that is both technically adaptive and clinically viable. Through decentralized 

training, the model continuously learns from local intraoperative signals—such as EEG and ICP—without exposing sensitive 

data. Additionally, by leveraging lightweight LSTM-based models and optimizing communication intervals, the framework 

ensures real-time responsiveness and prolonged device operation in battery-constrained settings. 
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