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ABSTRACT

An electrocardiogram (ECG) is used to monitor the heart's electric impulses and visualize cardiac signals in order to identify
issues. For the early identification of heart-related conditions, the non-invasive Electrocardiogram (ECG), which offers data
on cardiac abnormalities, has become a common procedure. A variety of methods are employed to identify irregular
heartbeats. To predict cardiovascular illnesses, which can lead to severe illness or even death in middle-aged and older
persons, this study suggests a way to categorize ECG records. One of the largest anomalies was caused by an arrhythmia
sickness.

Several deep learning approaches were utilized to predict early arrhythmias and save lives. Several ECG signal classifications
have been done utilizing pre-existing databases, such as MIT-BIH arrhythmia, according to a review of the literature. In
order to detect irregularities associated with arrhythmias.

This research suggests an architecture that integrates a number of heart disease classification methods with a 99.7% accuracy
rate, including logistic regression, CNN, LSTM, decision trees, k-nearest neighbors, Naive Bayes, discriminant analysis, and
neural networks.

Keywords: EGC, electrocardiogram, CNN-LSTM, deep learning, machine learning

1. INTRODUCTION

Cardiovascular diseases (CVDs) are becoming the primary cause of death, owing to a WHO study. Every year, cardiovascular
diseases, one of the worst conditions, take the lives of millions of individuals. Cardiovascular problems are responsible for
17.9 million deaths each year, or about 31% of all deaths, according to a recent study. Machine learning (ML) has lately
reemerged in healthcare innovation because to the massive development in electronic health records, which contain organized
collections of various types of digitalized medical data as well as new methods for effectively evaluating this large quantity
of data.

It should be noted that the reader might not understand why a priori feature establishment is required. Frameworks for ECG
interpretation (such as rate, rhythm, axis, intervals, and ventricles) are already in place to classify and identify different heart
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issues. It would be foolish to rule out the possibility of additional morphologies that are invisible to the human eye, either
locally or as connections between beats, given the intricacy of the cardiac conduction system and its relative stability. In
signal processing and imaging, the high-fidelity automated feature engineering offered by DL may be advantageous for the
many underived features present in raw waveforms and pixels. Despite not being fully proved, these mysterious patterns
must explain why Attia et al. 26's optimistic predictions of paroxysmal atrial fibrillation (AF) in individuals from a benign,
normal sinus rhythm ECG were successful. Over three-fourths of all deaths in countries with low and moderate incomes are
caused by cardiovascular diseases. Studies have shown that cardiac arrhythmias are directly responsible for about 50% of
heart disease deaths and 80% of sudden cardiac deaths.

This is an example of how poor diagnostic methods exacerbate heart problems. The majority of these deaths are caused by
strokes and heart attacks. An early, accurate diagnosis, made possible by ECG analysis, can improve the chances of survival
for many heart disorders. The primary cause of CVDs is the detrimental long-term effects of cardiac arrhythmias. Very slow
or very fast irregular heartbeats are known as arrhythmias.

2. RELEATED WORKS

In light of their findings, Bhekumuzi et al. suggested Two-dimensional images were utilized as inputs to the CNN classifiers
after the ECG time series had been divided and transformed using an RP. A two-stage categorization method is suggested in
this research to increase accuracy. In the first stage, ventricular fibrillation (VF) and noise were detected using the ResNet-
18 architecture.

An arrhythmia is a type of cardiac ailment that is distinguished by the heartbeat's rhythm or rate. The heartbeat may exhibit
an erratic pattern, be too slow, or be faster than usual. Bradycardia is a cardiac condition linked to extremely slow heartbeats,
while tachycardia happens when the heartbeat is too rapid[2]. Every 36 seconds, someone dies in the US from heart disease.
In America, heart disease accounts for about 655,000 fatalities annually, or one death out of every four that are caused by
cardiovascular disease [3].

The ECG signal can be obtained in a number of ways and is generally available. Many signal processing-based automatic
ECG classification methods have been proposed over time. These include neural networks (ANNSs) [5,6], decision trees [7],
Bayesian classifiers [4], wavelet transform [4,5], frequency analysis [6], support vector machines (SVMs) [8,9], and linear
discriminant analysis [5]. The most popular method in the last few years was the application of DL algorithms [8]. A Random
Forest (bagged decision tree) based classifier was trained using 380 features in total. Weights based on the distribution of
classes were applied since the classes in the Challenge were seriously out of balance [9].

The study made use of the Reverse Time Attention model (RETAIN), which is based on a combination of Recurrent Neural
Networks (RNNs) and includes an attention mechanism [13]. Predicting cardiac disease effectively and consistently is
challenging, despite the fact that machine learning and deep learning approaches are currently transforming the healthcare
industry [11].

Heart disease has been predicted using a variety of classification techniques; one ensemble learning method, Random Forest
(RF), has demonstrated some promising outcomes in this regard [12]. This makes it possible for the experts and healthcare
providers to understand which variables or time periods are most crucial for the model's forecasts. The state-of-the-art DL
algorithms' inability to extract features in complex and noisy contexts hinders the development of precise and dependable
object differentiation [14]. One study used numerous machine learning algorithms to predict CVD using clinical data. The
researchers made use of DTs, RFs, and K-nearest neighbor (KNN) models. Using these models, the authors demonstrated a
high degree of accuracy in CVD prediction [15].

The capacity of various machine learning algorithms to forecast heart illness was examined in another study. The scientists
reported that the models accurately predicted heart issues [17]. Using closed-loop, one-dimensional/zero-dimensional
cardiovascular models, the impact of hepatic vein exclusion or fenestration on extracardiac Fontan hemodynamics will be
examined in this study. To model challenges in the splanchnic circulation, we modify mesenteric vascular resistance and
consider fenestration conduits of different widths [18].

However, Ventricular Fibrillation, a severe form of arrhythmia, is thought to be a contributing factor to heart attacks and has
the potential to be lethal. While lifestyle choices or other heart conditions might cause certain arrhythmias, some can be
inherited. Arrhythmias can be treated in the majority of instances that are detected early. Prompt, comprehensive diagnosis
and medical therapy reduce the risk of unexpected death for patients with these illnesses [19,20]. In the medical sector,
machine learning is essential. A wide range of diseases can be identified and predicted thanks to machine learning [21]. The
application of data mining and machine learning techniques to forecast the risk of contracting specific diseases has grown
recently [22]. Data mining techniques for disease prediction have been applied in the published literature [23]. While some
studies have tried to forecast the likelihood of the disease's future course, they have not yet produced reliable findings [24].

3. PROPOSED METHOD
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3.1 Methodological ECG Interpretation

The reader will quickly see that the use of an algorithm greatly facilitates the interpretation of ECGs, since it speeds up the
process and lowers the possibility of overlooking critical abnormalities. The following algorithm is easy to understand and
anyone may use it. It is always necessary to read the ECG methodically; otherwise, it could be harmful.

3.2 EVALUATION
The normal rhythm, or sinus rhythm, has the following traits. The heart rate ranges from 50 to 100 beats per minute, the P-
wave arises before each QRS complex, the PR interval is continuous, and the P-wave is positive in lead II.

Lead Il's P-wave needs to be positive for the rhythm to be sinus.VV1 may have a biphasic (diphasic) P-wave, and the negative
deflection should be smaller than 1 mm.A noticeable second hump may be present in the leads of the inferior limbs, especially
lead 1l. Pmitrale: longer P-wave, longer second hump in lead II, and longer negative deflection in V1.Increased P-wave
amplitudes in lead Il and V1 are indicative of P pulmonale.P-waves that are retrograde, or reversed, can be found anywhere
from the J point to the terminal part of the T-wave.if the P-wave is not easily visible. PR interval >0.22 s: AV block in the
first degree.PR interval <0,12 s: WPW syndrome or pre-excitation.Blocks of the left and right bundle branches make up the
wide QRS complex (QRS length >0.12 s). aberration of intraventricular conduction that is not specified. elevated potassium
levels. Antiarrhythmic drugs of class I. tricyclic drugs for depression. heart rhythms and cardiovascular extra systoles, often
known as premature complexes. The ventricle contracts due to an artificial pacemaker. unusual conduct (aberrancy).Pre-
excitation, also known as Wolff-Parkinson-White syndrome. The population has a high prevalence of innocent ST segment
elevation, especially in the precordial leads (V2-V6).. The male/female pattern refers to the fact that up to 90% (in certain
age ranges) of healthy men and women exhibit concave ST-segment elevations in V2-V6. Elevations of the ST-segment that
are not benign or caused by ischemia are relatively frequent. In healthy people, ST-segment depression is unusual. The
presence of ST-segment depression in the chest leads is very concerning. According to guidelines, all leads should have a
ST segment dip of less than 0.5 mm.ST-segment elevation causes include: Ischemia. Myocardial infarction with ST elevation
(STEMI/STE-AKS). Coronary vasospasm, also known as Prinzmetal's angina. Pattern of men and women. Repolarization
early on. Perimyocarditis.bundle branch block on the left. Disruption of intraventricular conduction that is not specific. Left
ventricular enlargement. Heart disease caused by Takotsubo.elevated potassium levels. After cardioversion. The figure 1
illustrated that ECG diagram of Heart attack prediction in different level P,Q,S value.
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Fig. 1 :ECG diagram of heart Attack Prediction in different level P,Q,S value.

A. Input Data

This approach makes advantage of information from an online database, such as the MIT-BIH dataset, that offers precise
details regarding cardiac abnormalities. Over 8,000 ambulatory ECG readings were obtained from patients at Beth Israel
Hospital in Boston, comprising approximately 40% outpatients and 60% inpatients. The initial dividing is on the basis of
patient samples from the database. Consequently, the division is carried out according to individual patients rather than
samples. Eighty percent of the data is made up of training and testing datasets. Examples of pre-processing techniques include
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data cleansing and standardization. The neural network was trained using the training dataset, and its accuracy and loss
percentages were evaluated using the validation dataset. The testing set was ultimately employed.This method uses data from
an online database that provides accurate information about cardiac anomalies, like the MIT-BIH dataset. More than 8,000
ambulatory ECG readings were obtained from patients at Boston's Beth Israel Hospital, 40% of whom were outpatients and
60% of whom were inpatients. The first separation is based on patient samples from the database. As a result, the splitting is
done based on individual patients rather than samples. Eighty percent of the entire data is made up of training and testing
datasets. Pre-processing techniques include things like data cleansing and standardization. After the neural network was
trained using the training dataset, its accuracy and loss percentages were evaluated using the validation dataset. The testing
set was ultimately employed.

B. Performance Factors:

Based on performance criteria, ECG signal data input online or in real time is categorized as normal or abnormal. The traits
include sensitivity, specificity, false positive and true positive values, and false and true negative values. The accuracy of the
models is assessed. The figure 2 illustrated that flow diagram of the data in MIT-BIH dataset.
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Figure 2: Flow diagram of the data in MIT-BIH dataset

4. RESULTS AND DISCUSSIONS

This study trains and evaluates the MIT-BIH arrhythmia dataset using decision trees, k-nearest neighbors, Naive Bayes,
logistic regression, discriminant analysis, neural networks, LSTM, CNN-LSTM, and CNN deep learning models—all heavily
used due to their uniqueness in ECG signal data [25]. The lowest frequency at which data is recorded is 360 Hz. In order to
distinguish between aberrant and normal ECG signal data, the online database's input signals are used to load the signals and
annotations of a particular patient. The remaining 80% of the input dataset was divided into training groups, while 20% was
divided into testing groups [26]. The CNN-train model training loss and validation loss during the various epochs and data
network loss were depicted in figure 3.
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Fig. 3. CNN: lack of validation and training
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The figure 5 illustrated that testing and training of data in heart attack dataset in cholesterol versus age in different age in
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The figure 6 illustrated that ECG image for heart attack prediction in the patients.
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Fig 6. ECG image for heart attack prediction in the patients
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The figure 8 illustrated that target data set for the male and female in heart attack in different time interval.
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Fig 9. Male and female in target data in different time interval

The figure 10 illustrated that error rate and K value in different time interval.
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Fig 10. Error rate and K value in different time interval.
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The figure 11 illustrated that sensitivity.  specificity, —accuracy and AUC in different types
algorithm such as ANN, Decision tree, AdaBoost and support vector machine.
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Fig 11: Sensitivity. Specificity, Accuracy and AUC
The figure 12 indicate that accuracy in different types of machine learning algorithm in the MIT-BIH data base.
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Fig 12. Accuracy in different types of machine learning algorithm in the MIT-BIH data base
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