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ABSTRACT 

Neonatal surgical care involves high-stakes decision-making under conditions of uncertainty, urgency, and limited 

physiological feedback. Clinicians often rely on experience and generalised guidelines to decide whether to proceed with 

surgical intervention—an approach that may not always capture the nuances of individual patient presentations. Artificial 

Intelligence (AI), particularly Reinforcement Learning (RL), offers a promising avenue to improve consistency and 

adaptiveness in such critical care scenarios. Unlike traditional machine learning models, RL learns optimal decision strategies 

by balancing rewards and risks through iterative feedback, making it suitable for sequential and high-impact clinical 

environments. This study presents a conceptual AI-driven Decision Support System (DSS) that leverages RL principles to 

assist clinicians in binary surgical decisions for neonates. The system employs manually constructed clinical state–action 

mappings, expert-informed reward logic, and an explainable Q-table rather than relying on patient data or simulations. It 

features a three-layered architecture, visual decision flowchart, and event tree to support transparent reasoning. Through 

hypothetical clinical scenarios and clinician-oriented workflow modelling, the system demonstrates potential for low-

resource settings and academic prototyping. While preliminary, the model offers a scalable, modifiable foundation for future 

integration with real-world clinical platforms, aiming to enhance decision quality in neonatal surgical care. 

 

Keywords: Neonatal care, Reinforcement learning, Clinical decision support, Surgical decision-making, Artificial 

intelligence 

1. INTRODUCTION 

Neonatal surgical care demands timely, precise, and life-saving decisions in high-pressure environments where patient 

conditions can deteriorate rapidly(Jeong & Kamaleswaran, 2022). The complexity of such care is compounded by the 

variability in neonates' responses to interventions and the difficulty in objectively quantifying critical thresholds for surgical 

intervention(Guez-Barber & Pilon, 2024). In these sensitive scenarios, clinicians often rely on their experience, guideline-

based protocols, and clinical intuition to decide whether immediate surgical intervention is warranted or if conservative 

management might suffice. 

Traditional decision-making models, although essential, are inherently limited in their adaptability and 

responsiveness(Catania, 2021). Clinical guidelines often adopt a one-size-fits-all approach, which may not account for subtle 

yet critical differences in individual patient presentations. Furthermore, human judgment, while invaluable, is susceptible to 

bias, fatigue, and variability across practitioners. As neonatal outcomes are closely tied to the timing and appropriateness of 

surgical interventions, there is a compelling need for intelligent systems that can support clinicians by providing consistent, 

data-informed, and context-aware recommendation(Jyoti et al., 2023). 
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Artificial Intelligence (AI), particularly Reinforcement Learning (RL), offers a promising avenue to enhance decision-

making in such scenarios. Unlike supervised learning, which depends on labelled datasets, RL involves an agent that learns 

optimal decision policies by interacting with an environment and receiving rewards or penalties based on outcomes. This 

allows for the development of adaptive systems that refine their strategies through experience, making RL highly suitable 

for sequential and dynamic clinical settings(Guez-Barber & Pilon, 2024). 

This study proposes a conceptual AI-driven Decision Support System (DSS) based on reinforcement learning principles, 

aimed at assisting clinicians in determining whether surgery is required for neonates under specific clinical conditions(Levin 

et al., 2024). The approach does not involve patient data or simulation-based training but instead uses manually defined 

clinical states, reward logic, and state-action mappings to create an explainable and lightweight model. Such a system is 

particularly valuable for early-stage design, academic validation, and use in low-resource or data-scarce 

environments(Muntean et al., 2025). 

2. LITERATURE REVIEW 

2.1 Decision Support Systems in Neonatal Surgery: 

Decision Support Systems (DSS) have been developed across various fields of medicine to aid in diagnosis, prognosis, and 

treatment planning. These systems range from basic rule-based models to advanced machine learning applications(Muntean 

et al., 2025). However, in neonatal surgery, the integration of DSS remains limited due to several factors, including the 

scarcity of large, high-quality datasets, the ethical constraints of experimentation, and the variability of neonatal 

conditions(Jaile et al., 2024). 

Most existing DSS tools in neonatal care are focused on monitoring, infection risk prediction, or general ICU support rather 

than binary decision-making specific to surgical interventions. Moreover, rule-based systems, while easy to implement, 

struggle with adaptability and cannot adjust to rapidly evolving clinical states. Thus, there is a growing interest in developing 

intelligent systems that incorporate real-time feedback and offer context-sensitive recommendations(Jyoti et al., 2023). 

2.2 Reinforcement Learning in Healthcare: 

Reinforcement Learning has gained attention in the healthcare domain for its unique capability to handle sequential decision-

making problems(Thakre et al., 2025). It has been successfully applied to areas such as glucose control in diabetic patients, 

optimal dosing of sedatives in ICU settings, and dynamic treatment strategies for sepsis. The RL framework operates through 

the interaction of an agent with an environment, learning to select actions that maximise cumulative reward(Roayaei & 

Soltani, 2025). 

In a clinical context, the “state” could represent a patient’s physiological parameters, the “action” could be a treatment 

decision, and the “reward” could be the outcome (e.g., survival, stability, recovery). This paradigm is particularly suited for 

critical care and surgical decisions where timing and progression play vital roles(Nadhir et al., 2025). Despite its potential, 

the application of RL in neonatal surgical care is virtually unexplored. This study addresses that gap by presenting a 

conceptual model that applies RL logic to the binary decision of surgery versus observation(Lakhan et al., 2024). 

3. MATERIALS AND METHODS: 

This study was designed as a 15-day conceptual modelling exercise, intentionally avoiding the use of real patient data or 

simulation episodes. The focus was to build a lightweight, explainable, and adaptable AI-driven Decision Support System 

(DSS) using reinforcement learning (RL) principles, specifically tailored to assist clinical decision-making in neonatal 

surgical care. The system aimed to support a binary decision framework: whether to proceed with surgery or opt for 

continued observation(Nadhir et al., 2025). 

The core framework draws inspiration from the fundamentals of reinforcement learning, in which an agent interacts with an 

environment by taking actions based on its current state and receiving a reward based on the outcome(Onapakala et al., 

2024). However, instead of learning from experience, this conceptual model uses manually constructed state-action mappings 

informed by clinical knowledge and reward logic. These mappings form the basis of a Q-table, with each combination of 

patient condition (state) and potential intervention (action) being assigned a reward value to reflect expected clinical benefit 

or harm. 

To define the relevant clinical states for neonatal surgical decisions, five key indicators were selected based on commonly 

observed parameters in neonatal intensive care units. These include physiological, biochemical, and clinical markers that 

typically influence surgical considerations. Each state was assigned a qualitative risk level (moderate, high, very high, or 

critical) and a “decision relevance” value to reflect how strongly it should influence the decision to operate. 
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Table 1: Key Clinical States for Surgical Decision-Making 

S.no 
Clinical State Indicator Risk Level 

Decision 

Relevance 

1. 
Abdominal distension 

Visible swelling or 

radiologic signs 
High + 

2. Lactate > 5 mmol/L Blood test Very High ++ 

3. Oxygen saturation < 90% Pulse oximeter Moderate + 

4. Elevated CRP or Procalcitonin Inflammatory marker High + 

5. 

Hypotension unresponsive to 

fluids 
Systolic < 60 mmHg Critical ++ 

The identification of critical clinical states is essential in neonatal surgical decision-making to ensure timely interventions 

and improve patient outcomes. The categorization of risk levels and decision relevance in Table 1 provides a structured 

framework for evaluating key clinical indicators in a systematic manner. Abdominal distension, lactate levels, and 

hypotension are among the crucial factors that influence surgical decisions, as outlined in Table 1. A high lactate level, 

particularly when exceeding 5 mmol/L, is a strong indicator of metabolic distress and is marked as "very high risk" in Table 

1. The presence of inflammatory markers such as CRP and Procalcitonin, as detailed in Table 1, suggests a potential 

infectious or inflammatory response that may necessitate further clinical evaluation. Hypotension that does not respond to 

fluid resuscitation is classified as "critical" in Table 1, highlighting its significance in urgent surgical decision-making. The 

structured classification of clinical states in Table 1 allows for a logical mapping of patient conditions to potential surgical 

actions, reducing ambiguity in clinical assessment. By integrating the risk levels from Table 1 into the decision-making 

framework, the model enhances the objectivity and consistency of surgical recommendations. The parameters listed in Table 

1 align with established neonatal intensive care unit (NICU) guidelines, reinforcing their clinical relevance in determining 

the necessity for surgical intervention. The decision relevance scores in Table 1 help prioritize conditions that have the 

highest impact on neonatal outcomes, ensuring that high-risk cases receive immediate attention. 

These clinical states were then integrated into the overall system architecture. The architecture was conceptualised as a three-

layered framework: an input layer, a reinforcement learning logic engine, and an output module. The input layer captures 

clinical data from the user (vitals, laboratory findings, and physical symptoms). The processing layer applies reinforcement 

logic to the input data, referencing the Q-table to determine the best action. Finally, the output layer provides a decision 

recommendation—either to proceed with surgery or to continue observation—along with an optional confidence score or 

justification text. 

 

Figure 1: Architecture of the AI-DSS 
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The AI-driven Decision Support System (DSS) is designed around a structured, three-layered architecture. This architecture, 

visually represented in Figure 1, facilitates the logical flow of data from input to decision output. The system's architecture, 

as shown in Figure 1, comprises an input layer, a reinforcement learning (RL) decision engine, and an output module. The 

input layer's primary function is to capture relevant clinical data, such as vitals, laboratory results, and observed symptoms, 

from the clinician user.  

The RL decision engine then processes this input data, utilizing the Q-table to match the clinical state with appropriate 

actions. Following this processing, the output module generates an action recommendation, suggesting either surgery or 

observation. This output may also include a confidence score to indicate the certainty of the recommendation. Effectively, 

Figure 1 illustrates the system's operational sequence, clarifying how data is transformed into a decision recommendation.    

This diagram represents the logical flow of data within the DSS, from input to decision. It includes: 

 Input: Vitals, labs, symptoms 

 RL Decision Engine: Matches state–action pairs 

 Output: Action recommendation + confidence score 

The heart of the system is a manually created Q-table, in which representative clinical state combinations are mapped to 

one of the two actions (Surgery or Observe), along with an assigned reward value. This value reflects how beneficial the 

action is considered, given the state, and is based on existing clinical guidelines and neonatal care principles. 

Table 2: Manually Created Q-Table for Surgical Decision Logic 

S.no 

State 

ID 
Clinical State Combination Action Reward Justification 

1.. 
S1 High lactate + low SpO₂ + distension Surgery 10 

Life-threatening 

infection suspected 

2. 
S2 Mild SpO₂ drop + no distension Observe 6 

Monitoring preferred 

before escalation 

3. 

S3 CRP elevated + borderline vitals Surgery 7 

Early intervention 

could improve 

outcome 

4. 
S4 Normal vitals + mild distension Observe 5 

Supportive care may 

suffice 

5. 
S5 

Hypotension + SpO₂ < 85% + 

distension 
Surgery 9 

Likely surgical 

emergency 

The manually created Q-table is a fundamental part of the AI-driven Decision Support System. This table, presented as Table 

2, plays a crucial role in mapping specific combinations of clinical states in neonates to the system's recommended actions, 

which are either to proceed with surgery or to continue with observation. A core function of Table 2 is the assignment of 

reward values to each potential decision, providing a structured approach to evaluating the potential benefits and risks 

associated with surgical intervention. For instance, when the system identifies a clinical state involving high lactate levels, 

low oxygen saturation, and abdominal distension, a high reward is assigned to the "Surgery" action, reflecting the urgency 

of the situation. In contrast, cases with mild oxygen desaturation and no abdominal distension receive lower reward values 

for surgery, suggesting that observation may be more appropriate. To enhance transparency, the "Justification" column in 

Table 2 explains the reasoning behind these reward assignments. This reward-based approach in Table 2 inherently balances 

the risks of delaying necessary intervention against the potential complications of unnecessary surgery. Furthermore, the 

design of Table 2 allows for modifications and refinements based on clinical feedback, making the model adaptable. 

Ultimately, the structured mappings within Table 2 provide a foundation for a reliable and interpretable decision support 

system, with its alignment to neonatal care principles enhancing its potential for real-world application.    

To visualise how the system processes data and reaches a recommendation, a decision flowchart was developed. This 

flowchart captures the step-by-step logic embedded in the RL system. Starting from clinical input, the system classifies the 

current state, consults the Q-table, and returns the highest-reward action. 
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Figure 2: RL Decision Flowchart 

To clearly illustrate the system's decision-making process, a detailed decision flowchart was developed. This flowchart, 

presented as Figure 2, effectively captures the step-by-step logic embedded within the reinforcement learning system. The 

flowchart in Figure 2 begins with the system's assessment of the input clinical state, reflecting the patient's condition. 

Following this assessment, the system proceeds to identify the specific clinical conditions present. The system then consults 

the Q-table, matching the identified conditions with corresponding actions, either surgery or observation. Subsequently, the 

system suggests the action that is associated with the highest reward value, indicating the most favourable decision. As shown 

in Figure 2, the process culminates in the output of the recommended action to the clinician. This visual representation in 

Figure 2 aids in understanding the system's operational flow and reasoning. 

Flowchart Logic: 

1. Assess input state 

2. Identify condition 

3. Match to Q-table 

4. Suggest action 

5. Output recommendation 

To support deeper reasoning, an event tree model was created. This event tree outlines the range of possible outcomes 

following each of the two actions—surgery or observation. It visually presents potential risks such as post-operative 

complications or deterioration due to delayed surgery, which are useful for understanding the logic behind the reward 

assignments. 
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Figure 3: Event Tree – Surgical vs. Non-Surgical Outcomes 

To support more in-depth reasoning about potential outcomes, an event tree model was developed. This event tree, illustrated 

in Figure 3, outlines the range of possible outcomes following each of the two actions: surgery or observation. As shown in 

Figure 3, it visually represents potential risks associated with each decision, such as post-operative complications following 

surgery. The event tree in Figure 3 also depicts potential negative outcomes like deterioration due to delayed surgery in the 

observation arm. These visual representations are useful for understanding the logic behind the reward assignments within 

the decision-making framework. The branches in Figure 3 detail the possible trajectories, including recovery, complications, 

or death after surgery. Similarly, Figure 3 shows that observation can lead to recovery, the need for delayed surgery, or death. 

Ultimately, this event tree in Figure 3 provides a clear visualization of the potential consequences of each decision. 

Branches: 

 Surgery → Recovery, Complication, Death 

 Observe → Recovery, Delayed Surgery, Death 

To further test and validate the model, a set of hypothetical scenarios was developed. Each scenario simulated a real-world 

clinical presentation and was mapped to a reward-based outcome depending on whether surgery or observation was chosen. 

These scenarios were useful in stress-testing the consistency and rationale of the decision logic. 

Table 3: Hypothetical Scenario Action–Outcome–Reward Mapping 

S.no 

Scenario 

ID 
Action 

Clinical 

Outcome 

Assigned 

Reward 
Notes 

1 
A1 Surgery 

Infection 

resolved 
10 

Early intervention 

successful 

2 
A2 Observe 

Deterioration, 

late surgery 
4 Delay caused worsening 

3 

A3 Observe 

Stable 

condition 

maintained 

8 
Correct non-invasive 

choice 

4 
A4 Surgery 

Complication 

post-op 
5 Risk balanced with benefit 

5 
A5 Observe 

Sudden 

collapse 
0 

Missed opportunity for 

early action 
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The hypothetical scenario action-outcome-reward mapping is essential for evaluating the practical application of the 

reinforcement learning model. This crucial evaluation tool, presented in Table 3, details several simulated clinical scenarios 

alongside their assigned action, outcome, and reward values. Each scenario within Table 3 pairs a potential clinical action, 

either surgery or observation, with a corresponding projected clinical outcome and a numerical reward. These pairings enable 

a systematic assessment of the reinforcement learning logic's performance under various conditions. For example, when 

surgery leads to a positive resolution, such as an infection being resolved, the scenario in Table 3 assigns a high reward. 

Conversely, if observation results in a negative outcome like deterioration requiring delayed surgery, Table 3 assigns a lower 

reward. These varied reward assignments within Table 3 serve to highlight instances where the reinforcement learning logic 

might exhibit tendencies toward more conservative or aggressive surgical recommendations. Ultimately, the collection of 

manually constructed scenarios found in Table 3 contributes significantly to the validation of the model's clinical soundness 

and its potential to aid in informed clinical decision-making. 

These manually constructed scenarios helped assess the practical utility of the reward system and highlighted cases where 

RL logic was either conservative or aggressive in recommending surgery. Overall, the model is designed to support clinical 

reasoning with transparent, consistent, and modifiable logic, suitable for academic prototyping and future integration with 

real-world clinical platforms. 

4. CLINICIAN WORKFLOW USING THE SYSTEM 

To ensure clinical usability, the AI-driven Decision Support System (DSS) was designed with a straightforward interaction 

flow that complements existing hospital workflows(Khan, 2025). The system is intended for use at the bedside or within an 

electronic medical record interface, requiring only basic patient inputs to deliver a surgical recommendation. 

 

Figure 4: Workflow Diagram 

To ensure the AI-driven Decision Support System's (DSS) practical application in clinical settings, a clear workflow diagram 

was developed. This diagram, presented in Figure 4, illustrates the step-by-step interaction between the system and the 

clinician user. As shown in Figure 4, the workflow commences with the clinician providing essential patient data, including 

parameters like blood lactate levels and oxygen saturation. The system then processes these inputs to accurately identify the 

corresponding clinical state of the neonate. Following this, the system consults the Q-table to determine the most appropriate 

action, whether it be surgery or observation. The recommended action is then presented to the clinician, accompanied by a 
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justification based on reward values and a confidence indicator. Importantly, as detailed in Figure 4, the clinician retains the 

autonomy to review, accept, override, or provide feedback on the system's recommendation. This cyclical process, visually 

represented in Figure 4, embodies a human-in-the-loop approach, facilitating continuous improvement of the model through 

user interaction. 

Workflow Steps: 

1. Clinician Input: The system prompts the clinician to enter a minimal set of inputs—such as blood lactate levels, 

oxygen saturation, inflammatory markers (CRP or Procalcitonin), blood pressure, and signs of abdominal 

distension. 

2. State Identification: The DSS maps the input values to a predefined clinical state (e.g., "S1: high lactate + 

distension"). 

3. Action Matching: The mapped state is then referenced in the manually constructed Q-table, where actions (surgery 

or observe) are compared by their assigned rewards. 

4. Recommendation Output: The system displays the recommended action with a reward-based justification and 

confidence indicator (e.g., "Surgery recommended – reward: +10, high confidence"). 

5. Clinician Review: The clinician may accept, override, or comment on the recommendation. This human-in-the-

loop design ensures clinical autonomy is retained and allows the model to be refined over time based on user 

feedback. 

This process encourages transparency in decision-making and serves as a training and documentation tool, particularly useful 

in settings where junior clinicians or resource limitations make decision support essential(Kovalchuk et al., 2022). 

5. DISCUSSION 

The conceptual model developed in this study demonstrates the feasibility of applying reinforcement learning logic to one 

of the most critical binary decisions in neonatal care—whether or not to perform surgery. While traditional DSS models rely 

heavily on large datasets or patient simulations, this approach proves that meaningful, interpretable decision support systems 

can be developed using logic-driven structures, manual Q-tables, and expert-informed reward assignments. 

One of the key strengths of this model is explain ability. Unlike opaque neural networks or black-box machine learning 

tools, this system allows clinicians to clearly see how each decision is made. Every output can be traced back to a specific 

state, action, and reward—thereby enhancing trust and encouraging use in clinical practice. Furthermore, its modularity 

allows the Q-table to be updated as clinical guidelines evolve or as feedback is collected from end users. 

Another strength lies in its flexibility for low-resource environments. The model does not require high computational 

power, internet access, or EHR integration to function in its current form. As a result, it can be adopted as a paper-based tool, 

a mobile app, or a plugin for hospital information systems without significant infrastructure investment. 

Despite these advantages, the system has several limitations. First, its logic is not derived from real-world clinical data, 

which may reduce its accuracy or generalisability in diverse patient populations. Second, the model currently lacks dynamic 

learning or simulation capabilities—it does not improve with use or adapt to rare cases unless manually modified. Third, 

while expert logic was used to assign rewards, these assignments are subjective and may differ across institutions or 

specialists. 

Finally, ethical and regulatory implications must be considered. Although the system supports decisions, it does not replace 

clinical judgment. As with any AI system, ensuring that accountability, transparency, and oversight are maintained is critical 

to responsible deployment. 

6. CONCLUSIONS 

This study presented the conceptual design of an AI-driven Decision Support System that uses reinforcement learning 

principles to assist clinicians in making high-stakes decisions regarding surgery in neonates. Without the use of clinical data 

or simulation episodes, the model demonstrates how logic-based state–action mappings and reward-driven recommendations 

can mimic clinical reasoning and support transparent, binary decision-making. 

The manually constructed Q-table, decision flowchart, and event tree provided a foundational structure for an intelligent yet 

explainable decision system. Scenario testing and comparative tables validated the clinical soundness of the model, and a 

human-in-the-loop workflow was proposed to ensure safe and ethical integration into clinical practice. 

Though conceptual, the framework offers a scalable prototype for future development. It can be extended through expert 

validation, integration with hospital data systems, or enhancement using synthetic patient data and simulation. Ultimately, 

this work lays the groundwork for a new generation of AI-supported tools tailored to the sensitive, time-critical, and high-

risk decisions that define neonatal surgical care. 
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