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ABSTRACT

Neonatal surgical care involves high-stakes decision-making under conditions of uncertainty, urgency, and limited
physiological feedback. Clinicians often rely on experience and generalised guidelines to decide whether to proceed with
surgical intervention—an approach that may not always capture the nuances of individual patient presentations. Artificial
Intelligence (Al), particularly Reinforcement Learning (RL), offers a promising avenue to improve consistency and
adaptiveness in such critical care scenarios. Unlike traditional machine learning models, RL learns optimal decision strategies
by balancing rewards and risks through iterative feedback, making it suitable for sequential and high-impact clinical
environments. This study presents a conceptual Al-driven Decision Support System (DSS) that leverages RL principles to
assist clinicians in binary surgical decisions for neonates. The system employs manually constructed clinical state—action
mappings, expert-informed reward logic, and an explainable Q-table rather than relying on patient data or simulations. It
features a three-layered architecture, visual decision flowchart, and event tree to support transparent reasoning. Through
hypothetical clinical scenarios and clinician-oriented workflow modelling, the system demonstrates potential for low-
resource settings and academic prototyping. While preliminary, the model offers a scalable, modifiable foundation for future
integration with real-world clinical platforms, aiming to enhance decision quality in neonatal surgical care.

Keywords: Neonatal care, Reinforcement learning, Clinical decision support, Surgical decision-making, Artificial
intelligence

1. INTRODUCTION

Neonatal surgical care demands timely, precise, and life-saving decisions in high-pressure environments where patient
conditions can deteriorate rapidly(Jeong & Kamaleswaran, 2022). The complexity of such care is compounded by the
variability in neonates' responses to interventions and the difficulty in objectively quantifying critical thresholds for surgical
intervention(Guez-Barber & Pilon, 2024). In these sensitive scenarios, clinicians often rely on their experience, guideline-
based protocols, and clinical intuition to decide whether immediate surgical intervention is warranted or if conservative
management might suffice.

Traditional decision-making models, although essential, are inherently limited in their adaptability and
responsiveness(Catania, 2021). Clinical guidelines often adopt a one-size-fits-all approach, which may not account for subtle
yet critical differences in individual patient presentations. Furthermore, human judgment, while invaluable, is susceptible to
bias, fatigue, and variability across practitioners. As neonatal outcomes are closely tied to the timing and appropriateness of
surgical interventions, there is a compelling need for intelligent systems that can support clinicians by providing consistent,
data-informed, and context-aware recommendation(Jyoti et al., 2023).
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Artificial Intelligence (Al), particularly Reinforcement Learning (RL), offers a promising avenue to enhance decision-
making in such scenarios. Unlike supervised learning, which depends on labelled datasets, RL involves an agent that learns
optimal decision policies by interacting with an environment and receiving rewards or penalties based on outcomes. This
allows for the development of adaptive systems that refine their strategies through experience, making RL highly suitable
for sequential and dynamic clinical settings(Guez-Barber & Pilon, 2024).

This study proposes a conceptual Al-driven Decision Support System (DSS) based on reinforcement learning principles,
aimed at assisting clinicians in determining whether surgery is required for neonates under specific clinical conditions(Levin
et al., 2024). The approach does not involve patient data or simulation-based training but instead uses manually defined
clinical states, reward logic, and state-action mappings to create an explainable and lightweight model. Such a system is
particularly valuable for early-stage design, academic validation, and use in low-resource or data-scarce
environments(Muntean et al., 2025).

2. LITERATURE REVIEW
2.1 Decision Support Systems in Neonatal Surgery:

Decision Support Systems (DSS) have been developed across various fields of medicine to aid in diagnosis, prognosis, and
treatment planning. These systems range from basic rule-based models to advanced machine learning applications(Muntean
et al., 2025). However, in neonatal surgery, the integration of DSS remains limited due to several factors, including the
scarcity of large, high-quality datasets, the ethical constraints of experimentation, and the variability of neonatal
conditions(Jaile et al., 2024).

Most existing DSS tools in neonatal care are focused on monitoring, infection risk prediction, or general ICU support rather
than binary decision-making specific to surgical interventions. Moreover, rule-based systems, while easy to implement,
struggle with adaptability and cannot adjust to rapidly evolving clinical states. Thus, there is a growing interest in developing
intelligent systems that incorporate real-time feedback and offer context-sensitive recommendations(Jyoti et al., 2023).

2.2 Reinforcement Learning in Healthcare:

Reinforcement Learning has gained attention in the healthcare domain for its unique capability to handle sequential decision-
making problems(Thakre et al., 2025). It has been successfully applied to areas such as glucose control in diabetic patients,
optimal dosing of sedatives in ICU settings, and dynamic treatment strategies for sepsis. The RL framework operates through
the interaction of an agent with an environment, learning to select actions that maximise cumulative reward(Roayaei &
Soltani, 2025).

In a clinical context, the “state” could represent a patient’s physiological parameters, the “action” could be a treatment
decision, and the “reward” could be the outcome (e.g., survival, stability, recovery). This paradigm is particularly suited for
critical care and surgical decisions where timing and progression play vital roles(Nadhir et al., 2025). Despite its potential,
the application of RL in neonatal surgical care is virtually unexplored. This study addresses that gap by presenting a
conceptual model that applies RL logic to the binary decision of surgery versus observation(Lakhan et al., 2024).

3. MATERIALS AND METHODS:

This study was designed as a 15-day conceptual modelling exercise, intentionally avoiding the use of real patient data or
simulation episodes. The focus was to build a lightweight, explainable, and adaptable Al-driven Decision Support System
(DSS) using reinforcement learning (RL) principles, specifically tailored to assist clinical decision-making in neonatal
surgical care. The system aimed to support a binary decision framework: whether to proceed with surgery or opt for
continued observation(Nadhir et al., 2025).

The core framework draws inspiration from the fundamentals of reinforcement learning, in which an agent interacts with an
environment by taking actions based on its current state and receiving a reward based on the outcome(Onapakala et al.,
2024). However, instead of learning from experience, this conceptual model uses manually constructed state-action mappings
informed by clinical knowledge and reward logic. These mappings form the basis of a Q-table, with each combination of
patient condition (state) and potential intervention (action) being assigned a reward value to reflect expected clinical benefit
or harm.

To define the relevant clinical states for neonatal surgical decisions, five key indicators were selected based on commonly
observed parameters in neonatal intensive care units. These include physiological, biochemical, and clinical markers that
typically influence surgical considerations. Each state was assigned a qualitative risk level (moderate, high, very high, or
critical) and a “decision relevance” value to reflect how strongly it should influence the decision to operate.
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Table 1: Key Clinical States for Surgical Decision-Making

- . . Decision
S.no Clinical State Indicator Risk Level Relevance
Abdominal distension V'S.'ble _swglllng or High +
1. radiologic signs
2. Lactate > 5 mmol/L Blood test Very High ++
3. Oxygen saturation < 90% Pulse oximeter Moderate +
4, Elevated CRP or Procalcitonin | Inflammatory marker | High +
5 ]Ic-liali%(’)stensmn unresponsive to Systolic < 60 mmHg | Critical ++

The identification of critical clinical states is essential in neonatal surgical decision-making to ensure timely interventions
and improve patient outcomes. The categorization of risk levels and decision relevance in Table 1 provides a structured
framework for evaluating key clinical indicators in a systematic manner. Abdominal distension, lactate levels, and
hypotension are among the crucial factors that influence surgical decisions, as outlined in Table 1. A high lactate level,
particularly when exceeding 5 mmol/L, is a strong indicator of metabolic distress and is marked as "very high risk" in Table
1. The presence of inflammatory markers such as CRP and Procalcitonin, as detailed in Table 1, suggests a potential
infectious or inflammatory response that may necessitate further clinical evaluation. Hypotension that does not respond to
fluid resuscitation is classified as "critical" in Table 1, highlighting its significance in urgent surgical decision-making. The
structured classification of clinical states in Table 1 allows for a logical mapping of patient conditions to potential surgical
actions, reducing ambiguity in clinical assessment. By integrating the risk levels from Table 1 into the decision-making
framework, the model enhances the objectivity and consistency of surgical recommendations. The parameters listed in Table
1 align with established neonatal intensive care unit (NICU) guidelines, reinforcing their clinical relevance in determining
the necessity for surgical intervention. The decision relevance scores in Table 1 help prioritize conditions that have the
highest impact on neonatal outcomes, ensuring that high-risk cases receive immediate attention.

These clinical states were then integrated into the overall system architecture. The architecture was conceptualised as a three-
layered framework: an input layer, a reinforcement learning logic engine, and an output module. The input layer captures
clinical data from the user (vitals, laboratory findings, and physical symptoms). The processing layer applies reinforcement
logic to the input data, referencing the Q-table to determine the best action. Finally, the output layer provides a decision
recommendation—either to proceed with surgery or to continue observation—along with an optional confidence score or
justification text.

Figure 1: Architecture of the Al-DSS
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The Al-driven Decision Support System (DSS) is designed around a structured, three-layered architecture. This architecture,
visually represented in Figure 1, facilitates the logical flow of data from input to decision output. The system's architecture,
as shown in Figure 1, comprises an input layer, a reinforcement learning (RL) decision engine, and an output module. The
input layer's primary function is to capture relevant clinical data, such as vitals, laboratory results, and observed symptoms,
from the clinician user.

The RL decision engine then processes this input data, utilizing the Q-table to match the clinical state with appropriate
actions. Following this processing, the output module generates an action recommendation, suggesting either surgery or
observation. This output may also include a confidence score to indicate the certainty of the recommendation. Effectively,
Figure 1 illustrates the system's operational sequence, clarifying how data is transformed into a decision recommendation.

This diagram represents the logical flow of data within the DSS, from input to decision. It includes:
e Input: Vitals, labs, symptoms
o RL Decision Engine: Matches state—action pairs
e  Output: Action recommendation + confidence score

The heart of the system is a manually created Q-table, in which representative clinical state combinations are mapped to
one of the two actions (Surgery or Observe), along with an assigned reward value. This value reflects how beneficial the
action is considered, given the state, and is based on existing clinical guidelines and neonatal care principles.

Table 2: Manually Created Q-Table for Surgical Decision Logic

Sno IS[t)ate Clinical State Combination Action | Reward | Justification
. . . Life-threatening
L Sl High lactate + low SpO: + distension | Surgery | 10 infection suspected
S2 Mild SpO: drop + no distension Observe | 6 EA onitoring preferred
2 efore escalation
Early intervention
S3 CRP elevated + borderline vitals Surgery | 7 could improve
3. outcome
S4 Normal vitals + mild distension Observe | 5 Supportlve caré may
4. suffice
. 0 . .
S5 Hypotension + SpO. < 85% + Surgery | 9 Likely surgical
5 distension emergency

The manually created Q-table is a fundamental part of the Al-driven Decision Support System. This table, presented as Table
2, plays a crucial role in mapping specific combinations of clinical states in neonates to the system's recommended actions,
which are either to proceed with surgery or to continue with observation. A core function of Table 2 is the assignment of
reward values to each potential decision, providing a structured approach to evaluating the potential benefits and risks
associated with surgical intervention. For instance, when the system identifies a clinical state involving high lactate levels,
low oxygen saturation, and abdominal distension, a high reward is assigned to the "Surgery™ action, reflecting the urgency
of the situation. In contrast, cases with mild oxygen desaturation and no abdominal distension receive lower reward values
for surgery, suggesting that observation may be more appropriate. To enhance transparency, the "Justification" column in
Table 2 explains the reasoning behind these reward assignments. This reward-based approach in Table 2 inherently balances
the risks of delaying necessary intervention against the potential complications of unnecessary surgery. Furthermore, the
design of Table 2 allows for modifications and refinements based on clinical feedback, making the model adaptable.
Ultimately, the structured mappings within Table 2 provide a foundation for a reliable and interpretable decision support
system, with its alignment to neonatal care principles enhancing its potential for real-world application.

To visualise how the system processes data and reaches a recommendation, a decision flowchart was developed. This
flowchart captures the step-by-step logic embedded in the RL system. Starting from clinical input, the system classifies the
current state, consults the Q-table, and returns the highest-reward action.
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Start: Receive Patient Data

Assess Vitals, Labs, Symptoms

Classify Patient State

Lookup Q-Table Entry

Select Action with Highest Reward

Recommend Action:
Surgery or Observe

Display Justification
+ Confidence Score

End / Await Clinician Confirmation

Figure 2: RL Decision Flowchart

To clearly illustrate the system's decision-making process, a detailed decision flowchart was developed. This flowchart,
presented as Figure 2, effectively captures the step-by-step logic embedded within the reinforcement learning system. The
flowchart in Figure 2 begins with the system's assessment of the input clinical state, reflecting the patient's condition.
Following this assessment, the system proceeds to identify the specific clinical conditions present. The system then consults
the Q-table, matching the identified conditions with corresponding actions, either surgery or observation. Subsequently, the
system suggests the action that is associated with the highest reward value, indicating the most favourable decision. As shown
in Figure 2, the process culminates in the output of the recommended action to the clinician. This visual representation in
Figure 2 aids in understanding the system's operational flow and reasoning.

Flowchart Logic:
1. Assess input state
2. ldentify condition
3. Match to Q-table
4. Suggest action
5. Output recommendation

To support deeper reasoning, an event tree model was created. This event tree outlines the range of possible outcomes
following each of the two actions—surgery or observation. It visually presents potential risks such as post-operative
complications or deterioration due to delayed surgery, which are useful for understanding the logic behind the reward
assignments.
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Figure 3: Event Tree — Surgical vs. Non-Surgical Outcomes

To support more in-depth reasoning about potential outcomes, an event tree model was developed. This event tree, illustrated
in Figure 3, outlines the range of possible outcomes following each of the two actions: surgery or observation. As shown in
Figure 3, it visually represents potential risks associated with each decision, such as post-operative complications following
surgery. The event tree in Figure 3 also depicts potential negative outcomes like deterioration due to delayed surgery in the
observation arm. These visual representations are useful for understanding the logic behind the reward assignments within
the decision-making framework. The branches in Figure 3 detail the possible trajectories, including recovery, complications,
or death after surgery. Similarly, Figure 3 shows that observation can lead to recovery, the need for delayed surgery, or death.
Ultimately, this event tree in Figure 3 provides a clear visualization of the potential consequences of each decision.

Branches:
e Surgery — Recovery, Complication, Death
e  Observe — Recovery, Delayed Surgery, Death

To further test and validate the model, a set of hypothetical scenarios was developed. Each scenario simulated a real-world
clinical presentation and was mapped to a reward-based outcome depending on whether surgery or observation was chosen.
These scenarios were useful in stress-testing the consistency and rationale of the decision logic.

Table 3: Hypothetical Scenario Action—Outcome—Reward Mapping

Scenario . Clinical Assigned
S.no | ID Action Outcome Reward Notes
Infection Early intervention
1 Al Surgery resolved 10 successful
A2 Observe Deterioration, 4 Delay caused worsening
2 late surgery
Stable Correct non-invasive
A3 Observe condition 8 .
s choice
3 maintained
A4 Surgery Complication 5 Risk balanced with benefit
4 post-op
AB Observe Sudden 0 Missed _opportunity for
5 collapse early action
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The hypothetical scenario action-outcome-reward mapping is essential for evaluating the practical application of the
reinforcement learning model. This crucial evaluation tool, presented in Table 3, details several simulated clinical scenarios
alongside their assigned action, outcome, and reward values. Each scenario within Table 3 pairs a potential clinical action,
either surgery or observation, with a corresponding projected clinical outcome and a numerical reward. These pairings enable
a systematic assessment of the reinforcement learning logic's performance under various conditions. For example, when
surgery leads to a positive resolution, such as an infection being resolved, the scenario in Table 3 assigns a high reward.
Conversely, if observation results in a negative outcome like deterioration requiring delayed surgery, Table 3 assigns a lower
reward. These varied reward assignments within Table 3 serve to highlight instances where the reinforcement learning logic
might exhibit tendencies toward more conservative or aggressive surgical recommendations. Ultimately, the collection of
manually constructed scenarios found in Table 3 contributes significantly to the validation of the model's clinical soundness
and its potential to aid in informed clinical decision-making.

These manually constructed scenarios helped assess the practical utility of the reward system and highlighted cases where
RL logic was either conservative or aggressive in recommending surgery. Overall, the model is designed to support clinical
reasoning with transparent, consistent, and modifiable logic, suitable for academic prototyping and future integration with
real-world clinical platforms.

4. CLINICIAN WORKFLOW USING THE SYSTEM

To ensure clinical usability, the Al-driven Decision Support System (DSS) was designed with a straightforward interaction
flow that complements existing hospital workflows(Khan, 2025). The system is intended for use at the bedside or within an
electronic medical record interface, requiring only basic patient inputs to deliver a surgical recommendation.

Chinician Inputs:
Vitals, Labs, Symptoms

p——

st sSystem Classifies Patient ey
e into Clinical State e

— o’
s g
s o

——

Q- lrable Lookup:
Reuvieve Possible Actions

v

= Select Acton
with Max Reward .

\ L

g —
< Recommend:
Surgery / Observe
NS b

W

Show Reward Sco
v Justification

T
—
.--"" Clinician Review: e

—— Accept of Override _1__->
-I-'.-‘_'—’_’_’-.

Decision Logged
or Monitored

Figure 4: Workflow Diagram

To ensure the Al-driven Decision Support System's (DSS) practical application in clinical settings, a clear workflow diagram
was developed. This diagram, presented in Figure 4, illustrates the step-by-step interaction between the system and the
clinician user. As shown in Figure 4, the workflow commences with the clinician providing essential patient data, including
parameters like blood lactate levels and oxygen saturation. The system then processes these inputs to accurately identify the
corresponding clinical state of the neonate. Following this, the system consults the Q-table to determine the most appropriate
action, whether it be surgery or observation. The recommended action is then presented to the clinician, accompanied by a
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justification based on reward values and a confidence indicator. Importantly, as detailed in Figure 4, the clinician retains the
autonomy to review, accept, override, or provide feedback on the system's recommendation. This cyclical process, visually
represented in Figure 4, embodies a human-in-the-loop approach, facilitating continuous improvement of the model through
user interaction.

Workflow Steps:

1. Clinician Input: The system prompts the clinician to enter a minimal set of inputs—such as blood lactate levels,
oxygen saturation, inflammatory markers (CRP or Procalcitonin), blood pressure, and signs of abdominal
distension.

2. State Identification: The DSS maps the input values to a predefined clinical state (e.g., "S1: high lactate +
distension™).

3. Action Matching: The mapped state is then referenced in the manually constructed Q-table, where actions (surgery
or observe) are compared by their assigned rewards.

4. Recommendation Output: The system displays the recommended action with a reward-based justification and
confidence indicator (e.g., "Surgery recommended — reward: +10, high confidence™).

5. Clinician Review: The clinician may accept, override, or comment on the recommendation. This human-in-the-
loop design ensures clinical autonomy is retained and allows the model to be refined over time based on user
feedback.

This process encourages transparency in decision-making and serves as a training and documentation tool, particularly useful
in settings where junior clinicians or resource limitations make decision support essential(Kovalchuk et al., 2022).

5. DISCUSSION

The conceptual model developed in this study demonstrates the feasibility of applying reinforcement learning logic to one
of the most critical binary decisions in neonatal care—whether or not to perform surgery. While traditional DSS models rely
heavily on large datasets or patient simulations, this approach proves that meaningful, interpretable decision support systems
can be developed using logic-driven structures, manual Q-tables, and expert-informed reward assignments.

One of the key strengths of this model is explain ability. Unlike opaque neural networks or black-box machine learning
tools, this system allows clinicians to clearly see how each decision is made. Every output can be traced back to a specific
state, action, and reward—thereby enhancing trust and encouraging use in clinical practice. Furthermore, its modularity
allows the Q-table to be updated as clinical guidelines evolve or as feedback is collected from end users.

Another strength lies in its flexibility for low-resource environments. The model does not require high computational
power, internet access, or EHR integration to function in its current form. As a result, it can be adopted as a paper-based tool,
a mobile app, or a plugin for hospital information systems without significant infrastructure investment.

Despite these advantages, the system has several limitations. First, its logic is not derived from real-world clinical data,
which may reduce its accuracy or generalisability in diverse patient populations. Second, the model currently lacks dynamic
learning or simulation capabilities—it does not improve with use or adapt to rare cases unless manually modified. Third,
while expert logic was used to assign rewards, these assignments are subjective and may differ across institutions or
specialists.

Finally, ethical and regulatory implications must be considered. Although the system supports decisions, it does not replace
clinical judgment. As with any Al system, ensuring that accountability, transparency, and oversight are maintained is critical
to responsible deployment.

6. CONCLUSIONS

This study presented the conceptual design of an Al-driven Decision Support System that uses reinforcement learning
principles to assist clinicians in making high-stakes decisions regarding surgery in neonates. Without the use of clinical data
or simulation episodes, the model demonstrates how logic-based state—action mappings and reward-driven recommendations
can mimic clinical reasoning and support transparent, binary decision-making.

The manually constructed Q-table, decision flowchart, and event tree provided a foundational structure for an intelligent yet
explainable decision system. Scenario testing and comparative tables validated the clinical soundness of the model, and a
human-in-the-loop workflow was proposed to ensure safe and ethical integration into clinical practice.

Though conceptual, the framework offers a scalable prototype for future development. It can be extended through expert
validation, integration with hospital data systems, or enhancement using synthetic patient data and simulation. Ultimately,
this work lays the groundwork for a new generation of Al-supported tools tailored to the sensitive, time-critical, and high-
risk decisions that define neonatal surgical care.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 13s
pg. 935



Sigirisetty Anusha, Chopparapu Gowthami, Kiran Onapakala, V. Suryanarayana,
Vaddithandra Vijaya, Rongala Ravi

REFERENCES

[1] Catania, L.J. (2021). 4 - Al applications in the business and administration of health care. In L. J. Catania (Ed.),
Foundations of Artificial Intelligence in Healthcare and Bioscience (pp. 79-123). Academic Press.
https://doi.org/https://doi.org/10.1016/B978-0-12-824477-7.00003-1

[2] Guez-Barber, D., & Pilon, B. (2024). Parental impact during and after neonatal intensive care admission.
Seminars in Perinatology, 48(5), 151926. https://doi.org/https://doi.org/10.1016/j.semperi.2024.151926

[3] Jaile, J. C., Brady, J. D., Nelson, P., Sourour, W., Almodovar, M. C., Macicek, S., Pettitt, T. W., & Pigula, F.
A. (2024). Cardiac Resynchronization Therapy for Pacing-Related Dysfunction Post Cardiac Surgery in
Neonates. Annals of Thoracic Surgery Short Reports, 2(4), 825-828.
https://doi.org/https://doi.org/10.1016/j.atssr.2024.05.007

[4] Jeong, H., & Kamaleswaran, R. (2022). Pivotal challenges in artificial intelligence and machine learning
applications for neonatal care. Seminars in Fetal and Neonatal Medicine, 27(5), 101393.
https://doi.org/https://doi.org/10.1016/j.siny.2022.101393

[5] Jyoti, J., Laing, S., Spence, K., Griffiths, N., & Popat, H. (2023). Parents’ perspectives on their baby’s pain
management in a surgical neonatal intensive care unit: The parents’ awareness and involvement in pain
management (PAIN-PAM) study - Part 2. Journal of Neonatal Nursing, 29(6), 839-845.
https://doi.org/https://doi.org/10.1016/j.jnn.2023.06.007

[6] Khan, S. M. (2025). Chapter 14 - Al-enabled decision support systems in clinical practice. In S. M. Khan (Ed.),
Fundamentals of Al for Medical Education, Research and Practice (pp. 305-330). Academic Press.
https://doi.org/https://doi.org/10.1016/B978-0-443-33584-6.00014-1

[7] Kovalchuk, S. V, Kopanitsa, G. D., Derevitskii, I. V, Matveev, G. A., & Savitskaya, D. A. (2022). Three-stage
intelligent support of clinical decision making for higher trust, validity, and explainability. Journal of
Biomedical Informatics, 127, 104013. https://doi.org/https://doi.org/10.1016/j.jbi.2022.104013

[8] Lakhan, A., Nedoma, J., Mohammed, M. A., Deveci, M., Fajkus, M., Marhoon, H. A., Memon, S., & Martinek,
R. (2024). Fiber-optics 10T healthcare system based on deep reinforcement learning combinatorial constraint
scheduling for hybrid telemedicine applications. Computers in Biology and Medicine, 178, 108694.
https://doi.org/https://doi.org/10.1016/j.compbiomed.2024.108694

[9] Levin, C., Kagan, T., Rosen, S., & Saban, M. (2024). An evaluation of the capabilities of language models and
nurses in providing neonatal clinical decision support. International Journal of Nursing Studies, 155, 104771.
https://doi.org/https://doi.org/10.1016/j.ijnurstu.2024.104771

[10] Muntean, A., Marsland, L., Sikdar, O., Harris, C., Ade-Ajayi, N., Patel, S. B., Cook, J., Sellars, M., Greenough,
A., Nicolaides, K., & Davenport, M. (2025). Neonatal Surgery for Congenital Lung Malformations: Indications,
Outcomes and Association With Malignancy. Journal of Pediatric Surgery, 60(5), 162253.
https://doi.org/https://doi.org/10.1016/j.jpedsurg.2025.162253

[11] Nadhir, A. M., Mounir, B., Abdelkader, L., & Hammoudeh, M. (2025). Enhancing Cybersecurity in Healthcare
IoT Systems Using Reinforcement Learning. Transportation Research Procedia, 84, 113-120.
https://doi.org/https://doi.org/10.1016/j.trpro.2025.03.053

[12] Onapakala, K., Varma, M. N., Nagesh, M. A., Maturi, S., Kumari, P. L., Saibaba, C. M. H., Bommisetty, J., &
Donthi, R. (2024). Multi-Task Deep Learning Approaches For Named Entity Recognition, Sentiment Analysis,
And Summarization In Natural Language Processing. African Journal of Biomedical Research, 27(4S), 5713—
5720. https://doi.org/10.53555/AJBR.v27i4S.4670

[13] Roayaei, M., & Soltani, Z. (2025). Chapter 2 - Advancing healthcare: Reinforcement learning applications for
personalized healthcare. In S. Mahajan & A. K. Pandit (Eds.), Innovations in Biomedical Engineering (pp. 33—
86). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-443-30146-9.00002-2

[14] Thakre, B., Yadav, U., & Bondre, S. V. (2025). Chapter 8 - Deep reinforcement learning in healthcare and
biomedical application. In S. Mahajan & A. K. Pandit (Eds.), Innovations in Biomedical Engineering (pp. 241—
299). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-443-30146-9.00008-3

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 13s
pg. 936



