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ABSTRACT

Traffic sign detection acts as the eyes for autonomous vehicles, employing computer vision to decipher road signs for safe
and compliant navigation. This technology tackles challenges like variable lighting and occlusions by leveraging deep
learning models trained on diverse datasets. By interpreting signs accurately, autonomous vehicles can navigate roads
confidently, paving the way for a safer future. Traffic sign detection in real-world scenarios faces a confluence of
challenges: varying lighting and weather conditions can degrade sign visibility, partial or complete occlusions by other
objects can hinder detection, and the sheer diversity of traffic signs across regions necessitates robust models capable of
generalizability. The research utilizes a combined real-world (65%) and simulated (CARLA, 35%) dataset for training a
YOLOv8m model for speed limit sign detection (30, 60, 90 km/h) in autonomous vehicles. Image augmentation and
collaborative annotation via Makesense platform enrich the dataset. The model has achieved 98% accuracy rate in
detecting speed limits on the road side, even in difficult situations. The model is evaluated in the CARLA simulator for
controlled testing before real-world implementation.

Keywords: Traffic sign detection, occlusions, Makesense platform, Autonomous vehicles, Computer version, YOLOv8m
model, CARLA.

1. INTRODUCTION

Domains such as image and video analysis have seen significant growth in application over the past few years. The two
primary technologies dictating technical society are Computer Version and Artificial intelligence. Over years, human
intelligence has been trained to recognize and comprehend scenes that are captured by the eyes. Traffic control is one of
the most significant subjects in the transportation industry. Governments can enhance the quality of a road by using
information about the vehicles that are traveling on it. Autonomous vehicles are engineered to maximize traffic flow,
reduce the frequency of traffic incidents, enable human transportation of goods in hazardous environments, increase
accessibility for individuals with disabilities, and more.
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Throughout history, vision-based technology has evolved from being merely a sensing modality to intelligent computing
systems capable of comprehending the physical world. Object detection and tracking are major challenges for computer
vision applications such as surveillance, autonomous robot navigation, and vehicle navigation. Vehicles and other real-
world objects can be tracked in a dynamic environment using video surveillance. A self-driving car makes decisions about
how to control its speed, direction, and acceleration by continuously absorbing data from multiple onboard sensors,
including RADAR, LIDAR, and a camera. These sensors help the car identify obstacles and lanes on the road. Obstacle
detection methods such as LIDAR and RADAR have proven to be accurate. The CARLA simulator, an open-source
simulator for research on autonomous driving, has made R&D in this area more accessible in recent years[1]. Designed
from the ground up, CARLA is intended to facilitate the research, development, testing, and certification of autonomous
urban driving systems. [2] This paper proposes a new obstacle detection system for drones using multiple ultrasonic
sensors and signal processing techniques. This offers an alternative to high-power lasers that could blind pilots and has
better resolution than standard ultrasonic sensors.

The remainder of this essay is divided into several sections. The literature reviews and problem analysis are briefly
discussed in Section II. Section III introduces CARLA (Car Learning to Act), providing essential context for our work and
advantages. The proposed method is covered in Section IV. Common evaluation metrics and performance are explained in
Section V. Concluding remarks are provided in Section VI.

2. LITERATURE REVIEW

In this research [3] they proposed a new method for detecting red and blue traffic signs in color images. It uses a
combination of color and texture features with a Quadratic SVM classifier and achieves high accuracy (98.5%) on a
benchmark dataset. The research doesn't explore using deep learning techniques, which are becoming increasingly popular
and powerful for object detection tasks. They could also improve their method by incorporating shape features or
considering signs beyond red and blue. The [4] paper surveys traffic sign detection (TSD) for driver assistance systems. It
highlights the need for standardized datasets and explores open challenges like context integration and non-European signs.
The paper doesn't discuss the potential of deep learning for TSD, a rapidly advancing field. They could explore how to
combine TSD with driver behavior analysis for a more comprehensive driver assistance system.

This study [5] examines the state-of-the-art in deep learning-based object detection, including new developments,
applications, benchmark datasets, and future approaches. It gives a thorough rundown of the subject. This [6] study
investigates the benefits of edge computing for computer vision applications and the Internet of Things (IoT). It covers the
essential ideas, hardware, benefits, and drawbacks of this developing industry. The use of edge computing in practical
Internet of Things and computer vision applications is not discussed in detail in this study. Furthermore, it ignores any
security issues that can arise from processing data at the edge. This research investigates [7] the use of YOLOvV3 for
multiple object detection (5 classes) with vehicle tracking in traffic videos, and Convolutional Neural Networks (CNNs)
for single object detection (3 classes) under different lighting conditions. The performance comparison of their single
object detection CNN with other current models is not discussed in the publication. By employing more advanced
techniques than only centroid tracking, they might enhance tracking.

The Single Shot Detector (SSD) algorithm [8] is used in this paper's deep learning model to identify and pinpoint human
activity in videos for security purposes. Although the model's accuracy (precision: 0.775, recall: 0.679) is good, it still has
to be improved before being used in real time. The performance of their model is not compared to other methods that are
currently in use for human activity recognition in the paper. They don't go into enough detail on how to deal with issues
like real-time processing and data availability for useful applications. [9] The significance of network depth was
demonstrated when a deep CNN with 60 million parameters was trained to categorize images in the ImageNet competition,
obtaining top-1 and top-5 error rates of 37.5% and 17.0%, respectively. In order to enhance performance, the paper could
investigate unsupervised pre-training and take into account the computational difficulties involved in scaling the network
to handle video sequences.

This study offers [10] a fresh method for understanding quantum convolutional neural networks (QCNNs) and how they
might be used for object and image detection. While acknowledging the difficulties of limited access to quantum
computers and appropriate training algorithms, the authors contend that QCNNs may perform better than classical
approaches. The performance of QCNN and classical CNN on the same datasets is not directly compared in the research. It
also doesn't include a critical analysis of how much energy QCNNs use when operating in comparison to traditional
techniques. By mapping [11] camera pixels to steering signals, the CNN-based system learns to drive independently and
can operate well in a variety of settings without the need for explicit feature labeling. The decision-making process of the
system under erratic situations and the moral implications of Al-driven cars in practical settings may be covered in the
article.

Using data [12] from various sensors, the study focuses on 3D object detection and localization for autonomous driving. It
discovers that models trained on synthetic data perform poorly on real-world data. The adaptation of models trained on
synthetic data to real-world events and the possibility of using transfer learning to close this gap might have been examined
in the article. This study examines deep learning techniques for autonomous driving behavior prediction in nearby vehicles.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 15s pg. 62



Yamini Tondepu, P Manivannan, PR. Sathappan, S. Harikishore, Viswanathan Ramasamy
Reddy, Dr. T. Vengatesh

Although these methods increase hazard awareness, they have drawbacks. Specifically, they don't take into account the
surroundings, traffic laws, sensor limits, or computing expenses. The review did not address how these deep learning
techniques address real-world autonomous driving scenarios with respect to weather, traffic laws, sensor limitations, and
computational constraints.

Tools like the CARLA simulator, which support object detection algorithm training, are helping to advance research on
autonomous vehicles [13]. Despite difficulties, important technologies like RNN and QCNN are being applied, and
progress is noteworthy—using the SSD Model, 82.81% accuracy was attained. The ethical ramifications, legal difficulties,
and effects on employment in the driving industry are not included, nor are they addressed by them. Furthermore, a
thorough examination of the data privacy issues surrounding autonomous car technology is absent. In terms [14] of vehicle
trajectory prediction, the Memory Neuron Network (MNN) is a novel RNN that outperforms state-of-the-art models with
less computing effort and complexity. It has demonstrated improved results when validated on both the NGSIM dataset
and a dataset created using the CARLA simulator.

Users can experience the behaviour of a self-driving car in advance via Auto Preview, which increases user confidence and
comprehension [15]. They emphasize immediate gains at the expense of investigating long-term impacts on consumer
reliance. The long-term effects of employing Auto Preview on user trust and system dependence were not investigated in
this study. This study presents [16] an overview of different object tracking algorithms for video surveillance, emphasizing
the significance of feature selection and suggesting a single technique to improve tracking precision. A more thorough
examination of the algorithms' computational effectiveness and scalability to other surveillance settings would be
beneficial for the discussion. [17] Traffic systems' object detection and tracking have greatly improved thanks to Al and
CV technologies, especially CNN and YOLOvV3 models, which achieve high accuracy and real-time performance. The
study might investigate how different environmental factors affect model performance and think about incorporating more
datasets for a more thorough analysis.

The use of temporal detection and background removal techniques for accurate object detection in video surveillance is
covered in the study[18]. By monitoring different regions independently, these techniques improve processing speed and
accuracy. The integration of machine learning for predictive analytics and the effects of weather and dynamic lighting on
detection accuracy could be further explored in this article. In order to detect and recognize traffic signs in India, a new
deep learning model (RMR-CNN) is proposed in this study[19] . When used to a bespoke dataset of Indian traffic signs
taken under different circumstances, it obtains remarkable accuracy (precision: 97.08%). How well RMR-CNN performs
on benchmark datasets in comparison to other cutting edge traffic sign recognition algorithms is not mentioned in the
research. By including techniques to deal with soiled or cleaned traffic signs and larger viewing angles, they could increase
robustness.

With plans for on-road testing, the article provides a CNN-based strategy for a level-2 autonomous car that makes use of
sensors and simulators for real-time steering and obstacle avoidance [20]. The study may explore the moral ramifications
of self-driving cars as well as the necessity of rigorous field testing to guarantee dependability and safety in a variety of
scenarios. 95% accuracy was attained using an Al-based CNN-based traffic sign recognition system that processed data in
real time on a CPU [21]. It emphasizes how resilient the system is to zooms and rotations of images. The system's
functionality in bad weather and how it works with other ADAS elements to provide complete driver assistance might be
covered in the article. [22] The system uses a CNN model that is TensorFlow-implemented to detect and recognize traffic
signs with high accuracy, which is essential for road safety. It could be improved by adding non-circular sign detection and
strengthening resistance to outside influences like low visibility.

In order to boost frame rate to 32 frames per second (FPS) without the need for a GPU, this article suggests a color and
form segmentation technique to lessen the workload of Al for traffic sign detection in autonomous vehicles[23]. The
system's performance with non-standard traffic signs and in inclement weather is not discussed in the study. To increase
frame rate even higher without compromising accuracy, they could possibly investigate more complex filtering strategies.
The article provides a Faster R-CNN with Inception Resnet V2 traffic sign identification system that is improved by a
novel blurring preprocessing to improve detection[24]. Although it displays encouraging outcomes, the classification stage
does not make use of category information from detection. By adding the category data from detection to the classification
process, the study could improve the system even more and possibly increase performance and accuracy.

This work [25] presents the Iranian Vehicle Volume Database (IRVD), a sizable dataset of Iranian cars taken in a range of
scenarios for license plate identification and vehicle categorization. They provide a lightweight CNN architecture that can
analyze data in real time and achieves high accuracy (99.09%). To illustrate IRVD's comprehensiveness, the paper does not
contrast it with other vehicle datasets currently in existence. By incorporating more modern and sophisticated deep learning
models for classification, they could enhance the evaluation. Using a unique traffic image dataset, the YOLOv4 object
detection model is trained to identify nine different vehicle types[26] . The real-time object detection algorithm that
combines classification and bounding box prediction into a single neural network. Unlike multi-step approaches, YOLO
processes the entire image at once, dividing it into regions and predicting bounding boxes and probabilities for each region.
This efficient architecture strikes a balance between speed and accuracy, making it suitable for applications like robotics,
driverless cars, and video surveillance. The YOLO family has evolved through iterations (from YOLOv1 to YOLOVS),
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with improvements in network design, loss functions, anchor boxes, and input resolution scaling as shown in Figure 1. For
unseen traffic photos, the model demonstrated high sensitivity (94.44%) and accuracy (99.28%). The testing on real-world
traffic videos, which is essential for real-world application, is not mentioned in the study. The performance of their model
is not contrasted with that of other object detectors using the same dataset.

Training
images and labels in
.txt or .xml format

T S

Frame 1 Frame2 [*'""* Frame n
and its and its and its
labels labels labels

Configuration
file with YOLO
architecture

YOLO
Training model
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Figure 1: Work flow of YOLO models
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In the upcoming sections, paper delve into the intricacies of our research. Section II introduces CARLA (Car Learning to
Act), providing essential context for our work and advantages. Section III outlines our Proposed Work, detailing the novel
approach we’ve taken. Moving forward, Section IV delves into the Experimental results, shedding light on the
methodology employed and webcam results. Finally, Section V concludes our exploration

3. CARLA (CAR LEARNING TO ACT)

CARLA is an open-source autonomous driving simulator designed from the ground up to support the development,
training, and validation of autonomous driving systems. Its modular and flexible API addresses a wide range of tasks
related to autonomous driving. One of the primary goals of CARLA is to democratize autonomous driving research and
development, making it accessible and customizable for users. The platform provides not only open-source code and
protocols but also open digital assets, including urban layouts, buildings, and vehicles, specifically created for autonomous
driving research. Researchers can freely utilize these assets to create realistic scenarios. CARLA allows flexible
specification of sensor suites, environmental conditions, and full control over static and dynamic actors. Additionally, it

supports map generation, making it a powerful tool for testing and validating autonomous driving algorithms

CARLA employs a server multi-client architecture, enabling multiple clients to control different actors within the same
simulation or across different nodes. This scalability facilitates collaborative research and testing, allowing researchers to
simulate complex scenarios involving various vehicles, pedestrians, and environmental conditions. Researchers can
leverage CARLA’s flexible API to control all aspects of the simulation. From traffic generation and pedestrian behaviours
to weather conditions and sensor configurations (including LIDARSs, cameras, depth sensors, and GPS), CARLA provides

fine-grained control. This versatility makes it an ideal platform for testing and benchmarking autonomous driving
algorithms and sensor fusion techniques

The implementation block diagram is shown in Figure 2. In this work, an object detection model was trained using a
dataset that was first generated using the CARLA simulator. Later, test photos were used to evaluate the model's
performance on CARLA.
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Figure 2: Block diagram of implementation

4. PROPOSED WORK

The dataset leverages a combination of simulated and real-world images. Approximately 65% of the images are sourced
from the real world, while the remaining 35% are captured within the CARLA simulator Figure 3, a platform for
developing autonomous vehicle applications.

Image collection Annotation

Image and
labels for
model

Real wrold Data

CARLA simulator

Figure 3: Dataset collection and annotations of the images

To enrich the dataset and improve model generalizability, image augmentation techniques are employed. This process
involves manipulating the existing images to generate variations, such as rotations, flips, and color jittering. This expands
the dataset size and introduces the model to a wider range of image characteristics, potentially enhancing its robustness and
performance. The annotation process, likely involving labeling image elements or creating segmentation masks, is
conducted using the Makesense platform. This online platform facilitates collaborative annotation tasks, allowing human
annotators to efficiently label the augmented images. Following the data acquisition and augmentation steps, the annotated
images are used to train a YOLOv8m model. This indicates a pre-trained YOLOvS model variant, likely the "medium"
version designed for a balance between accuracy and speed Figure 4. 80 epochs, refers to the number of times the entire
training dataset is passed through the model for learning. Here, 80 epochs are specified. This defines the batch size 15,
which is the number of images shown to the model during each training iteration.

Car Learning to
Act

0 —
s

Live video feed
using camera

Frame by fame
analysis

Speed control -

Detection
resuit

Figure 4: Proposed method work flow

A batch size of 15 is used in this configuration. Training an object detection model involves feeding it annotated images
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where objects are labelled with bounding boxes or other relevant information. YOLOVS, the successor to the popular
YOLO object detection system, is expected to make significant strides in accuracy and efficiency. It might leverage
cutting-edge backbone architectures to extract richer visual features, enabling more precise object detection across various
scenarios. Furthermore, YOLOVS is likely to prioritize real-time performance through efficient model design techniques.
The possibility of YOLOVS expanding beyond just detection to encompass tasks like segmentation or pose recognition is
also intriguing. Additionally, the research might explore tailoring the model for specific domains through customized
training and potentially even integrating it with reinforcement learning for intelligent decision-making. These
advancements position YOLOVS to be a powerful tool for various object detection applications. The "m" variant suggests a
medium-sized model offering a balance between these aspects. Epochs control the number of times the model sees the
entire dataset. Here, 80 epochs allow for extensive training. Batch size determines the number of images processed at once.
A smaller batch size (15) might be suitable for resource constraints or fine-tuning the model.

The research leverages the CARLA simulator, a software platform designed to develop and evaluate applications for
autonomous vehicles in a virtual environment. Within this simulated world, the YOLOv8m model, trained as described
earlier, is deployed to detect specific objects: speed limit signs (30, 60, and 90 km/h). The YOLOv8m model continuously
processes frames captured from the CARLA simulator. When the model detects a speed limit sign within an image frame,
it likely outputs the identified speed limit value (e.g., 30 km/h). The first frame will indicate the speed of the car, while
second frame indicates the object detection of the model in the figure 5. Initial speed of the car is 33km/h, when a speed
limit of 30 km/h is detected, as indicated in Figure 5, the vehicle’s onboard system responds promptly. After crossing the
speed limit sign, as depicted in Figure 6, the car automatically adjusts its speed to 23km/h, which is below 30 km/h. The
speed will increase or decrease according to the next signboard.

>

-
< >

8 384x648 (N0 detections), 517.6ms
Speed: 4.Gms preprocess, 517.8ms inference, 8.8ms postprocess per image at

shape (1, 3, 384, 648)

Figure 5: Detecting the sign board
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Figure 6: Controlling the speed according to the sign board

This approach offers a controlled environment to evaluate the effectiveness of the YOLOv8m model for speed limit sign
detection in autonomous vehicle applications. It allows for testing the model's performance under various simulated
scenarios and lighting conditions without the risks of real-world testing. Successful implementation paves the way for
integrating the model into real autonomous vehicles for traffic sign recognition and potentially for adhering to speed limits.
The research leverages the CARLA simulator, a software platform designed to develop and evaluate applications for
autonomous vehicles in a virtual environment. Within this simulated world, the YOLOv8m model, trained as described
earlier, is deployed to detect specific objects: speed limit signs (currently focusing on 30, 60, and 90 km/h). This research
serves as a foundation for a more comprehensive speed limit sign detection system.

5. EXPERIMENTAL SETTINGS

This is probably referring to the bounding box regression loss function used in object detection tasks Usually, "Box" stands
for the bounding boxes that are estimated to surround an object in an image. This is a typical abbreviation for
"classification loss" in tasks involving object identification and categorization. It calculates the difference between ground
truth labels and expected class probabilities. Distribution focal loss(dfl), this loss function is frequently applied to jobs
involving object detection, especially when there is a significant imbalance in the distribution of object occurrences among
classes. Assigning varying weights to distinct samples according to their distribution throughout the dataset aids in
mitigating the problem of foreground-background class imbalance.

The graphs from the YOLOv8m model output illustrate the training process across 50 epochs, focusing on three key loss
metrics: box loss, classification loss, and a third metric labelled as dfl loss. The box loss graph shows a significant
reduction from an initial value 0.9 to 0.33492, indicating the model’s rapidly improving accuracy in bounding box
predictions. The classification loss graph starts at a higher initial value of around 3.0 but exhibits a sharp decline to below
0.23533, suggesting the model’s increasing proficiency in correctly classifying objects within the bounding boxes. The dfl
loss graph presents an initial spike before descending from 1.1 to just above 0.82747, which could reflect the model’s
capability to adapt to deformations or other specific challenges in object detection Figure 7. These trends are indicative of
the model’s learning effectiveness and its potential for reliable object detection in various applications. For your research
paper, these observations can be highlighted to demonstrate the model’s performance and areas for potential improvement.
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Figure 7: Training loss (box, cls and dfl)

The box loss, graph shows a steep decline in loss, indicating rapid improvement in the model’s ability to predict bounding
boxes accurately. The classification loss graph demonstrates a dramatic decrease from a high initial value, reflecting the
model’s enhanced capability in classifying objects within those boxes. The distribution focal loss graph initially spikes,
suggesting a potential issue that is quickly resolved as the loss decreases sharply, indicative of the model’s learning and
adaptation in handling deformations or other complex features Figure 8. These trends are crucial for understanding the
model’s efficiency and areas for further optimization, providing valuable insights for your research paper on the
YOLOv8m model’s object detection performance.

val/box loss val/cls_loss val/dfl_loss
4 °

it 4 400 -

31 80 300 A
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. 100 A
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Figure 8: Training loss (box, cls and dfl)

The fundamental indicators of the model’s accuracy is Precision, measures the proportion of true positives among all
positive predictions, while recall quantifies the ability to detect all actual positives. The precision graph shows that the
model maintains high precision, predominantly above 0.8, for a significant range of thresholds before experiencing a
decline. This suggests that the model is highly accurate in its predictions, with a low rate of false positives. The recall
graph indicates an initial rapid increase to high recall values, stabilizing near 1.0 Figure 9, which implies that the model is
capable of detecting nearly all actual positives. These metrics collectively demonstrate the YOLOv8m model’s robust

performance in identifying objects with high confidence and low false positive rates, making it suitable for real-time
applications where accuracy is critical
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Figure 9: Precision and recall

The x-axis represents the model's confidence level, which is a measure of how certain the model is about its predictions.
Higher confidence values indicate that the model is more confident in its classification. Figure 10, the y-axis represents the
Fl-score, which is a harmonic mean of the model's precision and recall. Precision refers to the proportion of correctly
classified detections among all the detections the model makes. Recall refers to the proportion of all actual positive objects
that are correctly detected by the model. The F1-score offers a balanced view of how well the model performs, considering
both precision and recall. There appears to be a curve for each speed limit (30 km/h, 60 km/h, and 90 km/h), possibly
indicating the F1-score of the model for detecting objects at those specific speed limits across different confidence levels.
The text "all classes 1.00 at 0.796" might suggest that the model achieves a perfect F1-score (1.00) for all speed limits at a
specific confidence level (0.796).

Fl-Confidence Curve

m— | —— speed limit 30 km/h
speed limit 60 km'h

speed limit 20 km/h

I — all classes 1.00 at 0.796

Fl

|

0.2

0.0
o.0 .2 0.4 0.6 0.8 1.0
Confidence

Figure 10: F1-Confidence curve

5.1 Average losses

In object detection models, box loss measures the error in bounding box localization, classification loss quantifies the error
in object classification, and dfl loss (likely Distribution Focal Loss) addresses class imbalance by adjusting the loss based
on class frequency and detection difficulty.

5.1.1 Validation Loss

The table presents the average loss across three different metrics box loss, classification loss, and dfl loss over the course
of 80 epochs. A clear downward trend is observed in all three loss Table. 1 metrics as the epochs progress, indicating
effective learning by the model. Specifically, the cls loss shows a significant reduction from 17.2927 in the first epoch to
0.3212 by the eighth epoch, suggesting a substantial improvement in the model’s classification accuracy. Similarly, the box
loss and distribution focal loss metrics also exhibit a consistent decrease, with the former stabilizing around 0.5 and the
latter approaching 0.9. Figure 11, this trend demonstrates the model’s increasing proficiency in bounding box prediction
and deformation localization, respectively. Overall, the data reflects the model’s capability to optimize its parameters
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effectively over time, leading to a consistent improvement in performance across all evaluated aspects.

epoch Val box loss Val cls loss Val dfl loss
1 1.3884 17.2927 44.0714

2 0.6627 1.7282 0.9536

3 0.5916 0.9779 0.9191

4 0.5472 0.6247 0.9036

5 0.542 0.5708 0.9

6 0.5108 0.4035 0.898

7 0.4849 0.3547 0.8873

8 0.4967 0.3212 0.8885

Table 1: Validation Loss

Average validation loss

@ dfl_loss ®box_loss ®cls_loss

dfl_loss, box_loss and cls_loss

2 3 4 5

epoch_range

Figure 11: Average of 80 epochs (Validation loss)

5.1.2 Training loss

The data indicates a consistent decrease in loss values across all metrics as the number of epochs increases. This suggests
that the model is effectively learning and improving its predictive accuracy over time. Notably, the cls loss, which started
at (1.5206) in the first epoch, has seen a substantial reduction to (0.2622) Table. 2 by the eighth epoch, reflecting a
significant enhancement in the model’s ability to classify correctly. Similarly, the box loss and dfl loss have also shown
steady declines, with the former reaching (0.3638) and the latter (0.857) Figure 12, indicating improvements in box
localization and deformation prediction, respectively. These trends demonstrate the model’s capacity to refine its
parameters for better performance as training progresses.

epoch | Train box loss Train cls loss Train dfl loss
1 0.7851 1.5206 1.1113

2 0.6681 0.8194 1.0257

3 0.5819 0.6166 0.9815

4 0.5212 0.5206 0.958

5 0.465 0.4374 0.9288
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6 0.4359 0.396 0.9176
7 0.3944 0.3398 0.8981
8 0.3638 0.2622 0.857

Table 2: Training Loss

AverageTraning loss

®cls_loss ®box_loss ®dfl loss

cls_loss, box_loss and dfl_loss

epoch_range

Figure 12: Average of 80 epochs (Training loss)

5.1.3 Precision and recall

Precision and recall are inversely related; as precision increases, recall tends to decrease and vice versa. Precision measures
the accuracy of positive predictions, while recall assesses the model’s ability to identify all relevant instances. Balancing
these metrics is crucial for a model’s performance, especially in scenarios where both false positives and false negatives
carry significant consequences.

The model’s performance has shown a significant improvement over the epochs in terms of both precision and recall.
Initially, the precision started at 0.2423 and recall at 0.4917, Table. 3 indicating a moderate detection capability with less
than half of the relevant instances being retrieved. However, there was a substantial increase by the second epoch, with
precision rising to 0.7532 and recall to 0.6804, suggesting that the model quickly improved its ability to identify relevant
instances more accurately Figure 13.

As the epochs progressed, both precision and recall values approached 1, with precision reaching 0.9934 and recall
achieving a perfect score of 1 by the eighth epoch. This indicates that the model not only identified almost all relevant
instances but also did so with very few false positives. The consistent increase in precision and recall suggests that the
model’s learning algorithm effectively adapted and optimized its parameters for the task at hand. In conclusion, the data
reflects a highly effective model that has achieved near-perfect precision and recall, demonstrating its robustness and
reliability in identifying relevant instances with high accuracy by the eighth epoch.

epoch Precision recall

1 0.2423 0.4917
2 0.7532 0.6804
3 0.8323 0.9065
4 0.8592 0.9823
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5 0.8859 0.9907
6 0.9559 1
7 0.9884 1
8 0.9934 1

Table 3: Measures of model

Precision and Recall

® precision ®recall

precision and recall

epoch_range

Figure 13: Average of 80 epochs (precision and recall)
5.1.4 mAP

The primary difference between mAPS50 and mAP50 95 is the Intersection over Union (IoU) threshold used to evaluate
object detection models. mAP50 measures the model’s precision at a 50% IoU threshold, indicating a moderate overlap
between the predicted and ground-truth bounding boxes. In contrast, mAP50 95 averages the precision across a range of
IoU thresholds from 50% to 95%, assessing the model’s accuracy at various levels of overlap, which is a more stringent
and comprehensive evaluation.

The data indicates a rapid improvement in the model’s average precision at detecting objects with a 50% IoU threshold
(mAP50) and across a range of thresholds from 50% to 95% (mAPS50 95). Starting from an mAP50 of 0.2045 and
mAP50 95 of 0.1803 in the first epoch, there is a notable increase by the second epoch to an mAP50 of 0.6861 and
mAP50 95 of 0.5882, Table. 4suggesting significant enhancements in the model’s detection capabilities Figure 14.

As the training progresses, both metrics show a trend towards stabilization, with the mAPS50 reaching a plateau at 0.995 by
the seventh epoch, and the mAP50 95 peaking at 0.9047. Interestingly, the mAP50 95 shows a slight decrease in the
eighth epoch to 0.8966, which could indicate variations in performance at higher loU thresholds or potential overfitting to
the training data.

In summary, the model demonstrates excellent object detection precision at the 50% IoU threshold and maintains high
precision across a spectrum of thresholds. The slight dip in mAP50_95 at the eighth epoch warrants further investigation to
ensure the model’s generalizability and robustness.

epoch mAP50 mAP50_95
1 0.2045 0.1803
2 0.6861 0.5882
3 0.8739 0.7711
4 0.9581 0.8463
5 0.9621 0.8613
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6 0.9888 0.8911
7 0.995 0.9047
8 0.995 0.8966

mAPS50 and mAP50_95

5.1.5 Web cam results

Integrating the YOLO model with a laptop webcam for real-time detection of speed signs involves configuring the webcam
to capture video frames at a resolution that the YOLO model can process effectively. As the webcam feeds live video into
the system, the YOLO model continuously analyzes each frame to detect and classify speed signs of 30, 60, and 90 km/h.
This classification is based on the extensive training the model has undergone, ensuring high accuracy and confidence in
identifying the correct speed sign categories. The results are then displayed directly on the live feed, providing immediate
visual feedback, as shows in Figure 15. This setup not only allows for real-time analysis, crucial for applications such as
driver assistance systems, but also offers the advantages of portability and cost-effectiveness, given that it utilizes the
existing hardware of a laptop webcam. The practical application of this integration demonstrates the YOLO model’s
capability to function effectively in dynamic, real-world scenarios, highlighting its potential in enhancing road safety and

traffic management.

Figure 15: Web cam results of speed limit 60 and 90 km/h

5.1.6 Simulation results

CARLA is an open-source simulator specifically designed for developing, training, and validating autonomous driving
systems. Built on the Unreal Engine 4, CARLA offers a realistic virtual environment with customizable urban layouts,
vehicles, and weather conditions. Researchers can leverage its open-source code and assets to create tailored scenarios for
testing self-driving algorithms Figure 16. CARLA also provides a suite of sensors that mimic real-world data acquisition,
enabling the training of perception and decision-making models for autonomous vehicles.

Table 4: Mean Average Precision

®mAP50 ®mAP50_95

0s
7
1 2 B 4 & 6 T 8

epoch_ra

mAP

nge

Figure 14: Average of 80 epochs (mAP)
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Figure 16: Various speed limit boards in different scenario in CARLA

6. CONCLUSION

In this research, a YOLOv8m model was developed for detecting speed limit signs in autonomous vehicles, using a dataset
combining real-world and simulated images enhanced with image augmentation. The model, trained over 80 epochs,
demonstrated effective learning and generalizability, indicated by converging loss functions and high precision-recall
metrics. Future work includes expanding the dataset to include a wider variety of traffic signs and further testing in
simulated environments to ensure robustness and reliability. This study lays the groundwork for implementing a
comprehensive speed limit sign detection system in autonomous vehicles, aiming to improve safety and compliance with
traffic regulations.
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