
Journal of Neonatal Surgery
ISSN(Online): 2226-0439
Vol. 14, Issue 15s (2025)
https://www.jneonatalsurg.com

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 15s

pg. 165

AutomatedSmart SolarPanel SystemFaultDetectionandEnergy for SolarPanelsUsing
ConvolutionalNeuralNetworks (CNN)andDeepLearning

Mr. Shital M. Patil1, Prof. Krishna S. Kadam2

1PG (Computer Science &Engineering), Computer Science & Engineering, DKTE Society’s Textile & Engineering
Institute, (An Empowered Autonomous Institute), Ichalkaranji.
2Assistant Professor, Computer Science & Engineering, DKTE Society’s Textile & Engineering Institute, (An Empowered
Autonomous Institute), Ichalkaranji.

00Cite this paper as: Mr. Shital M. Patil, Prof. Krishna S. Kadam, (2025) Automated Smart Solar Panel System Fault
Detection and Energy for Solar Panels Using Convolutional Neural Networks (CNN) and Deep Learning. Journal of
Neonatal Surgery, 14 (15s), 165-173.

ABSTRACT
Employing a combination of machine learning, deep learning, and computer vision techniques for detection and energy
usage predictions. Two Convolutional Neural Network (CNN)-based models are included in the system: one is intended to
identify flaws including dust, cracks, and shading, while the other is intended to detect the existence of solar panels. To
identify and categorize fault types and their severity, CNN models scan high-resolution pictures obtained through
continuous monitoring. A regression-based machine learning model is used to forecast future energy output by utilizing
environmental variables and past data to predict energy consumption. Long-term energy forecasts are further improved by
time-series analysis, which makes maintenance and optimization tactics more successful. The Flask framework is used to
create the solution, and a MySQL database is used to store maintenance records, energy forecasts, and fault detection logs.
Scalable, real-time solar farm monitoring is supported by this integrated system, which lowers operating expenses and
boosts output. This research aids in the effective and sustainable management of solar energy by integrating fault detection
and energy forecasts into a single framework.

Keywords: Solar Fault Detection, Energy Consumption Prediction, Computer Vision, Convolutional Neural Networks
CNNs), Time-Series Analysis.

1. INTRODUCTION
With its sustainable and eco-friendly solutions, solar energy is becoming more and more important in the global transition
to renewable power generation. A significant problem as the number of large-scale solar farms increases is guaranteeing
their dependability and efficiency. Dust accumulation, bird droppings, physical damage, and shade are some of the
problems that can drastically reduce energy output and cause large financial losses. In addition to taking a lot of time,
manual monitoring and defect identification are prone to human mistake. Automated fault detection and prediction systems
based on deep learning and computer vision have become more and more popular as a solution to these problems. These
systems provide accurate, real-time monitoring, increasing the efficiency of solar panels by leveraging high-resolution
image data and sophisticated machine learning models.
In this project, Convolutional Neural Networks (CNNs) and machine learning regression models are used to construct a
two-step system for fault detection and energy prediction. The first component employs image classification to locate
defects and detect the presence of solar panels. Using time-series data, the second component anticipates future energy use
and the energy loss brought on by these flaws. Regression-based energy prediction combined with CNN-based fault
detection results in a reliable and expandable monitoring solution. By identifying issues early on, before they have a
substantial influence on energy production, this method seeks to improve maintenance schedules and minimize downtime.

A web application based on the Flask framework is used to carry out the project, and a MySQL database is used for data
administration. The platform provides an easy-to-use interface for uploading datasets, viewing the results of fault
identification, and creating energy consumption reports. Through the analysis of both historical performance data and real-
time photos, the system offers useful insights to improve the performance of solar panels, save maintenance expenses, and
facilitate effective energy management. This study offers a scalable, effective solution for huge solar farms, which
advances the expanding field of AI-powered renewable energy systems.
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Feature Extraction Strategy in Solar Fault Detection and Energy Consumption Prediction

In order to create models for detecting solar panel faults and predicting energy usage, this work investigates feature
extraction as a crucial element. To increase model accuracy, feature extraction entails locating important characteristics
from data, such as pictures of solar panels, environmental factors, and historical energy data. Convolutional Neural
Networks (CNNs) are useful for automatically identifying defects like dust, fractures, and shading by extracting elements
like textures, edges, and spatial arrangements from high-resolution photos. Machine learning regression models forecast
energy output by utilizing environmental and temporal variables from time-series data, such as temperature and sun
irradiation.
The fault detection technique does not require manual feature engineering since it uses both high-level features (cracks,
shading) from deeper layers and low-level features (textures, edges) from CNN's first layers. Because thermal and infrared
data can detect electrical problems that are not visible in ordinary photos, they further enhance fault detection. To cut down
on redundancy and improve accuracy, features are chosen for energy prediction using methods like Principal Component
Analysis (PCA) and Recursive Feature Elimination (RFE). The feature extraction method is also guided by domain
information, such as the effects of damage and dust. An integrated approach to improving solar panel performance and
lowering energy losses is provided by the combination of CNN-based fault detection and machine learning-based energy
prediction.
Contribution and Novelty of the Present Study -

1. Combining Computer Vision and Machine Learning for Solar Panel Monitoring: This study offers an
automated and comprehensive approach to solar panel performance monitoring by combining CNN-based fault
identification with machine learning regression models for energy consumption prediction.

2. Hierarchical Feature Extraction for Accurate Fault Detection: The CNN model accurately identifies a variety
of flaws by extracting both fundamental and sophisticated features, such as dust, cracks, and surface defects. This
method improves on conventional manual and sensor-based monitoring strategies.

3. Real-Time Monitoring and Fault Localization: The system speeds up maintenance procedures by using high-
resolution photos for real-time monitoring, fault detection, and fault localization with bounding boxes and
annotations.

4. Energy Loss Prediction and Time-Series Forecasting: The project uses time-series data analysis to predict
future energy consumption trends and a regression model to quantify energy loss due to faults.

5. Scalable, IoT -Compatible Architecture: The system may be integrated into sizable solar farms for ongoing
data gathering and defect detection because it is made to be both scalable and compatible with devices.

Detailed Flow of the Project -

Data collection is the first of several important stages in this project, which then moves on to model training, defect finding,
and energy consumption forecasting. Every step is intended to support proactive solar panel maintenance and real-time
monitoring.

1.Data Acquisition and Pre-processing
In the first stage, high-quality photos of solar panels are collected using a variety of tools, such as USB cameras, drones, or
on-site camera installations. These photos go through a number of pre-processing stages, including contrast improvement,
noise reduction, and scaling. Rotation and flipping are two examples of data augmentation techniques used to improve the
system's capacity to manage a variety of environmental situations. In order to detect issues that are not apparent in standard
photos, such as hotspots or electrical failures, thermal and infrared images are also taken. In addition to visual data, other
sources like weather APIs and Internet of Things devices are used to gather environmental factors including temperature,
irradiance, and wind speed. These metrics serve as inputs for the predictive models of the system and are essential for
precisely forecasting energy consumption.

2. Model Training and Fault Detection
This phase involves training two primary models: one for detecting solar panels and another for diagnosing problems.
Usually a Convolutional Neural Network (CNN), the solar panel detection model is trained to identify whether an image is
"Panel" or "No Panel." Once a solar panel has been identified, it is categorized into distinct fault kinds, such as dust
accumulation, cracks, bird droppings, or shadowing, by the fault identification model, which is likewise CNN-based. The
integration of thermal imaging data with standard RGB images improves the detection system's ability to detect problems
that are invisible under normal lighting conditions, such as internal electrical failures. In addition to identifying the faults,
the detection system provides the location of the faults in the form of bounding boxes, ensuring precise fault localization
within the images.
3. Energy Consumption Prediction and Proactive Maintenance
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The system evaluates the effects of faults on the solar panels' energy output after identifying and categorizing them. Each
defect's energy loss is estimated using a regression-based machine learning model that accounts for environmental
parameters, fault severity, and past energy production data. Furthermore, using historical data and anticipated fault impacts,
a time-series analysis model such as Autoregressive Integrated Moving Average (ARIMA) or Long Short-Term Memory
(LSTM) is used to forecast future energy consumption. Better planning of preventative maintenance to reduce downtime
and energy loss is made possible by these forecasts.

The results, which include projections for energy usage and fault detection data, are shown on a Flask-built web interface.
Operators can access live data, problem reports, and energy consumption projections with this interface's real-time
monitoring features. Long-term data analysis and well-informed decision-making are made easier by the system's storage
of all gathered data in a MySQL database, including fault logs and energy forecasts.

Methods
The main techniques employed in the project for fault identification, energy consumption predictions, and solar panel
detection are described in this section. These methods are carefully selected to guarantee reliable data collection, feature
extraction, model construction, and predictive analysis by utilizing computer vision, convolutional neural networks (CNN),
and machine learning regression models.
1. Data Collection and Preprocessing

Drones, USB-connected cameras, and on-site cameras are all used to get high-resolution pictures of solar panels. These
photos show a variety of factors that impact panel performance, such as dust buildup, cracks, bird droppings, and shade. In
order to identify electrical issues that conventional RGB photos could miss, thermal images are also incorporated into the
collection. To improve image quality and increase model accuracy, pre-processing techniques like scaling, normalization,
and noise reduction are used. Furthermore, data augmentation techniques like flipping, rotation, and brightness
modifications are used to provide diversity to the training set, avoiding overfitting and enhancing the generalization
capabilities of the model.
2. Solar Panel Detection Using CNN

Convolutional neural networks (CNNs) are used in the construction of the solar panel detecting model. CNNs' capacity to
automatically learn spatial feature hierarchies makes them very useful for image identification tasks. The two categories
into which the model is trained are "Panel" and "No Panel." Accurate panel detection depends on the CNN's numerous
convolutional and pooling layers, which capture different properties like edges, textures, and forms. Bounding boxes that
localize the panels inside the photos are included in the output. Reliable detection in a variety of environmental settings is
ensured by CNNs' exceptional ability to handle changing illumination conditions and panel orientations.
3. Fault Detection Using CNN

A different fault detection model is triggered to categorize particular issues after solar panel detection. A multi-class
dataset is used to train the CNN-based defect detection model, where each class represents a different fault, such as dust,
fractures, bird droppings, or shade. In order to accurately classify flaws, CNN is made to extract both high-level features—
like intricate patterns—and low-level features—like edges and textures—from the photos. Bounding boxes that show the
regions impacted by each defect and indicate the issues found are included in the fault detection results. For effective
maintenance and repair, this model makes it possible to monitor various fault kinds on individual panels in real time.

4. Energy Consumption Prediction Using Machine Learning
Regression-based machine learning is used to forecast how detected problems would affect energy output. The model
considers a number of variables, including fault records, historical energy output, and environmental factors (such as
temperature and solar irradiation). Taking into account variables like fault severity, the regression model is trained to
estimate the energy production loss brought on by faults. The most pertinent variables are found using feature selection
strategies, which maintain the model's computational efficiency while optimizing prediction accuracy. This method aids
operators in calculating the possible decrease in energy output brought on by particular defects.

5. Time-Series Analysis for Future Energy Forecasting
Time-series analysis approaches like Autoregressive Integrated Moving Average (ARIMA) models and Long Short-Term
Memory (LSTM) networks are used for long-term energy consumption predictions. These models take into account
variables including seasonal fluctuations, environmental impacts, and reoccurring defects when analysing past patterns of
energy consumption and projecting future energy output. By proactively addressing possible faults and performance
concerns, solar farm operators may streamline maintenance schedules and ensure efficient energy production thanks to
these models' predictive capabilities.

6. System Integration and Real-Time Monitoring
The Flask framework was used to create an intuitive web interface that incorporates the entire system. Operators can
evaluate defect detection results, upload pictures, and track real-time energy usage projections using this interface. Data
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analysis over time is made possible by the system's connection to a MySQL database, which houses logs of fault
classifications, timestamps, and energy predictions. Additionally, the system is made to work with Internet of Things
devices, guaranteeing constant data input from a variety of cameras and sensors. This integration facilitates seamless
monitoring and decision-making, enhancing the overall efficiency of solar panel maintenance and energy management.
CNN Model for Solar Panel Detection and Fault Detection

1. Architecture and Working of CNN for Solar Panel Detection
Convolutional, pooling, and fully connected layers make up the basic multi-layer architecture of the Convolutional Neural
Network (CNN) intended for solar panel detection. An input image of a solar panel, usually with a set resolution (e.g.,
150x150 pixels), is first fed into the model. Low-level characteristics in the image, such edges, corners, and lines, are
detected by the convolutional layers. The network begins to extract increasingly intricate information, such as texturing
and the general layout of the solar panel, as the image moves through deeper levels. Following convolutional layers, max
pooling layers are used to down sample the feature maps, minimizing their computational complexity and spatial
dimensions while preserving the most crucial data. After that, fully linked layers are used to classify the image using the
features that were extracted. The model's output layer provides binary classification labels—"Panel" or "No Panel"—that
indicate whether a solar panel is present in the image using a soft max activation function. The model employs
backpropagation to modify the weights during training by minimizing the loss function. Usually, categorical cross-entropy
is used to quantify the loss, and the optimizer (like Adam) iteratively modifies the model weights to increase prediction
accuracy. By using data augmentation techniques like picture flipping, rotation, and scaling, the model is better able to
generalize and perform effectively in a variety of lighting scenarios and panel.

2. Architecture and Working of CNN for Fault Detection
A different CNN-based algorithm is used for fault identification after a solar panel has been identified. This model detects
flaws like dust, cracks, bird droppings, or shade and manages multi-class classification. Since the architecture must learn to
classify various fault kinds from the photos, it is more complicated than the solar panel detection model. The fault
detection model's convolutional layers, like those in the detection model, extract both high-level features (such
irregularities brought on by physical damage like cracks) and low-level features (like texture differences brought on by
dust or shading). The network can concentrate on areas of interest since each feature map identifies particular parts in the
image that are crucial for defect identification.

The model employs a method called Region Proposal Networks (RPN), which is frequently used in object detection tasks,
to locate errors within the image. Potential bounding boxes around fault locations are produced by RPN and then refined
using non-maximum suppression to get rid of boxes that are redundant or overlap. Both the categorization label (such as
"Dusty Panel") and the bounding box coordinates, which show the precise position of the problem, are included in the fault
detection model's output. For maintenance workers to determine which area of the panel needs care, this information is
essential.
3. Training Process and Loss Function

Both the fault detection and solar panel detection algorithms go through a similar training process. During the forward pass,
the network receives labelled picture data and uses it to make predictions. The weights. Since the solar panel detection
model is a binary classification problem (panel vs. no panel), binary cross-entropy loss is employed. However, categorical
cross-entropy loss, which is appropriate for multi-class classification problems, is used in the fault detection model.
Regularization strategies like dropout layers are used in both models to avoid overfitting. The model is then updated using
backpropagation after prediction errors are calculated using a loss function. This makes it more likely that the models will
generalize effectively to new data rather than memorize the training set. Multiple epochs are used during the training phase
to guarantee that the models converge to their best performance. In order to speed up convergence and increase overall
training efficiency, batch normalization is also used during training to normalize the intermediate outputs. Both models'
validation accuracy and generalizability across various panel settings and fault kinds progressively increase as training
goes on. This enables the models to efficiently handle a variety of real-world situations.

Machine Learning for Energy Consumption Prediction
4. Regression-Based Energy Prediction

A regression-based machine learning model trained on historical data, including past energy output, environmental
parameters (such temperature and sun irradiance), and fault incidence logs, is used to estimate energy consumption owing
to panel faults. This model provides estimates of the energy loss brought on by faults and relates the severity of faults and
environmental factors to the associated decrease in energy output. Support vector regression (SVR), decision trees, and
linear regression are often employed techniques for this type of regression task. Feature selection methods, including
Recursive Feature Elimination (RFE), are used to find the most pertinent characteristics and remove those that aren't
needed in order to improve model performance. This increases prediction accuracy and lowers computational complexity.

After training, the model forecasts the anticipated energy output according to the environmental factors and fault severity.
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The system may then measure energy losses as a result of identified problems by comparing the expected output with the
actual energy production. For instance, a minor fault, such as tiny fractures, would result in a modest reduction in
production, whereas a serious fault, such as dust deposition, would result in a considerable energy loss. These forecasts
help operators prioritize measures that reduce energy loss and increase system efficiency by guiding maintenance and
cleaning decisions.

5. Time-Series Techniques for Long-Term Energy Forecasting
Future energy usage is predicted using time-series analysis techniques. To produce precise long-term forecasts, these
techniques take into consideration past energy data, seasonal patterns, meteorological conditions, and ongoing maintenance
requirements. Autoregressive Integrated Moving Average (ARIMA) models and Long Short-Term Memory (LSTM)
networks are the two main methods used in solar energy forecasting.
• LSTM Networks: LSTMs are a kind of recurrent neural network (RNN) that function well with sequential input that
requires the learning of long-term dependencies. They are perfect for solar energy applications because they can effectively
capture the nonlinear interactions between faults, historical energy outputs, and weather conditions. LSTMs may forecast
future energy output by learning these intricate patterns and using historical data as well as environmental influences.
• ARIMA Models: ARIMA is a statistical model that uses the relationships between recent and historical data points to
estimate future values by analysing time-series data. ARIMA can successfully detect seasonal variations in energy output
and is helpful for forecasting short- to medium-term energy consumption.

A complete system for both short-term and long-term energy forecasting is produced by combining these time-series
forecasting methods with regression-based energy prediction. This enables solar farm managers to plan maintenance or
cleaning schedules based on data, reducing downtime and increasing energy production.

6. Integration of Fault Detection and Energy Prediction for Maintenance Optimization
The technology offers a thorough framework for preventative maintenance by combining real-time defect detection with
energy usage prediction. The energy projection model measures how these problems affect energy output, while the fault
detection module finds and categorizes faults and estimates their severity. Furthermore, time-series forecasting offers long-
term insights into trends in energy use, assisting operators in scheduling repair before issues have a substantial negative
influence on performance.
Important actionable data are provided by this connection, including when to carry out maintenance tasks to minimize
downtime, improve energy production, and save operating expenses. Operators can see real-time problem detection and
energy consumption estimates thanks to the web-based interface that displays the results of these investigations.
Maintenance schedules are tailored to maintain high solar farm performance thanks to this smooth decision-making
framework.

Experimental Setup
To guarantee the accuracy and consistency of the results, the experiments were carried out in a controlled hardware and
software environment. A powerful computer with an Intel i7 CPU, 16 GB of RAM, and an NVIDIA RTX 3060 GPU was
part of the hardware configuration, which made it possible to train CNN models for defect classification and solar panel
detection effectively. A drone-based image gathering system and a USB camera were utilized to take real-time pictures of
solar panels in a variety of settings, including dust build up, cracks, and shade. These pictures were kept on a local server
for model training and pre-processing.
Furthermore, weather sensors and Internet of Things devices were incorporated into the system to gather environmental
data, such as temperature and solar irradiance, which the machine learning regression model utilized to estimate energy use.
Python 3.9 was used for the software side of the studies, and tools for computer vision and deep learning like Tensor Flow,
Keras, and OpenCV were used. Time-series analysis and regression-based energy prediction were performed using Scikit-
learn. The user interface was a Flask-based web application that allowed operators to track identified defects and real-time
energy usage forecasts. To ensure effective data retrieval and analysis, all fault classification results, energy estimates, and
historical data were saved in a MySQL database.

Data pre-processing and model training were the first steps in the experimental procedure, which was then followed by
validation using a different testing dataset. Metrics like accuracy, precision, recall, and F1-score were used to assess the
CNN models' performance. Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2 metrics were used to
evaluate the regression model. The controlled setting made it possible to replicate the trials and identify any differences in
the outcomes for debugging and optimization.
Experimental Results

1. Solar Panel Detection Results
A test dataset with both solar panels and non-panel areas (background noise) was used to assess the CNN-based model for
solar panel detection. The model's remarkable 96% overall accuracy, 94% precision, and 95% recall were attained. The
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model successfully distinguishes between photos with and without solar panels, as evidenced by the F1-score of 94.5%.
The model's capacity to correctly detect solar panels under various lighting and environmental circumstances was
demonstrated by the confusion matrix's low number of false positives. Furthermore, the panels were correctly localized by
the bounding box annotations, supporting the defect identification step that followed.
2. Fault Detection Results

A multi-class dataset comprising the following categories was used to assess the CNN model for defect detection: "No
Fault," "Dust," "Crack," "Bird Droppings," and "Shading." The model's overall classification accuracy was 92%, albeit its
performance varied according to the kind of problem. Due in part to visual cues that overlap with other fault types, fracture
identification had a little lower precision of 89% than dust accumulation detection, which had the maximum precision of
97%. The model's balanced performance in fault identification and classification is shown in its 91% F1-score.
Furthermore, the panels' defective portions were accurately identified by the bounding boxes, making it possible to quickly
identify the places that needed maintenance.
3. Energy Consumption Prediction Results

Historical energy output data, defect records, and environmental factors including temperature and solar irradiance were
used to train the machine learning regression-based energy consumption prediction model. The model's coefficient of
determination (R2) score was 0.94, its mean absolute error (MAE) was 1.8%, and its root mean square error (RMSE) was
2.3%. The usefulness of the model in predicting fault-related energy losses is demonstrated by these data, which show a
significant correlation between the projected and actual energy consumption. Greater energy losses for more severe flaws,
like cracks and substantial dust deposition, were predicted by the model. Furthermore, the proactive scheduling of
maintenance tasks was made easier by the dependable long-term projections that time-series forecasting using LSTM
models produced. By identifying defects early and calculating their effect on energy output, the integrated system helped to
reduce downtime by 15% overall.

2. DISCUSSION
The proposed system combines CNN-based models for solar panel and fault detection with a regression-based machine
learning model for energy consumption prediction. The system's results indicate that it effectively addresses several
challenges, including accurate fault classification, real-time detection, and energy forecasting. In comparison to traditional
methods, this system demonstrates enhanced precision, recall, and energy prediction accuracy, owing to the synergy
between image-based fault detection and data-driven predictions. The CNN model’s capacity to autonomously extract both
high- and low-level features—such as cracks, shading, and other fault patterns—offers superior performance over manual
inspection and traditional feature-engineering techniques.
Moreover, the integration of environmental data, such as solar irradiance and temperature, within regression and time-
series models strengthens the reliability of energy forecasting under varying weather conditions. The system's robustness
was evident when tested on large-scale datasets, where the inclusion of IoT sensor data significantly improved the accuracy
of fault impact assessments on energy loss. Additionally, the time-series forecasting capability enabled the prediction of
long-term energy consumption trends, critical for proactive maintenance and operational optimization. By reducing
downtime through early fault detection and predictive maintenance, this system offers substantial improvements in solar
panel efficiency, minimizing financial losses. These features make it highly suitable for large solar farms.

Comparison Table: Proposed Algorithm vs. State-of-the-Art Studies

Study Dataset Classes Method Accurac
y

Preci
sion

Recall F1-
Sco
re

Energy
Predictio
n
Accuracy

Proactive
Maintenan
ce
Improvem
ent

Proposed
Method

Kaggle,
Real-
Time
Solar
Images

Clean,
Dust,
Crack,
Bird
Droppings

CNN +
ML
Regress
ion

96% 94% 95% 94.5
% 94%

15%
improveme
nt
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[11] Koo
et al.

IoT and
thermal
image
datasets

No Fault,
Hotspot

AI-
based
Thermal
Fault
Detectio
n

89% 85% 86% 85.5
% N/A

Limited due
to thermal
data scope

[12] Zhao
et al.

Weather
and
performa
nce
dataset

Normal,
Underperfo
rming
Panels

ML
Regress
ion

N/A N/A N/A N/A 92%
8%
improveme
nt

[13]
Garcia et
al.

Real-
time
images
of solar
panel
farms

Dust,
Shading,
Minor
Physical
Damage

SVM
Classifi
er

85% 83% 82% 82.5
% N/A

Limited due
to lack of
real-time
data

[14] Chen
et al.

Large
PV
dataset
with
fault
annotatio
ns

Dust,
Crack,
Shading,
Delaminati
on

CNN
with
Environ
mental
Data
Fusion

92% 91% 90% 90.5
% 89%

Moderate
improveme
nt (10%)

[15] Rana
et al.

Custom
PV
dataset
with real
faults

Dust,
Crack

Feature-
based
SVM +
Image
Analysi
s

88% 86% 87% 86.5
% N/A

Limited
real-time
deployment

[16]
Wang et
al.

Time-
series
performa
nce and
weather
data

N/A

LSTM
(Energy
Forecast
ing)

N/A N/A N/A N/A 91%
Significant
due to long-
term trends

[17]
Fernande
z et al.

IoT and
combine
d fault-
image
datasets

Various
Faults

Deep
Learnin
g + IoT
Integrati
on

91% 90% 89% 89.5
% 87%

10%
improveme
nt

[18]
Kumar et
al.

Physical
damage
datasets

No Fault,
Minor,
Major
Damage

Hybrid
CNN 90% 88% 89% 88.5

% N/A

Moderate
performanc
e
improveme
nt
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[19]
Shukla et
al.

Dust and
shading
datasets

Clean,
Dust,
Shading

AI-
powere
d Image
Classifi
cation

87% 86% 85% 85.5
% N/A

Moderate
(9%)
improveme
nt

Explanation of Comparison Table

With an emphasis on factors like datasets, fault categories, techniques, and performance measures, the table compares the
suggested algorithm with cutting-edge research. The suggested solution performs better than current methods, with 96%
accuracy and 94% precision. This is primarily because it combines machine learning regression models with CNN-based
fault detection, which additionally incorporates environmental data. Higher defect identification rates and fewer false
negatives are achieved by the suggested method, which integrates both image and IoT data, in contrast to methods like Koo
et al. ([11]), which only use thermal imaging ([12]).

In comparison to Chen et al. ([14]), who utilize data fusion for fault detection, the proposed system excels in generalization
across varying environmental conditions, delivering superior performance. Additionally, the energy prediction accuracy of
the proposed method reaches 94%, surpassing studies like Wang et al. ([16]), where LSTM-based energy forecasting alone
achieves 91% accuracy. The integration of fault data within the regression model leads to an improved maintenance
schedule, with a 15% increase in proactive maintenance efficiency, setting the proposed system apart from others. By
overcoming the limitations of single-modality systems—whether relying solely on thermal imaging or weather data—the
proposed method ensures higher reliability in fault detection and energy consumption forecasting, making it more
adaptable across diverse operational scenarios ([18]).

3. CONCLUSION
This study introduces a real-time solution for solar panel fault detection and energy consumption prediction, combining
CNN-based models and machine learning regression techniques. The system achieves 96% accuracy in solar panel
detection and 92% in fault detection, accurately identifying issues like dust, cracks, and shading. The regression model,
incorporating time-series and environmental data, predicts energy consumption with an MAE of 1.8% and an R² score of
0.94. By enabling proactive maintenance, the system reduces downtime by 15%, enhancing solar panel performance. The
proposed solution outperforms traditional methods, offering scalable, automated monitoring for large solar farms. It
contributes to optimizing maintenance schedules and minimizing energy losses. Future work could include detecting
additional faults, improving forecasting models, and scaling the system for larger, diverse solar farms.
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