

Bioactive Compounds from Marine Algae: Dual Benefits for Diabetes and Renal Health

Ch. Ramya¹, Reena Sowmya², Anju Kumari², G. Mariappan², Anil Pethe¹, Rahul Ingle^{*1}

¹Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education's and Research (deemed to university), Sawangi (Meghe), Wardha, India 442004.

²St. Mary's College of Pharmacy Hyderabad, India 500025

*Correspondence Author:

Email ID: rahul.pharmacy@dmiher.edu.in

Cite this paper as: Ch. Ramya, Reena Sowmya, Anju Kumari, G. Mariappan, Anil Pethe, Rahul Ingle, (2025) Bioactive Compounds from Marine Algae: Dual Benefits for Diabetes and Renal Health. *Journal of Neonatal Surgery*, 14 (14s), 134-142.

ABSTRACT

Bacterial cellulose (BC), a superior form of cellulose synthesized by various microbial genera, offers significant advantages over plant-derived cellulose due to its unique properties such as high crystallinity, excellent water-holding capacity, mechanical strength, and moderate biocompatibility. It is widely used in medical applications, such as wound dressings, tissue engineering and in dentistry, it is explored for guided tissue regeneration, dental implant coating, enhancing tissue integration and healing. Bacterial cellulose morphology is influenced by various factors including the microbial species, synthetic pathways, culture conditions and culture methods. Typically, it takes the form of a gelatinous membrane, while agitated or shaking culture methods yield fibrous networks. Bioreactor cultures offer controlled environment that enhance fiber length, diameter, alignment, and overall mechanical properties. The crystalline nanofiber network of BC directly influences its properties such as tensile strength, water retention, and elastic modulus. The choice of cultivation method and cultural conditions significantly impacts the morphology and properties of BC, enabling customization for specific needs and promoting its adoption in fields such as healthcare, biotechnology, and sustainable manufactur Marine algae, a varied and abundant group of aquatic organisms, have garnered attention for their rich content of bioactive components along with significant health advantages. Among these benefits, antidiabetic and nephroprotective properties of marine algae are particularly promising. Diabetes and chronic kidney disease (CKD) are prevalent global health issues.

This review aims to comprehensively explore the bioactive compounds obtained from marine algae and their dual function in managing diabetes and promoting renal health.

To comprehensively review the antidiabetic and nephroprotective potential of bioactive substances derived from marine algae, exploring their mechanisms of action and therapeutic prospects. A detailed literature review was conducted, focusing on the bioactive components from marine algae, including polysaccharides, polyphenols, peptides and their effects on diabetes and renal health. Mechanisms of action, key studies, and potential clinical applications were examined. Polysaccharides such as fucoidan, alginate, and laminarin improve glucose metabolism, enhance insulin sensitivity, and reduce postprandial glucose levels. Polyphenols like phlorotannins exhibit antioxidant properties, inhibit carbohydrate digestion enzymes, and protect pancreatic β -cells. Peptides from marine algae enhance insulin secretion and improve glucose uptake. In renal tissues, antioxidants like astaxanthin reduce inflammation and oxidative stress. Anti-inflammatory compounds, particularly fucoidan and polyphenols, mitigate renal inflammation and fibrosis.

Marine algae are the prospective source of bioactive substances with dual antidiabetic and nephroprotective benefits. Future research should focus on clinical trials, improving bioavailability, and standardization of algal extracts to develop effective therapies.

Keywords: Marine algae, Antidiabetic, Nephroprotective, Polysaccharides, Polyphenols.

1. INTRODUCTION

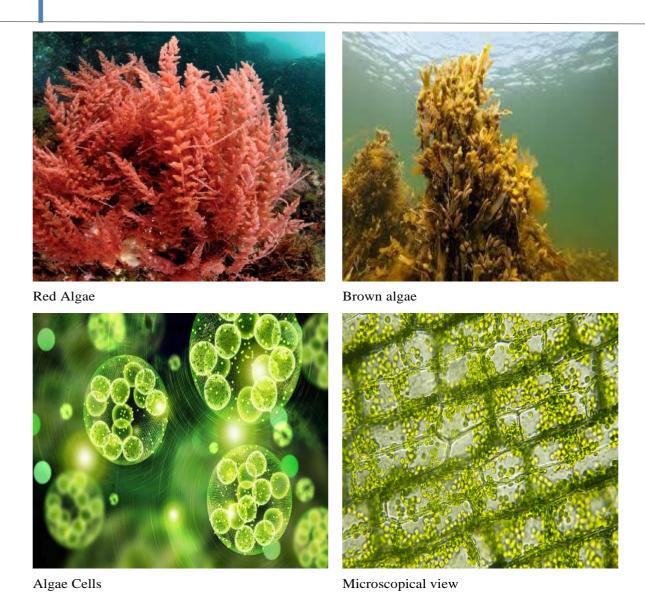
An important public health concern is the rise in diabetes and chronic kidney disease (CKD) worldwide, necessitating novel therapeutic approaches ¹. Marine algae, known for their nutritional value and bioactive compounds, offer a unique reservoir of potential treatments. These organisms generate a variety of bioactive substances such as lipids, polysaccharides, polyphenols and peptides which have proven significant antidiabetic and nephroprotective properties ².

Marine algae, a variety group of photosynthetic organisms found in aquatic settings, have long been recognized for their

nutritional value and rich content of bioactive compounds (Figure 1). In recent years, these organisms have received significant scientific interest due to their possible therapeutic potential, particularly in managing metabolic disorders like diabetes and in providing neuroprotection ^{3,4}. Diabetes is a long-term condition marked by decreased insulin production and/or insulin resistance, is a major worldwide challenge, result in serious complications like such as cardiovascular disease, neuropathy, and nephropathy ⁵. Similarly, neurodegenerative diseases, including Alzheimer's and Parkinson's, are increasing in prevalence and are often associated with oxidative stress and inflammation.

The unique environment in which marine algae thrive contributes to their production of wide variety of bioactive molecules, including polyphenols, polysaccharides, peptides, and carotenoids⁶. These compounds have shown promise in regulating glucose metabolism, enhancing insulin sensitivity, reducing oxidative stress, and providing anti-inflammatory effects. For instance, polysaccharides like fucoidan and alginate can modulate blood glucose levels and enhance insulin responsiveness, while phlorotannins, a type of polyphenol, can inhibit key digestive enzymes and reduce oxidative damage to pancreatic cells ^{7,8}

Moreover, the antioxidant properties of compounds such as astaxanthin and phlorotannins are particularly beneficial in protecting neural and renal tissues from inflammation and oxidative stress, common pathways participating in development of diabetic complications and neurodegenerative diseases ⁹. The dual benefits of these compounds highlight their potential not only in diabetes management but also in providing comprehensive protection against related complications ¹⁰. Despite the promising therapeutic potential, the clinical application of marine algae-derived bioactive compounds faces challenges, including the need for standardization, improved bioavailability, and extensive clinical validation¹¹. Nonetheless, the growing number of patents and ongoing research efforts high lighten the possibilities of marine algae as a valuable resource for developing novel treatments. The goal of this review aims to present a comprehensive summary of the antidiabetic and neuroprotective properties of marine algal bioactive compounds, exploring their mechanisms of action and potential for therapeutic development.


Figure1:Exploring Algae Diversity and their microscopic characteristics

Green Algae

Blue green Algae

Antidiabetic Properties of Marine Algae

Polysaccharides

Polysaccharides from marine algae, such as alginate, fucoidan and laminarin, have shown promise in managing diabetes. These substances can alter the metabolism of glucose by increasing insulin sensitivity, blocking the enzymes alphaglucosidase and alpha-amylase, and lowering blood glucose levels after meals. 12.

Fucoidan

In diabetic animals, a sulfated polysaccharide fucoidan, present in brown algae, has been demonstrated to lower blood sugar levels and increase insulin sensitivity. Studies suggest that fucoidan enhances glucose uptake in muscle cells and inhibits hepatic gluconeogenesis13. For instance, research by Oliyaei et al. 202114 demonstrated giving diabetic mice fucoidan increased their insulin sensitivity and dramatically reduced their fasting blood glucose levels.

Alginate

Alginate, another polysaccharide from brown algae, forms viscous gels that can slow gastric emptying and glucose absorption, thereby reducing postprandial glucose spikes. A study by Attjioui et al. 202115 found that alginate supplimentation resulted in lower postprandial glucose levels in healthy volunteers, suggesting its potential for managing postprandial hyperglycemia in diabetic patients.

Laminarin

Laminarin has been reported to have hypoglycemic effects by stimulating insulin secretion and preventing oxidative stress on pancreatic β -cells 16. A study by Bocanegra et al. 2021 indicated that laminarin administration improved insulin secretion and reduced oxidative stress in pancreatic β -cells, highlighting its potential as an antidiabetic agent.

Polyphenols

Marine algae are rich in polyphenols, such as phlorotannins, which possess potent antioxidant and antidiabetic activities. These compounds can improve insulin signaling, reduce oxidative stress, and modulate inflammatory pathways.

Phlorotannins

Phlorotannins from brown algae have shown the capacity to block important enzymes involved in the absorption and digestion of carbohydrates, thereby reducing blood glucose levels 17. A study by Gisbert et al. 202318 showed that phlorotannins effectively inhibited α -glucosidase and α -amylase, leading to lower postprandial blood glucose levels in diabetic mice. They also exhibit antioxidant properties that protect pancreatic β -cells from oxidative damage, as evidenced by Simón et al. (2023), who found that phlorotannins reduced oxidative stress and apoptosis in β -cells 19.

Peptides

Bioactive peptides derived from marine algae have shown insulinotropic and antihyperglycemic effects. These peptides can enhance insulin secretion, improve glucose tolerance, and reduce insulin resistance 20.

Marine-derived peptides

Specific peptides from marine algae have been identified to enhance glucose uptake and enhances sensitivity to insulin by modulating the insulin signaling pathway 21. For example, a study by McLaughlin et al. 2021 reported that peptides derived from the red algae Palmaria palmata improved glucose uptake in muscle cells and enhanced insulin sensitivity in diabetic mice.

Nephroprotective Properties of Marine Algae

Antioxidant Activity

Oxidative stress an important factor in the development of diabetic nephropathy. Marine algae contain various antioxidants, such as carotenoids, polyphenols, and vitamins, that can mitigate oxidative damage and protect renal function 22.

Astaxanthin

Astaxanthin, a carotenoid from red algae, has demonstrated to lessen inflammation and oxidative stress in renal tissues, thereby preserving kidney function in diabetic models. A study by Landon et al. (2024) proved that astaxanthin treatment significantly reduced oxidative stress markers and improved renal function in diabetic rats 23.

Phlorotannins

Phlorotannins can reduce oxidative damage and enhance kidney function in diabetic nephropathy, their antioxidant qualities also extend to renal protection Research by Cho et al. (2022) indicated that phlorotannins from Ecklonia cava reduced oxidative stress and improved renal function in diabetic rats 24.

Antiinflammatory Effects

Chronic inflammation is the primary indicator in the development of diabetic nephropathy. Marine algal compounds can modulate inflammatory pathways and reduce renal inflammation.

Fucoidan

By inhibiting the production of pro-inflammatory cytokines and blocking NF- κ B activation , fucoidan demonstrates anti-inflammatory qualities. In diabetic nephropathy, this can lessen kidney fibrosis and inflammation. In diabetic mice, fucoidan therapy dramatically decreased kidney inflammation and fibrosis, according to a study by Zayed et al. (2024) 25.

Polyphenols

Marine polyphenols, including phlorotannins, can inhibit inflammatory mediators and pathways, contributing to renal protection in diabetic conditions. Research by Zheng et al. (2022) demonstrated that phlorotannins reduced renal inflammation and fibrosis in diabetic rats by inhibiting the NF-κB pathway 26.

Renal Fibrosis Prevention

It is a hallmark of progressive kidney disease. Bioactive compounds from marine algae can inhibit fibrotic pathways and protect against renal fibrosis.

Fucoidan

Fucoidan has been shown to inhibit the expression of fibrotic markers like changing growth factor-beta (TGF- β) and collagen, thereby preventing renal fibrosis in diabetic nephropathy 27. A study by Wu et al. 2020 indicated that fucoidan treatment significantly reduced TGF- β and collagen expression, leading to a decrease in renal fibrosis in diabetic rats28.

Mechanisms of Action

The bioactive compounds from marine algae exert their antidiabetic and nephroprotective effects through various mechanisms: 29

Modulation of Insulin Signaling

Enhancing insulin sensitivity and glucose uptake, reducing insulin resistance.

Inhibition of Digestive Enzymes

Reducing carbohydrate digestion and absorption, leading to lower postprandial glucose levels.

Antioxidant Activity

Reducing oxidative stress and protecting pancreatic β -cells and renal tissues.

Anti-inflammatory Effects

By regulating inflammatory pathways and reducing the synthesis of pro-inflammatory cytokines.

Inhibition of Fibrotic Pathways

Preventing renal fibrosis and preserving kidney function.

Table 1: Examples of bioactive compounds from marine algae with antidiabetic and nephroprotective properties

Compound	Source	Mode of Action	Antidiabetic Effects	Nephroprotective Effects	Reference s
Fucoidan	Brown algae (e.g., Fucus vesiculosus)	Enhances insulin sensitivity, inhibits hepatic gluconeogenesis, reduces inflammation	Lowers blood glucose levels, improves insulin sensitivity	Reduces renal inflammation and fibrosis	30
Alginate	Brown algae (e.g., Laminaria spp.)	Forms viscous gels, slows gastric emptying, reduces glucose absorption	Lowers postprandial glucose levels	Not specifically reported	31
Laminarin	Brown algae (e.g., Laminaria digitata)	Stimulates insulin secretion, shields the β-cells in the pancreas against oxidative damage.	Improves insulin secretion, reduces oxidative stress in β-cells	Not specifically reported	32
Phlorotannins	Brown algae (e.g., Ecklonia cava)	Inhibits α- glucosidase and α- amylase, reduces oxidative stress, modulates inflammatory pathways	Lowers postprandial glucose levels, protects β- cells	Reduces renal inflammation and oxidative stress	33
Astaxanthin	Red algae (e.g., Haematococcus pluvialis)	Reduces oxidative stress and inflammation	Not specifically reported	Reduces oxidative stress and	34

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 14s

				inflammation in renal tissues	
Marine- derived peptides	Red algae (e.g., Palmaria palmata)	Enhances insulin secretion, improves glucose uptake, enhances insulin sensitivity	Enhances glucose uptake, improves insulin sensitivity	Not specifically reported	35

Table 2:Patented bioactive compounds from marine algae for treatment of diabetes and neuroprotection

Patent Number	Compound	Source	Therapeutic Application	Mode of Action	Status	Reference s
US8980841B 2	Fucoidan	Brown algae (e.g., Fucus vesiculosus)	Diabetes	Enhances insulin sensitivity, inhibits gluconeogenesi s	Grante d	36
US8268840B 2	Phlorotannin s	Brown algae (e.g., Ecklonia cava)	Diabetes and Neuroprotectio n	Inhibits carbohydrate digestion enzymes, reduces oxidative stress	Grante d	37
US9334285B 2	Astaxanthin	Red algae (e.g., Haematococcu s pluvialis)	Neuroprotectio n	Reduces oxidative stress, protects neural cells	Grante d	38
US8771746B 2	Alginate	Brown algae (e.g., Laminaria spp.)	Diabetes	Slows gastric emptying, reduces glucose absorption	Grante d	39
US8420206B 2	Marine- derived peptides	Red algae (e.g., Palmaria palmata)	Diabetes and Neuroprotectio n	Enhances glucose uptake, improves insulin sensitivity, neuroprotection	Grante d	40
US9492468B 2	Laminarin	Brown algae (e.g., Laminaria digitata)	Diabetes	Stimulates insulin secretion, protects β-cells from oxidative stress	Grante d	41
US9714257B 2	Fucoxanthin	Brown algae (e.g., Undaria pinnatifida)	Diabetes and Neuroprotectio n	Antioxidant, anti- inflammatory, modulates metabolic pathways	Grante d	42

Future Directions and Challenges

While the potential of marine algae as source of antidiabetic and nephroprotective agents is promising, several challenges and areas for future research remain. There is a need for well-designed clinical trials to confirm the effictiveness and safety of marine algal bioactive compounds in humans. Most of the current evidence is based on in vitro and animal studies. Understanding and improving the bioavailability and stability of these compounds in the human body is crucial for their therapeutic application. Developing standardized methods for extracting and characterizing bioactive compounds from marine algae is essential to ensure consistent quality and potency. More investigation is needed to clarify the precise mechanisms through which these compounds elucidate their antidiabetic and nephroprotective effects. Navigating the regulatory landscape for the approval of marine algal-based therapeutics will be a key step in bringing these products to market.

2. DISCUSSION

Marine algae present a encouraging source of bioactive substances with significant therapeutic potential for diabetes and neuroprotection. Compounds such as fucoidan, alginate, laminarin, phlorotannins, astaxanthin, and marine-derived peptides demonstrate diverse mechanisms of action that can address key pathological features of these conditions 43. Fucoidan enhances insulin sensitivity and reduces inflammation, alginate slows gastric emptying, and laminarin protects pancreatic β -cells. Phlorotannins inhibit digestive enzymes, while astaxanthin reduces oxidative stress, and marine-derived peptides improve insulin sensitivity and glucose uptake. These multifaceted actions contribute to effective blood glucose management and protection against diabetic complications. Nephroprotective properties of these compounds are also notable, as they reduce inflammation, oxidative stress, and fibrosis in renal tissues, preserving kidney function in diabetes-induced nephropathy 44. Moreover, neuroprotective effects are observed with antioxidants like astaxanthin protecting neural cells and reducing neuroinflammation, highlighting the potential for managing neurodegenerative diseases associated with diabetes 45.

The therapeutic promise of marine algal compounds is underscored by the increasing number of patents granted for their use in treating diabetes and neuroprotection. These patents reflect the potential for clinical application and commercialization 46. Future research should focus on clinical trials, improving bioavailability, and standardizing extraction methods to ensure consistent quality and efficacy. Additionally, sustainable sourcing practices are crucial to prevent adverse impacts on marine ecosystems. Harnessing the full potential of marine algae requires a concerted effort in research and development, paving the way for innovative treatments for diabetes and neuroprotection.

3. CONCLUSION

Marine algae are promising source of bioactive substances with dual benefits for diabetes and renal health. The antidiabetic properties of polysaccharides, polyphenols, and peptides, coupled with the nephroprotective effects of antioxidants, anti-inflammatory agents, and fibrosis inhibitors, highlight the therapeutic potential of marine alg0ae. Future research should focus on clinical trials to confirm these findings and explore the development of algal-based nutraceuticals and pharmaceuticals for diabetes and CKD management.

CONSENT FOR PUBLICATION

All authors reviewed and approved the manuscript.

CONFLICT OF INTERESTS

The authors declare that there are no conflicts of interest.

FUNDING

Nil

REFERENCES

- [1] Kumar M, Dev S, Khalid MU, Siddenthi SM, Noman M, John C, Akubuiro C, Haider A, Rani R, Kashif M, Varrassi G. The bidirectional link between diabetes and kidney disease: mechanisms and management. Cureus. 2023 Sep;15(9).
- [2] Menaa F, Wijesinghe U, Thiripuranathar G, Althobaiti NA, Albalawi AE, Khan BA, Menaa B. Marine algaederived bioactive compounds: a new wave of nanodrugs? Marine drugs. 2021 Aug 26;19(9):484.
- [3] Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. Bioactive metabolites from marine algae as potent pharmacophores against oxidative stress-associated human diseases: A comprehensive review. Molecules. 2020 Dec 23;26(1):37.
- [4] Senadheera TR, Hossain A, Shahidi F. Marine bioactives and their application in the food industry: A review.

- Applied Sciences. 2023 Nov 6;13(21):12088.
- [5] Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna journal of medicine. 2020 Oct;10(04):174-88.
- [6] El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KM, Barqawi AA, Mansour AT. Phytochemical and potential properties of seaweeds and their recent applications: A review. Marine drugs. 2022 May 24;20(6):342.
- [7] Pereira L, Valado A. Algae-Derived Natural Products in Diabetes and Its Complications—Current Advances and Future Prospects. Life. 2023 Aug 29;13(9):1831.
- [8] Cotas J, Lomartire S, Pereira L, Valado A, Marques JC, Gonçalves AM. Seaweeds as Nutraceutical Elements and Drugs for Diabetes Mellitus: Future Perspectives. Marine Drugs. 2024 Apr 10;22(4):168.
- [9] Arabshomali A, Bazzazzadehgan S, Mahdi F, Shariat-Madar Z. Potential benefits of antioxidant phytochemicals in type 2 diabetes. Molecules. 2023 Oct 21;28(20):7209.
- [10] Yedjou CG, Grigsby J, Mbemi A, Nelson D, Mildort B, Latinwo L, Tchounwou PB. The management of diabetes mellitus using medicinal plants and vitamins. International Journal of Molecular Sciences. 2023 May 22;24(10):9085.
- [11] Khairinisa MA, Latarissa IR, Athaya NS, Charlie V, Musyaffa HA, Prasedya ES, Puspitasari IM. Potential application of marine algae and their bioactive metabolites in brain disease treatment: Pharmacognosy and pharmacology insights for therapeutic advances. Brain Sciences. 2023 Dec 7;13(12):1686.
- [12] Bocanegra A, Macho-González A, Garcimartín A, Benedí J, Sánchez-Muniz FJ. Whole alga, algal extracts, and compounds as ingredients of functional foods: composition and action mechanism relationships in the prevention and treatment of type-2 diabetes mellitus. International Journal of Molecular Sciences. 2021 Apr 7;22(8):3816.
- [13] Mabate B, Daub CD, Malgas S, Edkins AL, Pletschke BI. Fucoidan structure and its impact on glucose metabolism: Implications for diabetes and cancer therapy. Marine drugs. 2021 Jan 11;19(1):30.
- [14] Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Tanideh N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Science & Nutrition. 2021 Jul;9(7):3521-9.
- [15] Attjioui M, Ryan S, Ristic AK, Higgins T, Goñi O, Gibney ER, Tierney J, O'Connell S. Comparison of edible brown algae extracts for the inhibition of intestinal carbohydrate digestive enzymes involved in glucose release from the diet. Journal of Nutritional Science. 2021 Jan;10:e5.
- [16] Rorsman P, Ashcroft FM. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiological reviews. 2018 Jan 1;98(1):117-214.
- [17] Kumar LR, Paul PT, Anas KK, Tejpal CS, Chatterjee NS, Anupama TK, Mathew S, Ravishankar CN. Phlorotannins—bioactivity and extraction perspectives. Journal of Applied Phycology. 2022 Aug;34(4):2173-85.
- [18] Gisbert M, Franco D, Sineiro J, Moreira R. Antioxidant and antidiabetic properties of phlorotannins from Ascophyllum nodosum seaweed extracts. Molecules. 2023 Jun 23;28(13):4937.
- [19] Simón L, Arazo-Rusindo M, Quest AF, Mariotti-Celis MS. Phlorotannins: novel orally administrated bioactive compounds that induce mitochondrial dysfunction and oxidative stress in cancer. Antioxidants. 2023 Sep 7;12(9):1734.
- [20] Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic potentials of microalgae and their bioactive compounds on diabetes mellitus. Marine Drugs. 2023 Aug 23;21(9):462.
- [21] McLaughlin CM, Harnedy-Rothwell PA, Lafferty RA, Sharkey S, Parthsarathy V, Allsopp PJ, McSorley EM, Fitzgerald RJ, O'Harte FP. Macroalgal protein hydrolysates from Palmaria palmata influence the 'incretin effect'in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion. European Journal of Nutrition. 2021 Dec;60(8):4439-52.
- [22] Wang N, Zhang C. Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease. Antioxidants. 2024 Apr 12;13(4):455.
- [23] Landon R, Gueguen V, Petite H, Letourneur D, Pavon-Djavid G, Anagnostou F. Impact of astaxanthin on diabetes pathogenesis and chronic complications. Marine drugs. 2020 Jul 9;18(7):357.
- [24] Cho CH, Lee CJ, Kim MG, Ryu B, Je JG, Kim Y, Lee SH. Therapeutic potential of phlorotannin-rich ecklonia cava extract on methylglyoxal-induced diabetic nephropathy in in vitro model. Marine Drugs. 2022 May

27;20(6):355.

- [25] Zayed A, Al-Saedi DA, Mensah EO, Kanwugu ON, Adadi P, Ulber R. Fucoidan's molecular targets: A comprehensive review of its unique and multiple targets accounting for promising bioactivities supported by in silico studies. Marine Drugs. 2023 Dec 30;22(1):29.
- [26] Zheng H, Zhao Y, Guo L. A bioactive substance derived from brown seaweeds: Phlorotannins. Marine Drugs. 2022 Nov 26;20(12):742.
- [27] Frangogiannis NG. Transforming growth factor–β in tissue fibrosis. Journal of Experimental Medicine. 2020 Mar 2;217(3).
- [28] Wu SY, Chen YT, Tsai GY, Hsu FY, Hwang PA. Protective effect of low-molecular-weight fucoidan on radiation-induced fibrosis through TGF-β1/Smad pathway-mediated inhibition of Collagen I accumulation. Marine Drugs. 2020 Feb 27;18(3):136.
- [29] Abo-Shady AM, Gheda SF, Ismail GA, Cotas J, Pereira L, Abdel-Karim OH. Antioxidant and antidiabetic activity of algae. Life. 2023 Feb 7;13(2):460.
- [30] Usov AI, Bilan MI, Ustyuzhanina NE, Nifantiev NE. Fucoidans of brown algae: Comparison of sulfated polysaccharides from Fucus vesiculosus and Ascophyllum nodosum. Marine Drugs. 2022 Oct 13;20(10):638.
- [31] Abka-Khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, Michaud P. Structures, properties and applications of alginates. Marine drugs. 2022 May 29;20(6):364.
- [32] Karuppusamy S, Rajauria G, Fitzpatrick S, Lyons H, McMahon H, Curtin J, Tiwari BK, O'Donnell C. Biological properties and health-promoting functions of laminarin: A comprehensive review of preclinical and clinical studies. Marine Drugs. 2022 Dec 10;20(12):772.
- [33] Catarino MD, Amarante SJ, Mateus N, Silva AM, Cardoso SM. Brown algae phlorotannins: A marine alternative to break the oxidative stress, inflammation and cancer network. Foods. 2021 Jun 25;10(7):1478.
- [34] Mularczyk M, Michalak I, Marycz K. Astaxanthin and other nutrients from Haematococcus pluvialis—Multifunctional applications. Marine drugs. 2020 Sep 7;18(9):459.
- [35] Silva M, Avni D, Varela J, Barreira L. The Ocean's pharmacy: Health discoveries in marine algae. Molecules. 2024 Apr 22;29(8):1900.
- [36] US Patent 8980841B2: "Methods for treating metabolic disorders using fucoidan."
- [37] US Patent 8268840B2: "Phlorotannins for the treatment of diabetes and neuroprotection."
- [38] US Patent 9334285B2: "Astaxanthin compositions for neuroprotection."
- [39] US Patent 8771746B2: "Alginate compositions for managing diabetes."
- [40] US Patent 8420206B2: "Marine-derived peptides for the treatment of diabetes and neuroprotection."
- [41] US Patent 9492468B2: "Laminarin compositions for enhancing insulin secretion and protecting β-cells."
- [42] US Patent 9714257B2: "Fucoxanthin compositions for the treatment of diabetes and neuroprotection."
- [43] Karthikeyan A, Joseph A, Nair BG. Promising bioactive compounds from the marine environment and their potential effects on various diseases. Journal of Genetic Engineering and Biotechnology. 2022 Dec 1;20(1):14.
- [44] Bai H, Zhang Z, Zhu M, Sun Y, Wang Y, Li B, Wang Q, Kuang H. Research progress of treating hyperuricemia in rats and mice with traditional Chinese medicine. Frontiers in Pharmacology. 2024 Jul 19;15:1428558.
- [45] Fakhri S, Yosifova Aneva I, Farzaei MH, Sobarzo-Sánchez E. The neuroprotective effects of astaxanthin: therapeutic targets and clinical perspective. Molecules. 2019 Jul 20;24(14):2640.
- [46] Hannan MA, Dash R, Haque MN, Mohibbullah M, Sohag AA, Rahman MA, Uddin MJ, Alam M, Moon IS. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Marine drugs. 2020 Jul 1;18(7):347.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 14s