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ABSTRACT 

Network reliability is essential for faultless communication in the telecommunication sector. The paper, Network Fault 

Severity Detection Using Log Data, focuses on predicting fault severity in the network of Telstra based on machine learning. 

The research establishes a predictive model to predict fault severity into three categories: 1 denotes a few errors, 2 numerous 

faults in them, and 0 denotes no defects. The approach requires heavy data preprocessing, feature design, and data exploration 

to establish patterns in logs. Machine learning algorithms like CatBoost, Random Forest, XgBoost, and LightGBM are 

utilized for accurate prediction. Feature importance analysis is also used to further improve model explainability by isolating 

major factors of failure. The study highlights the predictive analytics contribution to enhancing network reliability, 

minimizing downtime, and maximizing customer satisfaction. The method aids Telstra and other telecommunication 

providers in optimizing service quality, resource efficiency, and maintenance. The scalable approach suggested guarantees 

proactive fault detection, thereby reducing operational costs and enhancing overall network performance. 
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1. INTRODUCTION 

Cybersecurity is a rapidly developing field due to the need for advanced tools to detect, prevent, and counteract new cyber 

threats. One of the main issues in this field is analyzing time-based threats in network traffic, which is inherently complicated. 

With increasing security controls, cyberattacks become more advanced attacks, and they need robust defense systems. In 

order to protect vital network infrastructures, a combination of signature detection, anomaly detection, and machine learning 

or deep learning-based approaches is required [1]. The Internet is part of our daily life with the majority of us relying on it 

for essential services. But network faults can disrupt access or affect service quality, thus user experience. These defects 

result from various causes, including Customer On-Premise Equipment (CPE), the core network, and the external plant 

infrastructure. This research is focused on detecting and diagnosing faults from these three principal sources through log data 

analysis. Out-of-control network issues that include, e.g., power outage or faults resulting from customers are excluded in 

the research [2].  

About 17% of the over 16 million records in the CSE-CIC-IDS2018 dataset, which is composed of an attacking machine and 

a malicious device network, are six different forms of malware traffic. However, the dataset is class-imbalanced in binary 

and multi-class classifications, posing difficulty in detecting fault severity accurately [3]. Electrical power networks depend 

on an integrated system of segments—generation, transmission, and distribution—to transmit electricity effectively. Power 

transfer is made necessary by transmission lines, which are susceptible to faults. Fault detection and management require 

more than manual intervention since this can lead to reliability disruption, outages, and system failures. Correct fault 

categorization is important for network security, allowing immediate detection and segmentation in order to avoid system 

failure and ensure energy stability [4]. In this study, we apply the Telstra network log data to investigate and identify network 

fault severity. The data offers useful information regarding different network problems, such as faults from CPE, core 

network faults, and infrastructure-related outages. With this information, we will create a fault severity detection model that 

will effectively identify, classify, and predict network faults to enhance service reliability and reduce downtime. 
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1.1 Problem Statement 

In the telecommunications sector, network reliability is a key factor for uninterrupted communication and least service 

degradation. Yet fault severity identification and prediction are very challenging due to the sheer quantity of log data 

produced by the network. Existing fault detection solutions are usually slow and reactive and result in unnecessary downtime, 

escalated operational expenses, and lower customer satisfaction. 

This research adopts ML models such as CatBoost, Random Forest, XgBoost, and LightGBM to aptly address Telstra's fault 

severity prediction issue. Management of log data efficiently, derivation of useful features, and the formation of prediction 

models that can map fault severity to three classes - 0 for no faults, 1 for few faults, and 2 for several faults are key challenges. 

By constructing an effective predictive model, the proposed work hopes to achieve an efficient fault detection method that 

can ensure optimal scheduling of maintenance, decrease downtime, and enhance resource management. The designed 

approach is flexible and extensible to other telecommunications companies and can be applied with a data-based approach 

to offer increased network stability and service performance. 

2. LITERATURE SURVEY 

Network fault detection and severity analysis have attracted substantial interest with the growing dependency on 

telecommunication infrastructure. Different studies have used machine learning to improve fault detection and classification. 

Detection of network fault severity is vital for the stability and reliability of telecommunication and IT infrastructure. As the 

network environment grows complex, predictive fault detection by analyzing log data is now essential. The following is a 

survey of literature with the pertinent works and the usage of four fundamental algorithms—Random Forest, CatBoost, 

XGBoost, and LightGBM—within network fault severity prediction. 

Shilin He et al. (2021) [5] suggested a systematic review of log analysis automation for reliability engineering with an 

emphasis on operations such as log compression, parsing, and anomaly detection. The paper discussed the level at which 

fault detection relies on machine learning, especially boosting algorithms. According to the authors, real-time processing and 

unstructured log processing are challenging tasks, and ensemble models and deep learning models will improve failure 

prediction and anomaly detection even more. 

Mohamed Saied and his team (2023) [6] took a deep dive into comparing various boosting-based machine learning algorithms 

for detecting intrusions in IoT networks. They looked at Random Forest, CatBoost, XGBoost, and LightGBM. The results 

from their study are quite useful for classifying the severity of network faults, as these models excel at sifting through large 

data log files to spot anomalies. Their research also highlighted that while optimization algorithms significantly boost fault 

detection accuracy, they do face challenges related to computational load and the intricacies of feature engineering.  

Kennedyy Okokpujie et al. (2024) [7] had a study in which they had simulated a log-based predictive maintenance model 

for the purpose of detecting faults in telecommunication networks based on received signal levels (RSL). They used methods 

such as Random Forest, Gradient Boosting, and K-Nearest Neighbors (KNN) in the simulations. The results showed that 

Random Forest performed better than the other models in terms of detecting network faults, thus underscoring the 

significance of log-based predictive maintenance in order to enable minimal downtime. 

Ogobuchi Daniel Okey et al. (2022) [8], who suggested BoostedEnML, an ensemble learning-based methodology integrating 

XGBoost and LightGBM to improve IoT system cyberattack detection. The research showed that applying data balancing 

strategies such as SMOTE enhances classification performance in faults. Their research indicates that the same ensemble 

methods could be extended to network fault detection, especially dealing with imbalanced fault data and high classification 

accuracy. 

Shuai Li et al. (2024) [9] proposed an enhanced LightGBM model that utilizes a hybrid optimization approach to enhance 

industrial fault warning and detection systems. The researchers designed the hybrid strategy by integrating the Arithmetic 

Optimization Algorithm (AOA), Simulated Annealing (SA), and other high-level search techniques to precisely optimize the 

parameters of LightGBM. Using their experiments, they showed that optimized LightGBM performed better compared to 

conventional methods of fault detection in real case studies. When compared with XgBoost as well, their model was efficient 

in computation but highly accurate too. 

3. METHODOLOGY 

3.1 Data Modeling 

The approach starts with feature extraction, in which important parameters like voltage features, phase differences, and 

harmonic contents are sensed to improve model accuracy. Microgrid operation data is then classified using LightGBM 

classifier to identify possible faults. The authors use a bagging (Bootstrap Aggregating) technique to stabilize classification, 

training multiple LightGBM classifiers on various subsets of data [10]. The process begins with data gathering, in which the 
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IoT-based electrical grid monitoring system's historical sensor records are gathered. The data is preprocessed, including noise 

filtering, outlier removal, and feature selection, in an effort to optimize the model's performance. LightGBM is then trained 

using gradient boosting techniques [11]. This project entails the prediction of network fault severity level in Telstra's 

infrastructure using given log data, identified to particular times and locations. The primary datasets, train.csv and test.csv, 

document information with a unique "id" linking to other files. Fault severity is classified into three levels: 0 means no fault, 

1 for minor fault, and 2 for major faults. Some features are based on independent CSV files—namely event_type, log_feature, 

resource_type, and severity_type. The severity_type in its corresponding file is the warning message type which has been 

filtered from system logs and is a categorical feature devoid of any numeric order. The main target variable, fault_severity, 

found in the training data and shown in Fig 1.1, corresponds to actual network problems reported by users. Additional files 

supporting the dataset include: event_type.csv for identifying types of events (Fig 1.2), log_feature.csv for capturing specific 

log attributes (Fig 1.3), resource_type.csv for detailing resources involved (Fig 1.4), sample_submission.csv as a formatted 

template for predictions (Fig 1.5), severity_type.csv for the warning message classifications (Fig 1.6), test.csv containing 

records for prediction (Fig 1.7), and train.csv, which serves as the base for model training (Fig 1.8). 

 

Fig 1.1 File Description 

 

Fig 1.2 Sample dataset of event_type.csv 

 

Fig 1.3 Sample dataset of log_feature.csv 
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Fig 1.4 Sample dataset of resource_type.csv 

 

Fig 1.5 Sample dataset of sample_submission.csv 

 

Fig 1.6 Sample dataset of severity_type.csv 

 

Fig 1.7 Sample dataset of test.csv 

 

Fig 1.8 Sample dataset of train.csv 

The dataset consists of multiple sub-datasets, which are merged to form a final structured dataset. Each dataset file provides 
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specific attributes that contribute to the predictive model. After merging the sub-datasets, the final dataset (Table 1) follows 

this schema: 

Table 1 Final Dataset 

Column name Data Type Description 

Id Integer  

Unique identifier for each fault record. 
 

location Integer Network location where the fault occurred. 

severity_type Categorical Additional severity classification for the fault. 

event_type Categorical Type of event linked to the fault occurrence. 

log_feature Categorical Log-based feature associated with the fault. 

volume Integer Count of occurrences for a log feature. 

resource_type Categorical Type of affected network resource (e.g., server, router). 

fault_severity Categorical (0,1,2) Target variable: Severity level (0: No fault, 1: Few faults, 

2: Many faults) - Only in train.csv. 

 

The dataset for "Network Fault Severity Detection Through Log Data Analysis" is constructed by merging multiple sub-

datasets into a single dataset (Fig 1.9). This combined dataset ensures a comprehensive feature set for accurate fault severity 

prediction. Below is the example of the dataset: 

 

Fig 1.9 Example of Dataset 

3.2 Model Training 

3.2.1 CatBoost Model Training 

The algorithm specially designed to be used with categorical variables without deep preprocessing. Contrary to the classical 

gradient boosting models, CatBoost utilizes ordered boosting, which avoids target leakage because leaf values are calculated 

based on previous observations only. It also utilizes symmetric decision trees, which means that every layer in the tree is 

equilibrated, resulting in more efficient training and better generalization. The other important characteristic of CatBoost is 

that it can carry out target encoding for categorical features, making manual one-hot encoding less necessary. In training (Fig 

1.10), CatBoost tries to reduce log loss or cross-entropy loss when it is used in a classification problem. Hyperparameters 
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such as iterations, learning rate, depth, and L2 regularization are tuned to enhance performance. Feature importance analysis 

is also implemented within the algorithm, making it easier to identify the most influential factors contributing to network 

fault severity. The power of CatBoost lies in its ability to handle large-sized categorical data with minimal preprocessing, 

making it highly suitable to carry out analysis for network log data. The loss function and training process are as follows: 

Objective Function (Loss Function) 

CatBoost optimizes the loss function using gradient descent as shown in Equation (1). 

 

 

Equation (1) 

 

In this above equation (1), ℓ (yi, f(xi)) represents the loss function—such as Log Loss for classification tasks or Mean Squared 

Error (MSE) for regression—where f(xi) is the model’s predicted value and yi denotes the actual target label. 

 

Fig 1.10 Training CatBoost Model 

3.2.2 Random Forest Model Training 

It is an ensemble technique with numerous decision trees aiming to predict better and prevent overfitting. The model works 

by creating several subsets of training data through bootstrap sampling (bagging), which then trains a single decision tree on 

each subset. Unlike one decision tree, whose high variance can make it invalid, Random Forest reduces variance by averaging 

predictions from multiple trees. All trees in the Random Forest are trained (Fig 1.11) on a randomly selected subset of 

features in order to create diversity between models and prevent reliance on a single feature. Prediction is made final with 

majority voting, where the class label voted by all the trees is taken. Computation time and performance are struck in 

equilibrium during the hyperparameters like lowest data division, maximum length, and number of trees (n_estimators) being 

optimized. Random Forest is extremely tolerant to noisy data and missing values and thus may be an optimal choice for 

telecommunication networks' fault severity classification. 

Prediction Function 

The ultimate output of a Random Forest is the average (for regression) or majority vote (for classification) of multiple 

decision trees prediction function equation as shown in Equation (2). 

 

 

Equation (2) 

 

In this above equation (2), fm(x) is the prediction from the m-th single tree, M is the number of decision trees, and ŷ is the 

final prediction. 

 

Fig 1.11 Training Random Forest Model 

3.2.3 XGBoost Model Training 

Extreme Gradient Boosting (XGBoost) is a tweaked boosting algorithm for building trees step by step with each tree tending 
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to counter the mistakes done by the prior one. Differently, Random Forest randomly grows all the trees separately; XGBoost 

applies gradient boosting, wherein additional trees are created to minimize previous trees' residual errors. It utilizes shrinkage 

(learning rate tuning) so that it prevents overfitting by fine-tuning the model step by step. XGBoost introduces regularization 

methods like L1 (Lasso) and L2 (Ridge) penalties, which limit overfitting risks without sacrificing accuracy. XGBoost further 

employs tree pruning and early stopping to enhance efficiency in computation. One of the key advancements with XGBoost 

is the weighted quantile sketch algorithm, by which the model can handle sparse datasets optimally, a common characteristic 

of network log data. Hyperparameters such as number of boosting iterations, maximum depth of trees, learning rate, and 

column sampling ratio are optimized to achieve maximum model performance (Fig 1.12). Due to the fact that it is 

computationally light and can handle big data, xgboost has been extensively used for network failure prediction and fault 

severity classification. 

Objective Function 

XGBoost minimizes the sum of the loss function and a regularization formula as shown in Equation (3): 

 

 

Equation (3) 

 

Here, ℓ (yi, ŷi) denotes the loss function—such as Mean Squared Error for regression or Log Loss for classification—while 

Ω(fk) represents the regularization component used to control model complexity and reduce overfitting, as illustrated in 

Equation (4). 

 

 

Equation (4) 

 

Here, T is the number of leaves in the tree, γ is the regularization term that manages the complexity by imposing a penalty 

on the number of leaves, λ is the L2 regularization parameter that is used to avoid overfitting, and wi is the weight given to 

every individual leaf. 

 
 

Fig 1.12 Tr aining XGBoost Model 

3.2.4 LightGBM Model Training 

It is another gradient boosting framework that is performance and speed optimized for processing large data. While xgboost 

expands trees depth-wise, LightGBM expands trees leaf-wise, and this enables it to concentrate on the locations of maximum 

error reduction. This significantly increases precision with a small computational overhead. Histogram-based learning is one 

of the striking aspects of LightGBM where continuous value is bucketed into discrete bins conserving memory as well as 

training time. Sparse feature handling support is also a part of this algorithm, and it makes this algorithm highly efficient for 

data sets with missing values. LightGBM is trained (Fig 1.13, Fig 1.14) to reduce loss functions such as log loss when dealing 

with classification and mean squared error when dealing with regression. Its hyperparameters, including number of leaves, 

learning rate, maximum depth, and min data in leaf, are tuned for better performance. LightGBM is particularly suitable for 
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real-time fault analysis and predictive analytics in network administration due to its fast training time and good accuracy. 

Objective Function 

Similar to XGBoost, LightGBM minimizes and the formula as shown in Equation (5). 

 

 

Equation (5) 

 

Here, ℓ (yi, ŷi) is a loss function measuring observed and predicted value differences and Ω(fk) is a regularization term making 

sure model complexity is controlled and overfitting is prevented. 

 

 

Fig 1.13 Training the LightGBM Classifier 

 

Fig 1.14 Training LightGBM Model 

4. MODEL EVALUATION 

Valuation of the precision of machine learning models is the most crucial part of ensuring the reliability and effectiveness of 

telecommunication network fault severity detection. The models that are tuned using CatBoost, Random Forest, XgBoost, 

and LightGBM must be tested (as depicted in Fig 1.15, Fig 1.16, Fig 1.17, Fig 1.18) using an appropriate metric so that their 

strength, predictability, and accuracy can be quantified. Evaluation techniques, evaluation measures, and comparison analysis 

are the most trending ones discussed here to find which model performs the best. Trained model value values evaluated in 

this are mentioned in Table1. 

 

Fig 1.15 Evaluation of CatBoost model 

 

Fig 1.16 Evaluation of Random Forest model 

 

Fig 1.17 Evaluation of XGBoost model 
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Fig 1.18 Evaluation of LightGBM model 

Table 1: Accuracy Scores of the Trained Models 

Trained model Accuracy score 

CatBoost Classifier 70.24% 

Random Forest Classifier 77.66% 

XgBoost Classifier 76.18% 

LightGBM Classifier 77.09% 

4.1 Model Comparison Table 

The following Table 2 provides the comparison of four machine learning models—CatBoost, Random Forest, XgBoost, and 

LightGBM— on their F1 Score, Accuracy, Precision, and Recall to determine the significance of the network issues. The 

models have been trained and tested on Telstra network log data as shown in Fig 1.19. 

 

Fig 1.19 Model Comparison Table 

Table 2: Model Results for the algorithms 

Model Accuracy Precision Recall F1 score 

Random Forest 

Classifier  

77.66% 77.36% 77.66% 77.48% 

CatBoost Classifier 70.24% 68.93% 70.24% 68.68% 

XgBoost classifier 76.18% 75.47% 76.18% 75.41% 

LightGBM 

Classifier 

77.09% 76.46% 77.09% 76.42% 

 

5. CONCLUSION 

Based on performance parameters, Random Forest Classifier's optimal performance is when its accuracy stands at 77.66%. 

It has the maximum best recall (77.66%) and F1 score (77.48%) of all classifiers and hence is most dependable for the given 

classification task. The model represents a harmonized trade-off among precision and recall, ensuring hence a solid capacity 
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to rightly class positive instances as such without significant false positives. To the side of Random Forest is LightGBM 

Classifier that has a accuracy of 77.09% and an F1 measure of 76.42%. While it is slower than Random Forest, LightGBM 

is computationally fast and therefore an extremely viable second choice, especially when training speed and scalability are 

the highest concerns. The XgBoost Classifier performs well too, at 76.18%, but not nearly as well as Random Forest and 

LightGBM. Accuracy and F1 score both indicate a good but not great performance, that it would need to be tuned again to 

match the best models. In contrast, the poorest performance on all the metrics is achieved using the CatBoost Classifier with 

70.24% accuracy, 68.93% precision, and 68.68% F1 score. This indicates that CatBoost is not as accurate at class separation 

and can use extra hyperparameter tuning or another data set to better perform. Generally, the best model for this project is 

Random Forest, with LightGBM being a close second. XgBoost would also be a good option, and CatBoost is behind and 

perhaps not the best option unless it is properly tuned. 

6. FUTURE ENHANCEMENT 

Future developments for Network Fault Severity Detection can use deep learning architectures such as LSTMs, transformers, 

and mixed models to increase precision through the understanding of sequential log patterns. Automated hyperparameter 

tuning through Bayesian Optimization and Genetic Algorithms can be used to make models more efficient. Deployment of 

a real-time fault detection solution with streaming analytics (Kafka, Flink) and edge computing will support proactive 

problem solving. Enhancing model explainability using SHAP, LIME, and visualization dashboards (Grafana, Kibana) will 

enhance network engineers' decision-making. Running the system on cloud platforms (AWS, Azure) with containerization 

(Docker, Kubernetes) will maximize scalability, and federated learning can facilitate decentralized model training. Transfer 

learning and domain adaptation can make models applicable across various telecommunication providers with a minimum 

need for re-training. These developments will make the system an intelligent, scalable, and real-time fault prediction system 

for future telecom networks. 
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