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ABSTRACT

Kidney disease occurs when the kidneys become weakened and lose their ability to cleanse the blood. Most individuals show
no symptoms in the early stages of kidney disease. As the condition progresses, toxins can accumulate in the bloodstream,
causing complications such as anemia, hypertension, diabetes, osteopenia, and nerve damage. While these issues often
develop gradually and without noticeable symptoms, they can eventually lead to sudden renal failure. Early identification of
kidney disease allows for the most effective treatment. Predicting kidney function and disease using kidney ultrasound
imaging is widely considered in clinical practice due to its safety, simplicity, and affordability. Several works on kidney
disease prediction have already been done, but accuracy improvement is still needed. To solve this issue, the research
proposes optimized Feature Selection (FS) and an Avrtificial Intelligence (Al) model for effective kidney disease prediction
from ultrasound images. The own dataset with normal and diseased kidney images is created and processed. The processed
image features are extracted using the Gray-Level Co-Occurrence Matrix (GLCM) technique. The most significant features
are retrieved using Particle Swarm Optimization (PSO), a bio-inspired algorithm. The features of GLCM and PSO are given
to the Support Vector Machine (SVM) and Convolutional Neural Network (CNN) models for the classification of diseased
and normal images. The SVM model with GLCM and PSO features and CNN with GLCM and PSO features are evaluated
using accuracy, precision, recall, and F1 score. Both models show better accuracy improvement by using PSO features. The
experimental findings show that the PSO-CNN model gives the maximum accuracy of 98.57% when compared with other
models.

Keywords: Kidney Disease, Particle Swarm Optimization, Feature Selection, Ultrasound Images, Artificial Intelligence,
Accuracy.

1. INTRODUCTION

The kidneys are very important to the body because they get rid of waste, maintain an appropriate balance of fluids and
electrolytes, and generate red blood cells and blood pressure hormones [1]. The kidneys produce urine as a consequence of
filtering waste items from the blood. The kidneys govern the body's water, salt, and mineral levels, as well as its blood
pressure [2]. Their main function is to remove impurities from the blood and transform the toxic substances into urine. Even
though most people have two kidneys, the normal functioning of one permits them to live a normal life. When the kidneys
don't perform properly, waste accumulates in the body, causing illness. Extreme cases of kidney failure may be fatal.
Nevertheless, many people may manage kidney failure with appropriate treatment. Diabetes and high blood pressure are the
most prevalent causes of kidney failure [3]. Untreated kidney disease can lead to renal failure [4]. Secondary health problems
caused by kidney failure include weak bones, neurological impairment, and malnutrition. Other potential causes of kidney
disease include polycystic kidney disease, glomerular diseases, and autoimmune diseases, which can affect multiple bodily
systems.

Medical imaging techniques used in the diagnosis and treatment of kidney disease include computed tomography (CT),
ultrasound (US), and magnetic resonance imaging (MRI). The wealth of information about renal architecture and function
supplied by these imaging modalities can aid in properly diagnosing and treating kidney disorders, including information
regarding renal blood flow and tissue properties. Traditional medical image interpretation can be time-consuming and error-
prone, particularly in complicated scenarios like kidney cancer or chronic kidney disease (CKD). Recently, there has been
significant discussion on using Deep Learning (DL) algorithms to improve the efficiency and accuracy of medical image
analysis in kidney disease detection.
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The research focuses on fully automated kidney disease detection from US images. The images are collected, processed, and
features are extracted using the GLCM model. The most important features are selected by PSO. SVM and CNN Al models
are employed to classify the images as normal or diseased. The Al models are evaluated using GLCM and PSO features,
which helps to identify the importance of features in the Al model.

The research article is structure as follows: Section | discusses kidney function and possible diseases, and available medical
images to identify these diseases. Section Il surveys recent articles on kidney disease using different data types. Sections I11-
V1 discuss the methodology of the proposed framework, including data collection and processing, feature extraction and
selection methods, and classifiers. Section VII discusses the outcomes of the SVM model using GLCM and PSO features,
and the CNN model using GLCM and PSO features. Section VI1II concludes the research and provides future directions.

2. LITERATURE SURVEY

Many researchers are working on kidney disease prediction using numerical and various medical image data. This literature
survey section details some of the recent work and analyzes the studies to identify their drawbacks. These issues will be
addressed by the proposed research. The article [6] discusses the identification of kidneys for stones based on US images.
The CNN and VGG16 models are employed to retrieve the features from US images. Random forests and extreme gradient
boosting classifiers (XGBoost) are used for classification. We tested XGBoost and random forest using CNN and VGG16
features. Normal and renal stone images were categorized. The US images for this investigation were provided by Irag's Al-
Diwaniyah General Teaching Hospital. The most accurate model is CNN-XGBoost, which is extremely accurate. The paper
[7] presents a strategy for automatically detecting cysts and kidney stones in images. Preprocessing methods are used to
enhance the image quality. The next phase involves segmentation based on the image's entropy. The image's brightness has
been increased using the gamma correction method. To classify the kidney images, this study used ResNet-50 for feature
extraction and SVM for classification. Several more classification methods are utilized to investigate the CNN model.
According to the findings, ResNet-50 with SVM is an ideal solution for identifying kidney disease. In the study [8], the
author provides a CNN model for accurately classifying normal, cyst, tumor, and stone CT kidney images. In every category,
the proposed CNN model outscored the competitors. The model accurately detected all test images, demonstrating its ability
to detect kidney abnormalities in CT scans. The study's findings indicate that CNNs can accurately identify kidney CT
images, potentially improving patients' diagnostic and treatment outcomes.

Paper [9] introduces a multi-scale CNN-based kidney segmentation model. The model consists of three components: a
pyramid pooling, an encoder, and a decoder. To accommodate features of varied sizes, we build a multi-scale input pyramid
in the encoder with parallel branches. The decoder creates an output supervisor module that has many outputs. With the
multi-output supervision module, the network can train to predict increasingly accurate segmentation outcomes as it scales
up. Using the same kidney US dataset, we compare the proposed methodology to other cutting-edge methodologies using
six quantitative criteria, highlighting its effectiveness. The paper [10] describes an inductive transfer-based ensemble Deep
Neural Network (DNN) for automatically detecting CT kidney stone images. Three datasets were created to retrieve features
by a pre-trained DNN framework. Following the assembly of several pre-trained DNNs, the ensemble feature vector is
constructed. To detect kidney stones, the K Nearest Neighbor model is updated with a Bayesian optimizer and a 10-fold
cross-validation method. The ensemble deep feature vectors selected using the Iterative Relief feature selection approach are
then fed into this classifier. By using both high-quality and noisy image datasets, the proposed method surpasses earlier
DNN-based and more conventional picture detection algorithms in terms of accuracy.

The paper [11] utilizes a hybrid technique by combining ML and DL approaches. A prognostic technique is developed based
on the kidney dataset from the TCIA public data collection. The suggested system's purpose is to find the Explorer data
analysis strategy for the CKD dataset by combining random forest regression and multinomial regression techniques. The
secondary method involves analyzing a dataset of CT images. This dataset was processed using a CNN architecture that
included several layers of deep convolution filters. This approach aims to accurately identify and categorize kidney issues.
To determine whether or not there is renal disease, primary and secondary outcomes are combined. The author compares the
proposed Hybrid Deep K-Net (H-DKN) approach to the existing studies. The research [12] aims to develop a framework for
predicting the start of CKD using DL and ensemble learning approaches. Using DL and ensemble architecture, this study
looks into the understudied subject of early CKD prediction. To address the gap in present detection techniques and
preventive interventions, we built an ensemble approach by integrating the most effective individual models (LSTM-Adam,
CNN-Adamax, and LSTM-BLSTM-Adamax), and also addressed data imbalance, FS, and optimization for 6-12 month CKD
prediction. The proposed ensemble system outperforms previous research in terms of accuracy.

Paper [13] employs a successful new hybrid FS strategy to determine the most relevant aspects for CKD disease
classification. Next, the data from Kaggle and the UCI repository are fed into a prediction model that uses two proposed
classification algorithms, Enhanced Multi-Layer Perceptron (MLP) and Optimized Multi-Layer Perceptron (OMLP), to
identify complex patterns and optimize the learning algorithm for early CKD prediction. The analysis of performance metrics
enables the measuring of sickness categories. Compared to the suggested MLP and other standard approaches, the
experimental outcome shows that the OMLP strategy works better. The study [14] examined eight ensemble learning
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techniques for detecting CKD using UCI datasets. The classifier performance improved when the datasets were cleaned by
filling the missing data by the imputation methodology and dealing with imbalance characteristics by the SMOTE technique.
To increase classifier performance and find optimal solutions, hyperparameter tuning, recursive feature removal, and the
Boruta approach to identify the most essential features and minimize the execution time. In terms of accuracy and compilation
time, LightGBM outperformed cutting-edge and other ensemble techniques.

By analyzing recent work, we identified that Al models can detect kidney disease, but there is room for improvement in
accuracy. Additionally, the computation time and complexity of models to analyze image data are very high. The proposed
model aims to overcome both of these issues. One of the reasons for complexity and time consumption is the high number
of features. In this work, we employ PSO for effective FS. CNN models have shown promising results in recent days for
medical image analysis. The accuracy is enhanced by integrating the PSO outcomes with the CNN model.

3. METHODOLOGY

For classifying kidney health status from US images, we proposed a novel strategy using advanced technologies. The
proposed strategy starts with collecting real-time kidney images from healthcare and processing images to enhance their
quality. After pre-processing, the features are extracted using the GLCM method. The most important features are selected
from the extracted features using the PSO method. The GLCM and PSO features are given to Al models like SVM and CNN.
The performance of SVM and CNN models using GLCM and PSO features is evaluated using performance metrics. From
the results, the best method for kidney disease prediction is identified. The methodology workflow is given in Figure 1.

/ t\ / Preprocessing \ / Feature Extraction\

& Selection

US Image Datase

| Best Model ' Recall : el

____________________

) \ b FlSeore P )T )

Fig. 1. Workflow of the proposed methodology for kidney disease prediction

4. DATA ACQUISITION AND PROCESSING

The kidney images were collected from Aadhar Diagnostic Centre in Maharashtra and annotated by Dr. Nitin Rajaram Potdar,
MD Radiology, DMRD, Consultant Radiologist, who has 18 years of ultrasound experience and 5 years of experience with
the Army Medical Corps. We collected a total of 15 images from the diseased and 15 images from the normal category.
Samples of diseased and normal images are shown in Figure 2. The real images are not perfect for direct input to an Al
model. Some pre-processing is required for the raw images. The pre-processing done on the US kidney images is detailed in
this section.
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Fig. 2. Sample ultrasonic kidney images

The first pre-processing step is resizing [15]. The collected images are of various dimensions, so all the images are resized
to 244x244 pixels. Next, the resized images are converted to grayscale [16]. This conversion helps to reduce the dimensions
and facilitate feature extraction. The outcomes of the pre-processing stage for healthy and diseased images are shown in

Figures 3 and 4.

Healthy Kidneys
Original Original Original

~

Grayscale

Fig. 3. Outcome of pre-processing healthy images
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Diseased Kidneys
Original Original Original

Fig. 4. Outcome of pre-processing diseased images

Since the collected samples are limited, some augmentation [17] is done to increase the sample quantity. The augmentations
used include rotation up to 40 degrees, shear and zoom range of 0.2, horizontal flip, width shift of 0.2, and vertical shift of
0.1. The outcomes of augmented healthy and diseased kidney US images are shown in Figures 5 and 6. The final dataset
consists of 350 images for the healthy and 350 for the normal category. Of these 700 images, 80% are used for training and
20% are used to test the Al model.

Augmented Normal (Healthy) Kidneys

Augmented 3 Augmented 4

Augmented 2

Augmented 1

Fig. 5. Augmented healthy images
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Augmented Abnormal (Diseased) Kidneys

Augmented 1 Augmented 2 Augmented 3 Augmented 4

Fig. 6. Augmented normal images

l. Feature Extraction and Selection

After pre-processing, we performed feature extraction from the processed images. Features play an important role in ML
classifier accuracy [18]. The model quality improves when appropriate features are provided to the ML model. In this
research, feature extraction is performed using the GLCM method. FS is also conducted to minimize the feature dimensions,
which helps to deduce the time and space needed to execute the ML model [19]. For FS, the PSO method is used. The
theoretical concepts of GLCM and PSO are detailed in this section.

A. GLCM

The GLCM approach is a critical feature extraction technique that transforms gray values into texture information [20].
Haralick [21] proposed the texture analysis technique, which assigns a textural association to every pixel in an image. It
captures structural details from the texture pattern, allowing it to be studied at various orientations and scales while enhancing
efficiency and simplicity of implementation. Previous studies [22, 23] on GLCM texture analysis reveal that seven of fourteen
indicators (contrast, dissimilarity, entropy, correlation, energy, Angular Second Moment (ASM), and homogeneity) are
widely employed. The details of the features and their equations are provided below.

Contrast is used to quantify the amount of local texture changes in an image. As a result, the contrast is high when there are
numerous variations and low when there are few variations. The Equation (1) gives the contrast formula.

Contrast =%, (i — j)*pl(i,j)Contrast = X, — i pli 0 [1]

The image has a high correlation if the grayscale values of various pixels in the image are linearly dependent on one another.
A low correlation value denotes non-homogeneity, whereas a high correlation value suggests image uniformity. Equation (2)
allows for its calculation.

Ci—pd(j—pi Jple ) . Ci—p (- )oplig)

i—pi) (i —pj) ol Correlation = Em‘ i—pi) (i—ps ) o

i %% [2]
The entropy of an image reveals how widely spaced its pixels are. To be more specific, an image's entropy and grayscale
distribution grow more dispersed as its texture density increases. In contrast, areas of an image with lower entropy levels
appear smoother. The entropy value is proportional to the data range being considered. Equation (3) can be used to compute
it.

Entropy = — L, ; p(i,j). log, p(i.j) Entropy = —Z, ; p(i,j).log, p(i.j) 3]

Correlation = X, P
n EI:

Homogeneity indicates how uniformly dispersed the image's pixels are and allows for comparison of their relative values.
Furthermore, the following calculation yields this index, which is comparable to energy. Equation (4) gives the homogeneity
formula.

plij)
el 1+ ]i—jl [4]

p il
B 14 il

Homogeneity = 2, Homogeneity = %,

ASM measures repeated pixel pairs, often known as textural consistency. In images, it detects texture defects. The angular
second moment has a maximum value of one. A constant periodic form for the gray level distribution yields greater values.
The ASM is calculated using Equation (5)

ASM =%, ; p(i,j)?ASM = Zi; (i)’ Bl
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Energy is calculated by summing the squares of all GLCM elements. It assesses the homogeneity of texture in a picture and
is regarded as the most acceptable measure for spotting anomalies. The Equation (6) gives the energy formula:

Energy = fzm p(i,j)*Energy = M"Ez',_;l' p(ij)? [6]
Dissimilarity is a linear measurement of an image's local variances and it is computed using Equation (7)

Dissimilarity = X, ;li — jl. p(i, j) Dissimilarity = X, ;li — jl.p(i. /) 7]

Where, p(e,)pG.)) is the sum of the normalized grayscale values at kernel coordinates ** and /J, where 't and /1 are the
image's row and column numbers, respectively, and the sum equals 1. Greyscale images with dimensions of 2444 x 244 were
used to create the textural features. For each grayscale image in this research, a total of 28 features were created, with rotation
angles 0°, 45°, 90°, and 135°.

B. PSO

Eberhart and Kennedy [24] developed PSO, a population-based methodology. PSO has been demonstrated to be an efficient
and widely recognized search strategy [25, 26]. This strategy is appropriate for FS challenges because it is simple to encode
features, provides a global search facility, is computationally reasonable, has few parameters, and is easy to apply. For the
reasons stated above, PSO is used for FS. Figure 7 illustrates the PSO approach for FS.

PSO based Feature Selection

i Feature Raw Features | particle Swarm | o i """"""""" '
i Extraction | i Optimization : ! Initialize Population, Particles, |
e ' i Positions & velocity

__|,} Fitness Function for Each Particle

l gressseeesennse s K ]

i Find Best value & Global Optimum |

Best Feature set

1 Evaluation Function l

Update particle’s Position & Velocity

- I

No  “Criteria . Yes T -
T Met? 7

Fig. 7. Working of PSO for feature selection

Using PSO, the most important features were examined and selected from the search space. The particles in PSO form a
population that represents potential solutions in the search space. The particle swarm is generated by randomly distributing
1’s and 0’s. If a particle's major component is one, it is picked; otherwise, it is rejected. Thus, each particle represents a
separate subset of the basic components. Following a random initialization, the particle swarm adjusts its position and
velocity as it wanders around the search space, looking for the best features. Equation (8) and (9) represents the particle's
current position and velocity, respectively.

x; = {2 X Xip Jo = {2600, X000 Xp ) [8]
Where 2D indicates the search space dimension.
vy = {vin Vigs e Vip vy = {030,010, e, vp ) [9]

The particle’s position and velocity are determined using Equation (9) and (10).

e+l - 4 " - 4 . . 4
vig —w*vte rr s (Py—xi)toysry* (_Pgd - xm)
o N . .  WE . .  WE
vy =wEvgtog (P —xi) + e "r:i”(Pgd xm) [10]
t+l — .t t+l 4l — .t t+1
Xig = Xigt Vig Xig~ = Xig T Vig [11]
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Where, EL s the process iteration, while dd is the search space dimension, "W represents the mass of inertia, and “11

and 22 are the acceleration constants. Both T1i71: and "'2i"'2i are random numbers with a distribution of 0 to 1. P3P

and Pgd Pgd reflect the elements of pbest and gbest at dimension of dd. Until a stopping criterion [27] is reached

(maximum iterations or an acceptable fitness value), each particle's position and velocity data are continually updated in
search of the ideal set of features. The PSO algorithm employed was detailed.

PSO Pseudocode

Step 1. Randomly initialize each particle’s (2¥) position and velocity.
Step 2. Evaluate the particle fitness function

If the fitness of Xi = Pbest x; = pbest;
Update Phest; = x;pbest; = x;

End
If the fitness of Pbest; = ghbest;pbest; > gbest;

Update ghest, = pbest,gbest, = pbest;
End

Step 3. Update the particle’s (E?) velocity and position
Update the velocity
o R . ot e ot
vt = wE vty e (P — xlg) +ep 2y [Pg:‘!’ xa‘d)
£+l L oo . ot e ot
vt =@ vty rr e (P — xlg) +ep 2y [Pg:‘!’ xa‘d)

Update the position

t+1

t+1 _ t+1_t+l _ _t
= = Xijg T Vig

xig = xgtvigiag
Step 4. Check stopping criteria
If the stopping criterion is met,
Return gbest and its fitness values
Else
Continue Steps 2 and 3

1. Artificial Intelligence Model

For kidney prediction from US images, two Al models, SVM and CNN, are employed. The workings and mathematical
operations of both models are detailed in this section.

A. SVM

To classify data points, SVM, a supervised learning technique based on vector theory, represents them as vectors on a spatial
grid [28]. Hyperplanes are employed to make decisions and categorize the data samples by separating the different types of
data as far away as possible [29]. Hyperplanes are built and trained using labeled data points to help the model to classify
the new data. SVMs are constructed by utilizing kernel-based techniques. In linear algebra, hyperplane learning capability is
gained by taking the inner product of observations rather than applying them directly [30]. To calculate the inner product,

sum all of the input pairs and multiply by their respective products. For example, if we had two input vectors (a.b)(a,b)
and (€:2)(€.d) the inner product could be calculated as (a*c)(a*c)+ (b*d)+ (b*d) we can forecast the

inputs by calculating the dot product of the input (x)(x) and the support vector (xz') (xz' ) , Which is determined by Equation
(12):

f(x) = By + sum(a; * (x,x,))f(x) = By + sum(a; = (x,x;)) [12]
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Equation (1) uses all of the data's support vectors to generate the inner product of input (x)(x j and the learning algorithm

forecasts the coefficients of 080 and @i (input) during training. When data can't be segregated linearly, a transformation
function @ based on dot products is needed to convert the input space into a feature space.

{Mcm: { Pt @ — X Iy g (x,).6 (x; )}I

{Max (Zmo e —i3m T aauay(x).¢(x; )}I -

fa, =0,i=1,.. ...,m}{ai =0,i=1,....,m} [14]
(s tpmo T @gtimo) 15

In which the transformed input ** from the EL_th element is indicated by ¢ (xz' )P (xz' ) Since computing the scalar product
is not practical, the kernel trick will be used instead. Equation (16) defines this according to Hilbert-Schmidt theory.

{@[x]-@(xi]}:[ %1*1595(1]@5(?): K(IJF]{@(R’]-@(IJ}: ;iifli@i[x]@i(}’]:f{(xr}’]
16

Where, 4 represents the % th element weighting coefficient.

It takes a while to train the model on non-linearly separable data using the basic SVM. Moreover, the traditional SVM
classifier is not the best choice when handling large amounts of data due to its tendency to yield imprecise findings. As a dot
product, the kernel can be computed by the Equation (17):

(%, %) = sum(x*x,)(x,x,) = sum(x *x,) [17]

The kernel is used to determine the degree of similarity, or distance, between the input data and support vectors. Some kernel
types can handle higher-dimensional data and distinguish between classes that cannot be separated linearly using lines.

B. CNN

CNN is the most well-known and commonly utilized DL algorithm [31]. One significant enhancement above previous CNN
versions is its capacity to discover relevant features automatically and without human assistance. CNNs have been widely
used in various industries. A CNN consists of many layers which include Convolution Layers (CL), Pooling Layers (PL),
and Fully Connected Layers (FCL) [32]. The CNN architecture is made up of multiple building elements organized into
layers. Below, we'll go over each layer of the CNN architecture and what they accomplish.

Convolutional Layer: The CL is the foundation of CNNs. It consists of convolutional filters, commonly called as kernels.
The feature map is generated by convolving the input image with these filters [33]. Each value in the kernel is called the
kernel weight. During CNN training, the kernel initially receives a set of random numbers as weights. Various methods are
used to initialize these weights. The kernel then learns to extract key features by adjusting the weights in each training
iteration. We begin by outlining the CNN input format. CNNs accept multichannel images as input, whereas standard neural
networks (NNs) take vector formats. To comprehend the convolution process, assume a 4 x 4 grayscale image witha 2 x 2
kernel and randomly initialized weights. The kernel first travels horizontally and vertically throughout the image. When the
input image and kernel are dot-product, both of their values are multiplied and totaled to produce a single scalar value, which
is computed synchronously. This process continues until sliding is no longer possible. It is essential to remember that the
computed dot product values represents the final feature map.

Pooling Layer: The primary role of the PL is to subsample feature maps created by convolution processes [34]. In essence,
this step reduces the sizes of feature maps from their original larger dimensions. It retains the most dominant data in the
pooling operation. Similar to the convolution operation, before pooling, stride and kernel sizes are specified. Many pooling
techniques are available and we have chosen the maximum pooling method [35]. While the PL aids in evaluating the presence
of specific features in the input data, its primary focus is on accurately pinpointing those features, which may result in some
loss of overall CNN performance. This constitutes the fundamental drawback of the PL.

Activation Function: Every activation function in a NN serves the same fundamental purpose: to transform input into output.
It computes the weighted sum of neuron inputs and biases, determining the appropriate output for a given input and deciding
whether to activate a neuron. Non-linear activation layers are positioned adjacent to each weighted layer in a CNN
configuration. Apart from improving CNN learning of difficult tasks, the non-linearity of activation layers ensures that the
mapping of input to output is also non-linear. Furthermore, the activation function has to be differentiable to allow error
backpropagation during network training. In CNNs, the ReL.U function [36] is used in input and hidden layers. This function
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transforms input values into positive integers. ReLU offers computational efficiency over other functions. Equation (18)
provides the mathematical expression.

f(x) gery = max(0,x) f(x) gopy = max(0,x) [18]

Fully Connected Layer: The FCL is often found at the last of all CNN designs. In the FCL each neurons are linked to all
the previous layer neurons. It acts as a CNN classifier, receiving input from the CL or PL preceding it. The feature maps are
flattened to generate this vector-based input. The FCL determines the final CNN output. The output is generated using the
sigmoid activation function. This function accepts real values as input and outputs integers ranging from 0 to 1. The sigmoid
function's mathematical depiction of its S-shaped curve is provided by Equation (19).

1

1
f[:xjsigm = mf(xjsigm = m [19]

The output layer is responsible for the final categorization in a CNN design. It uses cross-entropy loss functions to estimate
the predicted error across all training data. This function highlights the disparity between expected and actual results. The
next step involves improving it with the CNN learning algorithm.

Learning Algorithm: Gradient Descent reduces training error by iteratively adjusting network parameters after each training
phase [37]. Specifically, it computes a first-order derivative on the network parameters to determine the objective function
gradient and updates the parameters accordingly to minimize inaccuracies. Back-propagation [38] is employed to propagate
the gradient at each neuron to all neurons in the next layer, facilitating parameter updates. Equation (20) numerically
represents this operation.

8K

dwij

Wi}.t = W:‘_;l't_‘ — wi}.t, Wij.t =n* BW[J: Wi}.t = W;

[20]

jior — Awye,  Awe =1

W, b—L W, E—1 W .tW. .t
While 1 represents the weight from the preceding training epoch, ™ ' indicates the weight from the
current training epoch. The EE represents the prediction error, and the 17 represents the learning rate.

5. RESULTS AND DISCUSSION

The research aims to design an effective Al model to identify kidney disease using US images obtained from the hospital.
The images are processed to improve quality. Next, to extract the features, GLCM is employed. From the GLCM features,
the most important features are selected by the PSO algorithm. The GLCM and PSO features are given to the Al model to
analyze the result. The outcome of the research is discussed in this section. The research was done on the Google Colab
platform, using the T4 GPU hardware accelerator, and Python coding was used.

A. Al Model Outcome without Feature Selection

First, the GLCM features were given to the SVM and CNN models to predict kidney disease. The 560 feature samples of
kidney images were used to train the SVM model. Then 140 features were tested. The outcome of the SVM model in
confusion matrix format is given in Figure 8. The confusion matrix consists of TP, TN, FP, and FN. The figure gives a
detailed count of correct and incorrect predictions of kidney and normal images. The SVM correctly identifies 76 samples
as normal and 51 as diseased. The SVM wrongly identified 7 samples as normal and 6 as diseased. The TP, TN, FP, and FN
obtained by the SVM model using GLCM features are 76, 51, 7, and 6.

PREDICTED OUTCOME
0 1

ACTUAL OUTCOME

Fig. 8. Confusion Matrix of SVM model on GLCM features
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The same number of GLCM feature samples are given to the CNN model for training and testing. The CNN model is
evaluated using accuracy and loss measures in the training phase. The accuracy and loss values attained in each epoch of the
training phase are given in Figures 9 and 10. The testing phase outcome of the CNN model in confusion matrix format is
given in Figure 11. The figure shows the CNN model's prediction quality in terms of correct and incorrect predictions. The
CNN correctly identifies 80 and 54 samples as normal and diseased, respectively. The CNN wrongly identified 2 samples as
diseased and 4 as normal. The TP, TN, FP, and FN obtained by the CNN model using GLCM features are 80, 54, 4, and 2.
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Fig. 9. Loss plot of CNN model on GLCM features
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Fig. 10. Accuracy plot of CNN model on GLCM features
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Fig. 11. Confusion Matrix of CNN model on GLCM features

B. Al Model Outcome with Feature Selection

Next, the PSO-selected features are given to the SVM and CNN models to evaluate the importance of features in disease
prediction. The GLCM extracts 28 features from the US images of the kidney. The PSO identifies 26 features as more
important from the 28 features. These 26 features are given to CNN and SVM for classification. The SVM data sample used
for training and testing is the same as the previous case study: 340 for training and 70 for testing the models. By using the
PSO features, the SVM model gives a TP of 76, correctly identifying 76 samples as normal, a TN of 55, correctly identifying
55 samples as diseased, an FP of 5, indicating the model wrongly identified 5 diseased images as normal, and an FN of 4,
indicating the model wrongly identified 4 diseased images as normal. The confusion matrix of the SVM model using PSO
features is given in Figure 12.
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Fig. 12. Confusion Matrix of SVM model on PSO features
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The 26 features from the PSO algorithm are given to CNN for classification. The CNN model is trained using 340 images
with an epoch set to 50, using accuracy and loss as metrics. Figures 13 and 14 show the loss and accuracy plots of the CNN
model using PSO features. The remaining 140 images are given to the CNN model for testing. The PSO-based CNN model
correctly identified 75 and 63 US images as normal and diseased, respectively. The model did not make any wrong
predictions on diseased images and made 2 wrong predictions on normal images. The CNN model gives TP, TN, FP, and
FN of 75, 63, 2, and 0 using PSO features. The confusion matrix of the PSO-based CNN is given in Figure 15.
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Fig. 13. Loss plot of CNN model on PSO features
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Fig. 14. Accuracy plot of CNN model on PSO features
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Fig. 15. Confusion Matrix of CNN model on PSO features

By using the confusion matrices obtained by SVM and CNN models with GLCM and PSO features, performance metrics
such as accuracy, precision, recall, and F1-score are calculated [39, 40]. The formulas used to calculate the metrics are given
in Equations (21-24).

TE4TN TE4TN
Accuracy = ————Accuracy = ——————
TE+TN+FP+FN TE+TN+FP+FN [21]
.. .. TP
Precision = Precision =
TE4FP TE4FP [22]
TP TP
Recall = Recall =
TE+FN TE+FN [23]
TF TF
Fl—5Score= —————F1 — Score= ———
TP+_(FP+FN) TP+_(FP+FN) [24]

Table 1 gives the performance measures of SVM and CNN models using GLCM and PSO features. The metrics of recall,
precision, and F1-score are displayed separately for each target variable (hormal and diseased). By comparing all the values,
the CNN model gives the highest accuracy of 98.57% using PSO features. While other methods like SVM using GLCM and
PSO features give 90.71% and 93.57% accuracy, the CNN using GLCM features gives 93.57% accuracy. For detecting
healthy samples, the PSO-based CNN gives precision, recall, and F1-score of 97, 100, and 99, respectively. For diseased
images, the metric values are 100, 97, and 98.

Table 1. Comparison of Al model by features applied

Model Precision Recall F1-Score Accuracy

GLCM-SVM Healthy 92% 93% 92% 90.71%
Disease 89% 88% 89%

PSO-SVM Healthy 94% 95% 94% 93.57%
Disease 93% 92% 92%

GLCM-CNN Healthy 95% 98% 96% 95.71
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Disease 96% 93% 95%
PSO-CNN Healthy 97% 100% 99% 98.57%
Disease 100% 97% 98%

6. CONCLUSION

The research successfully designs an efficient methodology for kidney disease prediction from ultrasound images. The
ultrasound images are acquired from health centers, and a database is created with the help of healthcare professionals. The
data has some issues, such as different dimensions and limited samples. The images are pre-processed with resizing,
grayscale conversion, and augmentation. Features from the processed images are extracted by GLCM. These GLCM features
are further fine-tuned by PSO. The outcomes of both feature sets are given to the SVM and CNN models separately and
analyzed. Both models show increased accuracy using PSO features compared to GLCM features. The outcomes of SVM
and CNN using GLCM features are 90.71% and 95.71%, respectively. The outcomes of both models using PSO features are
93.57% and 98.57%, respectively. This demonstrates the power of optimized features in Al models. Comparing all four
combinations, the CNN model with PSO features gives excellent metrics in recall, precision, and F1-score. The results show
the promise of the designed methodology for kidney disease prediction from ultrasound images.

The limitation of the research is that the proposed method for kidney disease prediction is not accessible to the general public.
To make the research more effective, in future studies, we plan to develop a user-friendly website for deploying the designed
Al model, which will provide outputs within seconds.
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