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ABSTRACT

Sleep apnea is a common yet serious sleep disorder that affects millions of individuals worldwide. Timely and accurate
detection of sleep apnea can significantly improve patient outcomes and quality of life. In this study, we propose an advanced
approach for sleep apnea classification and prediction using the Improved Graph Neural Network (GNN) algorithm. Our
methodology includes preprocessing steps such as Z-score normalization to standardize the data and improve algorithm
performance. Additionally, we employ an improved Pan-Tompkins algorithm for feature selection, which helps in identifying
relevant features from physiological signals such as electrocardiogram (ECG) and oxygen saturation (SpO2) data. The
Improved GNN algorithm, known for its deep learning capabilities, is utilized for the classification and prediction tasks. This
algorithm uses the power of deep Convolutional Neural Networks (CNNSs) to automatically learn discriminative features
from the input data and make accurate predictions. By integrating Z-score normalization, improved feature selection, and the
Improved GNN algorithm, our proposed system aims to achieve high accuracy in detecting and predicting sleep apnea
episodes. We evaluate the performance of our approach using a comprehensive dataset containing a diverse range of sleep
apnea cases. Our results demonstrate the effectiveness of Z-score normalization in improving data quality and the role of the
improved Pan-Tompkins algorithm in selecting informative features.

Keywords: Improved GNN, classification, deep learning, prediction, Sleep apnea

1. INTRODUCTION

Disruptions to the sleep cycle have a significant impact on people's well-being and health. One of the most common sleep
disorders is obstructive sleep apnea (OSA), which happens repeatedly while sleep [1]. The blockage of the upper airway
causes a ten-second pause in breathing in patients with OSA. The person gets up and keeps breathing since their oxygen
saturation drops when they stop breathing [2]. The severity of sleep apnea syndrome can be evaluated using many metrics,
one of which is the Apnea and Hypopnea Index (AHI) [3]. A high number of episodes each hour is used to calculate the AHI.
An hourly episode frequency for a moderate OSA patient range from five to fifteen times [4]. Patients with mild symptoms
had 15 or less episodes per hour, whereas those with severe symptoms have 30 or more episodes per hour [5-6]. Fatigue,
sadness, and memory difficulties are all consequences of this issue, which has a profound impact on people's daily lives [7-
8]. Stroke, arrhythmia, and myocardial interaction are all increased risks in moderate to severe OSA patients when they sleep.
Consequently, a critical concern in this situation is the detection or prediction of OSA episodes [9-10]. All forms of sleep
apnea can be reliably diagnosed using polysomnography. Electroencephalogram (EEG), electrocardiogram (ECG),
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respiration (Resp) signal, blood oxygen level, and eye movement data make up the polysomnogram (PSG) signal [11, 12].
Under the guidance of a sleep expert, this signal is captured throughout the night from individuals who are suspected of
having a sleep disturbance. The expert has the option of using online monitoring or offline observation to identify sleep
episodes. However, the professional finds this technique challenging. As say, it's a tedious process that demands your
undivided attention [13-14].

Adults can have sleep apnea syndrome (SAS) when their airways momentarily constrict while they sleep, preventing air from
reaching their lungs [15]. If this happens, cannot be able to breathe for almost ten seconds. One typical adverse effect is a
drop in blood oxygen saturation, which might cause to wake up from your sleep just to breathe [16]. It is believed that
intermittent hypoxia generated by repeated obstructive events that happen during sleep triggers an oxidative stress response
and activates oxygen free radicals [17]. The most common pattern of sleep-associated hypoxia (SAS) events, based on
whether the patient shows signs of respiratory effort, is known as Obstructive Sleep Apnea (OSA) and occurs when the air
flow completely stops during a patient's sleep [18]. When these two symptoms occur simultaneously, it's called mixed sleep
apnea (MSA). In this condition, the patient has a central respiratory arrest followed by an obstructive ventilator effort very
quickly thereafter. Hypopnea, which occurs when part of the airway is partly obstructed, also lowers oxygen supply to the
lungs and produces shallow, slow breathing [19-20].

The main contribution of the paper is:

» Dataset preprocessing using Zscore Normalization

» Classification and Prediction using improved GNN Algorithm
1.1 Motivation of the paper

The motivation behind this paper is to address the critical need for timely and accurate detection of sleep apnea, a
widespread and serious sleep disorder impacting millions globally. By proposing an advanced approach that integrates
cutting-edge techniques like Z-score normalization for data standardization, improved feature selection using the Pan-
Tompkins algorithm, and the deep learning capabilities of Improved GNN, we aim to significantly enhance the accuracy and
efficacy of sleep apnea classification and prediction. This work is driven by the potential to improve patient outcomes and
quality of life through more precise and efficient diagnosis and management of sleep apnea episodes.

2. BACKGROUND STUDY

Ahmed, S. et al. [1] The author found that by combining the most relevant questions, diagnostic accuracy for pediatric OSA
can be increased, as part of these authors effort to study the predictive validity of affordable and simple test protocols like
questionnaires. By using feature selection approaches, the authors were able to construct a new survey that outperformed the
old ones in terms of accuracy. Dong, Q. et al. [4] these authors research introduces a technique for identifying OSA using a
convolutional neural network. A variety of augmentation techniques were investigated for the validating dataset, in addition
to the conventional data augmentation for the training dataset. Improving identification accuracy was possible with the help
of representation learning. Increasing the size of the neural network and the quantity of labelled datasets can further enhance
the accuracy. Learning, M. U. S. M. [8] the findings show that self-reported symptoms and readily accessible characteristics
for modeling provide excellent results when using a machine learning technique to predict OSA. As a quick and inexpensive
supplementary tool, it might be used by doctors or medical personnel to assess individuals at high risk of OSA. Manoochehri,
Z. et al. [10] while comparing the two models that were examined, the C5.0 algorithm outperformed LRM, which had an
accuracy of 0.737 and a specificity of 0.78, compared to another model. So, instead of using PSG, C5.0 decision trees can
be utilized to diagnose OSA patients. Mencar, C. et al. [12] Early screening and diagnosis of OSAS was essential for the use
of an efficient treatment for treating the illness. This can be achieved by addressing a current important research topic on
how to categorize individuals with a probable diagnosis of OSAS based on the severity of their illness. Onargan, A. et al.
[14] The goal of this study was to create a signal processing method that could use multi-channel EEG data to distinguish
between individuals with apnea and healthy controls. The "EMD" method, a multivariate extension of the popular signal
separation technique, was used for the EEG signal analysis. Phan, H. et al. [16] the author provide a multi-task convolutional
neural network (CNN) architecture for automated sleep staging, which combines categorization and prediction. The goal of
the framework, which was driven by the interdependence of sleep epochs, was to classify an input epoch and forecast its
neighbors' labels in the context output all at once.

Table 1: Comparison table for sleep apnea prediction methods

Author Year Methodology Advantage Limitation
Alimardani, M., & de | 2021 SVM The advantage of this study | One limitation of this
Moor, G. lies in its use of EEG | study is the relatively

signals to not only detect | small sample size of 25
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apnea episodes but also | apnea patients from whom
classify their severity and | EEG signals were
types accurately. collected.

Johnson et al. 2020 Sleep apnea | Develops a tailored | Can lack generalizability
prediction model | prediction model for sleep | to other populations or
developed for | apnea in a  specific | ethnicities, requires
African Americans | demographic group, | validation in  diverse

improving accuracy and | cohorts.
relevance of diagnostic
tools.

Mazzotti et al. 2019 Symptom subtypes | ldentifies specific symptom | Focuses on  symptom
of obstructive sleep | subtypes of sleep apnea that | subtypes and
apnea predict | correlate with | cardiovascular outcomes,
incidence of | cardiovascular outcomes, | cannot cover all aspects of
cardiovascular aiding in targeted | sleep apnea diagnosis and
outcomes intervention strategies. management.

Taghizadegan etal. | 2021 Obstructive  sleep | Utilizes recurrence plots | Relies on specific signal
apnea event | and CNNs for predicting | processing and machine
prediction  using | obstructive sleep apnea | learning techniques, can
recurrence plots | events, providing a data- | require  expertise  for
and CNNs driven approach for event | implementation and

detection. interpretation.

Alimardani & de | 2021 Automatic Provides an automated | Limited to EEG-based

Moor Classification  of | approach for classifying | classification, cannot
Sleep Apnea Type | sleep apnea types and | capture all aspects of sleep
and Severity using | severity using EEG signals, | apnea diagnosis such as
EEG Signals aiding in accurate diagnosis | respiratory events.

and management.

2.1 Problem definition

The problem addressed in this study is the need for improved methods of detecting and predicting sleep apnea. Despite being
a common and serious sleep disorder with significant impact on patient outcomes and quality of life, accurate detection
remains a challenge. The study aims to develop an advanced approach using the Improved GNN algorithm, combined with
Z-score normalization and an improved Pan-Tompkins algorithm for feature selection, to enhance the accuracy of sleep
apnea classification and prediction.

3. PROPOSED METHODOLOGY

The proposed methodology has divided into dataset collection, pre-processing, feature selection and classification. The
proposed workflow has presented at figure 1.
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Figure 1: Overall architecture

3.1 Dataset collection
The dataset was collected from Kaggle website

https://www.kaggle.com/competitions/sleepapneadetection

3.2 Preprocessing-Z score Normalization

Data pre-processing is cleaning up the raw data before using it. Simply said, data obtained from various input characteristics
is often obtained in an unusable raw format, making analysis a challenging task. Therefore, certain procedures are followed
to transform the data into an accurate dataset. Data pre-processing is the name given to this procedure. Data that is
inconsistent, noisy, or missing values is common in real-world datasets, making it difficult to analyze them further.

Using the Z-score Normalized Data Pre-processing model, we conduct missing value analysis to improve the outcomes of
this work. To fill in the blanks in the database, our study makes use of Z-Score Normalized Data Pre-processing. Using the
formula score deviation/standard deviation in a database, it is also used to standardize scores on the same scale. Here we can
get the number of standard deviations for the provided data point from the mean. A schematic of the Z-score normalized data
preparation model is shown in Fig. 2.

It is composed of thirteen characteristics, denoted as 'n', where 'n'= 13', and each component belongs to one of three distinct
categories, 'T= T1, T2, T3', which are objective, examination, and subjective, respectively. The next step is to arrange the
patient data into a "PXM" patient vector matrix with "u" rows and "n" columns, where "n" stands for the number of
characteristics and "m" for the number of patients.

Pyq Py, Pz Py
PVM = Py Py Py o — (1)
Pml Pm2 Pm3 Pmn

For instance, according to Eq. (1), the first row of the data set for patient number "1" is represented by the values of features
"i" for the feature "i" associated with patient number "1," and the subsequent rows are labeled "P11, P12, P13, and P1n."

Standard deviation of features

L Fi—u)
(0) = [|E=lict @)

n

Each feature's value 'Fi'and the mean of features ui'relative to the total number of features n' are used to estimate
the standard deviation of the overall patient vector matrix, as shown in Eqg. (3). After that, we can estimate each feature's log-
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transformed Z-score function using the formula below.

@)

As a general rule, if the length is smaller than the maximum limit, then the Z-score is at least one standard deviation higher
than the mean. After normalizing the data, log transformed Z-scores are shown below in pseudo code form.

1n(Fij)— 1n(up)
a[1n(Fy]

Z — score(LT) =

The goal of pre-processing the raw information for sleep apnea disease with enhanced accuracy and speed to predict SA
disease stays the same as in the previous method. Here, the missing values are filled in using Z-score log-transformation as
part of the pre-processing. First, for each characteristic, we look at the mean and standard deviation of the relevant patient
data. After that, we assess the lower and higher limits using the initialized lower and upper thresholds, and we normalize the
log-transformed Z-score function. Lastly, this is used to standardize the various patient characteristics and convert them to
the same magnitude. Using this method helps improve the accuracy and speed of SA disease prediction by ensuring that the
findings are independent on the data's size; this is because the algorithm's sole function is to reject the quantity.

3.3 Feature Selection

The feature selection process for Sleep Apnea data involves identifying the most relevant physiological and signal-based
attributes that significantly contribute to accurate classification. Initially, raw data such as ECG, SpO., airflow, and
respiratory effort signals are collected. Pre-processing techniques like median filtering are applied to remove noise. Then,
statistical features (mean, variance, skewness), frequency-domain features (e.g., spectral power), and time-domain features
(e.g., RR intervals, apnea duration) are extracted. Dimensionality reduction methods like Principal Component Analysis
(PCA) or feature importance ranking (using correlation, mutual information, or tree-based models) are used to select key
features. This reduces computational load, avoids overfitting, and improves the performance of models like Graph Neural
Networks (GNNs) for effective Sleep Apnea classification.

3.4 Sleep Apnea Classification and Prediction using improved GNN Algorithm

In the classification and prediction of Sleep Apnea using Graph Neural Networks (GNNs), models are created that organize
physiological (EEG, ECG, SpO-, etc.) signals as graph data, where each sensor or component of a signal is a node, and the
relationships between the different components and sensors form the edges. The ability of GNNs to capture complex
dependencies over time between the different physiological signals facilitates a better understanding of patterns associated
with apnea events. GNNs are able to learn spatial features, as well as temporal features and can therefore improve the
classification of different sleep stages and help detect episodes of apnea. In contrast to other approaches, GNNs are also
robust when faced with irregularities in data, including noise and gaps. This modeling facilitates the development of early
detection tools and personalized monitoring for Sleep Apnea, ultimately leading to improved patient outcomes.

Step 1

Noise filtering
using median filter

Severe
Obstructive Sleep Apnea Detection
using Graph Neural Network

Step 3

Figure 2: Sleep Apnea Detection
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Figure 2 illustrates a three-step process for Sleep Apnea detection using Graph Neural Networks (GNN). Step 1 involves
collecting physiological data such as EEG, ECG, or oxygen saturation levels. Step 2 applies a median filter to remove noise
from the data, enhancing signal quality. Step 3 uses a GNN model to analyze the preprocessed data, effectively detecting
severe Obstructive Sleep Apnea by learning relationships among signal features.

The Improved GNN algorithm is a deep learning model designed for ECG signal classification and prediction tasks,
particularly in the context of cancer detection and diagnosis from medical data like ECG. It uses ResNet architecture with
cascading layers to effectively capture intricate patterns and features within the ECG signals. Classification involves
categorizing signals into different classes, while prediction tasks can include estimating disease progression or treatment
response based on ECG signal data.

It uses a label encoder to standardize the input, in particular. We substitute the labels without numbers with their numerical
equivalents. Word counts, textual frequency, or TF-IDF can be transformed into an integer sequence or vector with a binary
coefficient using the Tokenize tool.

The total number of times a certain token occurs in a particular content record is known as Tf, or token frequency. The
proportion of token occurrences in the content record as a percentage of all tokens, as calculated in equation 5.

Researchers in the field of statistics use the Inverse Data Frequency (idf) statistic to find the frequency with which unexpected
tokens appear in historical data. Tokens that appear infrequently in the record document are more likely to be (6)

df(w) = log(d%) ------- (6)

By combining a word's TF score (3) with its IDF score (w) (4), we can get its TF-IDF score (w). To be more precise,
| am referring to equation 7.

N
Wi,]' = tfi,j X lOg(d_fl) _______ (7)

tf ;= counting the occurrences of 1 in j

df;=records where | is the id value

N = the whole count of files

To begin training the model, the text to sequence tool is used to convert tokens into word sequences.
argminU |[D(N,X, T) — D(N,X, T - U)|| + AQ(U) ------- (8)

In line with what has been said so far, this structural optimization belongs to the class of problems called NP-hard due to its
computational complexity of O(2n). It is well recognized that GAs garnered the most attention when applied to NP-hard
problems. Thus, GA might be used to enhance the aforementioned design. One way to improve the architecture of a ResNet
network is shown in Algorithm 1.

Consider the gene vk (wij) as a switch that, when turned on, indicates whether the edges connecting nodes | and j are indeed
linked. The only way for neurons | and j to be linked in ResNet is for vk (Tij) to be set to 1. If it's not, the connection is
destroyed.

In order to find an optimal network design, we evaluate each representation in equation 7 using the following evolution
function.

fitness = af[D(N,X,T) = D(N,X, T U)|| + AQ(U) ------ (9)

Where and are weight-changing adaptive parameters that provide a search pressure between the loss function and
the network's architecture in equation 10.

z1=|D(N,X,T) = D(N, X, T- U)| ------- (10)
z2 = Q(U) ----- (11)

2 = g (12)

r= L ______ (13)

~ smax_r»min
ZZ _ZZ
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Since the gene is either 1 or 0, when mutated it will become the latter (or 1).

From a methodology standpoint, GA operates as follows: in the present generation t, P(t) represents the parents and C(t)
represents the offspring; the detailed implementation of GA is explained in Algorithm 1.
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Figure 3: Improved GNN architecture for Classification

Figure 2 represents an Improved GNN for audio classification. The input is a waveform or spectrogram, processed through
a series of convolutional layers with increasing filter sizes: (3x3, 16) to (3x3, 128). It uses a Residual Block with skip
connections and dropout for regularization. After feature extraction, average pooling is applied, followed by a fully
connected layer with softmax activation to produce the final output class probabilities.

A Deep Convolutional Neural Network (CNN) is highly effective for accurate prediction in Sleep Apnea detection due to its
ability to automatically learn spatial and temporal patterns from physiological signals or image-based data. CNNs use layers
of convolutional filters to extract key features such as waveform shapes or frequency components related to apnea events.
Pooling layers reduce dimensionality, improving computational efficiency and minimizing overfitting. The extracted features
are passed through dense (fully connected) layers for final classification. This architecture allows CNNSs to deliver high
accuracy and generalization, making them ideal for medical signal analysis and automated diagnosis.
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Figure 4: CNN Model for Accurate Prediction
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Figure 4 represents the deep learning mode flow sample. The input layer receives raw data (e.g., physiological signals or
images), which is passed through multiple convolutional and pooling layers to extract relevant spatial features. These
feature maps are then flattened into a single vector, which feeds into fully connected (dense) layers. Finally, the output
layer performs classification—e.g., identifying the severity level of Sleep Apnea. The structure enables automatic learning
of hierarchical features crucial for accurate detection.

Algorithm 1: Improved GNN

Input:
e Preprocessed ECG signals from sleep apnea patients
e Label encoder for normalization
e  Tokenizer for word-to-sequence conversion
e Transition matrix U for network structure optimization
Steps:
Algorithm:
1. Initialize the Improved GNN model with a modified ResNet architecture suitable for sleep apnea
classification.
QU =1- Z'<N=N—1‘”<
2. Preprocess the input ECG signals using the label encoder and tokenizer.
3. Apply TF-IDF transformation to the tokenized data to obtain word scores.

r
a= Zmax _Zmin
1 1

4, Train the Improved GNN model using the preprocessed ECG data and the fitness function (equation 9)
tailored for sleep apnea classification.

Optimize the network architecture using a genetic algorithm (GA) with the following steps:
e Generate an initial population of network structures (U) based on mutation rate and population size.

1-r
r= zmax_min
2 a2

e Evaluate the fitness of each network structure using the fitness function (equation 9) specific to sleep apnea
classification.

e Select parent structures (P(t)) based on fitness scores and apply crossover and mutation to create child
structures(C(t)).

Output:
e Trained Improved GNN model parameters

e  Optimized network architecture (U)

Algorithm 2: Deep CNN for Sleep Apnea Prediction

Input: Preprocessed physiological signal (e.g., ECG, SpO-, or spectrogram)
Step 1: Data Preprocessing

Normalize signal values (e.g., Z-score normalization)

Segment signals into fixed-size windows (e.g., 30s epochs)

Convert to spectrograms if using CNN on image-like data

Step 2: Model Initialization
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Define input shape (e.g., 1D vector or 2D spectrogram)
Initialize a Deep CNN architecture with the following layers:
e Conv Layer 1: 16 filters, 3x3 kernel, ReLU, BatchNorm
e Conv Layer 2: 32 filters, 3x3 kernel, ReLU, BatchNorm, MaxPooling
e Conv Layer 3: 64 filters, 3x3 kernel, ReLU, Dropout
e Conv Layer 4; 128 filters, 3x3 kernel, ReLU, MaxPooling
e  Global Average Pooling
e Fully Connected Layer (Dense): 128 units, ReLU, Dropout
e Output Layer: Softmax or Sigmoid (for binary classification)
Step 3: Training
Compile the model with:
e Loss Function: Binary Crossentropy (for apnea classification)
e  Optimizer: Adam
e Metrics: Accuracy, Precision, Recall, F1
Train on labeled dataset for multiple epochs (e.g., 50-100)
Validate performance using validation set
Step 4: Evaluation
Evaluate the model on the test dataset
Compute metrics: Accuracy, Precision, Recall, F-measure
Plot confusion matrix for error analysis
Step 5: Prediction
Feed new physiological signal into trained model
Output prediction: Apnea or Non-Apnea
Output: Predicted label (Apnea / Non-Apnea)

4. RESULTS AND DISCUSSION

This section presents and analyzes the outcomes of the experiment. The experimental has implemented by using MATLAB
Software.

4.1 Performance evaluation
(TP +TN)

Accuracy = (TP + FP + TN + FN) (14)
Precision = ——— weeeeeee (15)
TP + FP
Recall = —2 (16)
TP + FN
F1score = 2 * Precision * Recall / (Precision + Recall) --------- 17)
Table 2: Classification performance metrics comparison
Algorithm Accuracy Precision Recall F-measure
Existing methods Densenet 96.21 92.65 94.01 94.23
VGG-16 97.35 93.87 95.10 95.07
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Resnet 98.11 95.32 96.75 97.14

Proposed methods improved GNN 99.62 97.11 97.84 98.21

The table 2 presents performance metrics for existing methods (Densenet, VGG-16, Resnet) and a proposed method
(improved GNN) across various evaluation criteria. Firstly, in terms of accuracy, improved GNN outperforms all existing
methods with an accuracy of 99.62%, showcasing its superior classification capability. When considering precision, which
measures the ratio of correctly predicted positive instances, improved GNN also exhibits the highest precision at 97.11%.
Furthermore, in terms of recall (also known as sensitivity), which indicates the proportion of actual positive instances
correctly identified, improved GNN maintains a high value of 97.84%, highlighting its ability to capture most positive
instances. Finally, the F-measure, which harmonizes precision and recall, demonstrates improved GNN's robust performance
with an F-measure of 98.21%, further underscoring its effectiveness in classification tasks compared to the existing methods.

Accuracy Comparison
100

97.35

Accuracy (%)

92 4

Densenet WEG-16 Resnet Improved GNMN
Algorithms

Figure 5: Accuracy comparison chart for Classification

A chart comparing accuracy is shown in figure 5. On one side, can see algorithms, and on the other, can see scores for
accuracy in percentage.

Precision Comparison
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95 4
97.11
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c
o
A
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Figure 6: Precision values comparison chart for Classification
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Figure 6 displays a chart comparing accuracy values. Algorithms are shown on the x-axis, while accuracy values are shown
on the y-axis.

Recall Comparison

100
97.84

45 4
— % 1
il
E

34.01

& o |
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Densenet Resnet Improved GNMN

Algorithms

Figure 7: Recall comparison chart for Classification

Recall comparison table is shown in picture 7. Recall values are shown on the y-axis and algorithms are shown on the x-axis.

F-measure Comparison

100

57.14

F-measure (%)

92 |

Densenet

Resnet Improved GNMN
Algorithms

Figure 8: F-measure value comparison chart for Classification

Figure 8 displays a chart comparing F-measure values. On one side, we have algorithms, and on the other, we have the F-
measure value.

Table 3: Prediction performance metrics comparison

Algorithm Accuracy Precision Recall F-measure
Existing methods SVM 96.27 92.29 94.20 94.30

RF 97.43 93.10 95.43 95.45

LSTM 98.53 95.28 96.92 97.43
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Proposed methods

Deep CNN

99.70

97.84

97.99 98.29

Table 3 compares existing and proposed methods for sleep apnea prediction based on key performance metrics. Traditional
models like SVM and RF show strong performance, with RF achieving 97.43% accuracy. LSTM, a deep learning model,
performs better with 98.53% accuracy. The proposed Deep CNN outperforms all, achieving 99.70% accuracy, with high
precision, recall, and F-measure, indicating superior ability to accurately detect apnea events with minimal false positives or

negatives.
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Figure 9: Accuracy value comparison chart for prediction

Figure 9 displays a chart comparing accuracy values for prediction. Algorithms are shown on the x-axis, while accuracy
values are shown on the y-axis.
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Figure 10: Precision value comparison chart for prediction

Figure 10 displays a chart comparing precision values for prediction. Algorithms are shown on the x-axis, while accuracy
values are shown on the y-axis.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 14s

pg. 701



Dr.R. Rooba, Dr. D. Kavitha, Dr.P. Yoganandhini, Dr.V. Priya, Dr.A.R. Karthekeyan

Recall Comparison
100

97.99

Recall {3)

92 4

Deep CNN
Algorithms

Figure 11: Recall value comparison chart for prediction

Figure 11 displays a chart comparing recall values for prediction. Algorithms are shown on the x-axis, while accuracy values
are shown on the y-axis.
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Figure 12: F-measure value comparison chart for prediction

Figure 12 displays a chart comparing f-measure values for prediction. Algorithms are shown on the x-axis, while accuracy
values are shown on the y-axis.

5. CONCLUSION

In conclusion, our study presents a novel and effective approach for sleep apnea classification and prediction using the
Improved GNN algorithm. Through the integration of Z-score normalization for data standardization, improved Pan-
Tompkins algorithm for feature selection, and the deep learning capabilities of Improved GNN, we aimed to enhance the
accuracy and reliability of sleep apnea detection and prediction. Our results on a diverse dataset affirm the effectiveness of
these methodologies, showcasing improved data quality with Z-score normalization and the identification of relevant features
crucial for accurate classification and prediction. Firstly, in terms of accuracy, improved GNN outperforms all existing
methods with an accuracy of 99.62%, showcasing its superior classification capability and 99.70% accuracy in prediction.
This study contributes to advancing the field of sleep disorder diagnosis and highlights the potential of advanced algorithms
in improving patient outcomes and quality of life through timely and accurate sleep apnea detection. Future research can
further explore optimization strategies and real-time implementation of these algorithms in clinical settings to translate these
findings into practical healthcare solutions.
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