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ABSTRACT 

In recent years, the study of biological networks, particularly protein-protein interaction networks (PPINs) has gained 

attention due to their critical role in understanding disease mechanisms and therapeutic targeting. In this study, we apply 

computational graph theory and mathematical metrics to analyze the SARS-CoV-2 human PPIN with the goal of identifying 

novel therapeutic targets. This framework is based on domination theory, which identifies key proteins within the PPIN that 

could serve as crucial targets for drug delivery and therapeutic interventions. Our findings suggest that focusing on a refined 

subnetwork of these key proteins rather than the entire network could provide valuable insights for developing targeted 

therapies and efficient drug delivery systems. This study demonstrates the power of advanced computational techniques in 

solving complex biomedical challenges, particularly in the development of targeted medical therapies and drug delivery 

technologies. 
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1. INTRODUCTION 

Protein-protein interactions (PPIs) form networks driven by biochemical processes such as hydrophobic bonding, salt 

bridges, and van der Waals forces. These interactions are essential for many biological processes, including metabolic 

reactions, DNA replication, cellular responses to stimuli, and material transport. Understanding PPIs is crucial for explaining 

cellular functions, discovering disease mechanisms, and advancing therapeutic strategies. 

Given the importance of PPIs in health and disease, researchers have focused on studying biological networks, particularly 

in the context of SARS-CoV-2 and human protein interactions. However, the complexity of these networks makes it difficult 

to identify key proteins that control the overall behavior of the system. While some PPIN analyses are straightforward, many 

protein-protein interactions are complex, which makes interaction studies challenging. In this context, graph theory offers 

valuable methods for analyzing these complex biological networks. 

Graph-theoretical approaches have been widely used to explore the structure and dynamics of biological systems. [6] 

explored the application of domination theory in epidemiology, while Wuchty [11] and Nacher et al. [7] studied networks 

using the minimum dominating set (MCDS). Erciyes [2] provided an extensive review of graph methods for biological 

networks, highlighting their potential to identify functional components and active substructures. The study of SARS CoV-

2 and human PPINs has also relied on graph theory, with basic concepts like degree and spanning trees being used to identify 

potential therapeutic targets [3, 12]. More sophisticated approaches, however, are gaining attention. Liu et al. [5] showed 

that network controllability depends not only on high-degree nodes but also on nodes identified through metrics such as 

betweenness and closeness centrality. Cheng et al. [1] focused on network-based biomarkers for predicting drug responses, 

emphasizing the role of centrality measures in identifying key nodes for therapeutic intervention. 

After getting enough motivation from the literature survey, we optimize the original PPIN using the minimum connected 

domination (MCD) concept. Then the local and global graph metrics are used to analyze the filtered nodes and edges. The 

local parameters focus on the network substructure and the global parameters focus on the centralities. Finally, the 

characteristics of the network and the target proteins are explored. The targets obtained from the MCDS are compared with 

the targets obtained from the whole network. A short preview of our work is presented in the following figure 1. 
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Figure 1: Flow chart for a brief outline 

 

2. A BRIEF OVERVIEW OF PROTEINS 

Viruses infect humans by interacting with specific proteins in the host's body. These interactions involve different types of 

proteins, which play distinct roles in the infection process. Here's a breakdown of these proteins: Structural proteins, 

including the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins, are responsible for forming the virus's 

structure. These proteins have unique sequences that allow them to create complex shapes through repeated patterns and 

hydrogen bonds; Non structural proteins (NSP) are produced by the virus but not a part of the virus particle itself. They 

are crucial for its ability to replicate and spread. Consequently, they are potential targets for antiviral treatments; Accessory 

proteins (ORF) support the virus by influencing host cell functions. They help the virus control processes like gene 

expression and cell death, which are important for the virus's ability to infect and damage cells;  The Human/Host proteins 

are the anti-viral proteins produced by the host organism during the infection. They are involved in producing recombinant 
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therapeutic proteins. For a quick and better understanding, the overview of the SARS-CoV-2 viral proteins is illustrated in 

figure 2. 

 

Figure 2: SARSCov-2 viral proteins 

3. DATA ACQUISITION AND COMPONENT ANALYSIS 

Based on the Guzzi et al.’s [4] research, the SARSCov-2 and human interaction network was created using Cytoscape 

https://cytoscape.org/. This network includes 125 proteins (31 viral proteins, 94 human proteins) and 206 interactions. In the 

network, nodes represent proteins, and edges indicate the interactions between them. The detailed network is illustrated in 

the Figure 3. 

This network consists of two components, namely 𝐶1 and 𝐶2, where 𝐶1 is a significant connected component, encompassing 

a large portion of the total nodes in the network and is call as Largest Connected Component (LCC). Consequently, the 𝐶1 

study is enough to explore the PPIN instead of a whole network study. Throughout this study, 𝐻(𝑉, 𝐸) indicates the LCC of 

PPIN with 199 proteins and 200 interactions. 

 

 

Figure  3: SARSCoV-2/Human interactome which contains 206 interactions among 125 proteins/nodes [download 

at http://korkinlab.org/wuhanDataset]. Network visualization was conducted using Cytoscape, an open-source 

software platform. 

https://cytoscape.org/
http://korkinlab.org/wuhanDataset
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4. ANALYZING DISTINCT GRAPH METRICS OF PPIN 

Analyzing distinct graph metrics of PPIN provides critical insights into the structural and functional roles of proteins within 

a biological system. By evaluating both local and global metrics researchers can identify key proteins, understand network 

dynamics and uncover potential therapeutic targets. 

4.1  Local Metrics 

Local metrics in graphs examine the characteristics and relationships that pertain to individual nodes and their direct 

neighbors. These metrics provide insights into the behavior and influence of specific nodes within their local context in a 

network. Here, the local metrics are calculated for the graph to analyze its substructures or sub network. 

Definition 4.1.1 The degree distribution function 𝑃(𝑘) gives the probability that a randomly chosen node has a degree 𝑘. 

Mathematically, it is expressed as 

𝑃(𝑘) =
𝑁𝑘

𝑁
 

where, 𝑁𝑘 is the node’s count with degree. 

A network is described as a scale-free network if its degree distribution follows a power-law. This is defined as 

𝑃(𝑘) ∼ 𝑘−𝛾 

where, 𝛾 is a parameter that typically lies in the range 2 < 𝛾 < 3. 

In biological networks, the scale-free properties imply that a few proteins (hubs) are involved in many interactions and they 

playing critical roles in cellular processes. 

Definition 4.1.2 A graphlet is an induced subgraph 𝐻𝐼(𝑉𝐼 , 𝐸𝐼) of 𝐻 such that: 𝑉𝐼 ⊆ 𝑉, 𝐸𝐼  contains all edges in 𝐻 that connect 

pairs of vertices in 𝑉𝐼 and 𝐻𝐼  is connected. 

In a graphlet 𝐻𝐼 , an orbit is a classification of nodes based on their structural equivalence within the graphlet. Two nodes 𝑢 

and 𝑣 are in the same orbit if there exists an automorphism of 𝐻𝐼  that maps 𝑢 to 𝑣 while preserving the graphlet’s structure. 

For a node 𝑣 in a graphlet 𝐻𝐼  with orbits 𝑂1, 𝑂2, … , 𝑂𝑘 , the orbit count is the number of occurrences where 𝑣 occupies orbit 

𝑂𝑖  within graphlets of type 𝐻𝐼 . 

The orbit count gives insights into how the node contributes to different substructures. Nodes with high orbit counts in a 

PPIN are significant because they occupy key positions in many graphlets, that helps to identify the functional modules of 

the PPIN. 

Definition 4.1.3 A maximal clique in 𝐻 is a subset 𝐶 ⊆ 𝑉 such that: the subgraph induced by 𝐶 (𝐻[𝐶]) is a complete graph 

and the clique 𝐶 cannot be extended by including any additional vertex 𝑤 ∈ 𝑉\𝐶 such that 𝐻[𝐶 ∪ {𝑤}] is also a complete 

subgraph. 

In PPIN, a node involved in most maximal cliques is often a central protein. Its presence in many cliques suggests it plays a 

major role in various interactions and is important for maintaining network functionality. 

4.2  Global Metrics 

Global graph metrics assess the overall structure and connectivity of a network, evaluating how nodes interact across the 

entire graph. These metrics provide insights into a node’s influence and importance within the broader network context. In 

this line, centralities are the major global metrics that quantify the significance of nodes within the graph. They provide 

insights into the role and influence of each node based on its position and connections. 

Definition 4.2.1 The eccentricity of a node 𝑣 in a graph is defined as the maximum shortest path distance from 𝑣 to any 

other node 𝑢 in the graph. The eccentricity 𝑒(𝑣) of node 𝑣 is given by: 

𝑒(𝑣) = 𝑚𝑎𝑥
𝑢∈𝑉

 𝑑(𝑣, 𝑢) 

where, 𝑑(𝑣, 𝑢) is the shortest path distance between nodes 𝑣 and 𝑢 and 𝑉 is the set of all nodes in the graph. 

Proteins with low eccentricity are centrally located in the network, indicating they are closer to all other proteins and likely 

play key roles in network connectivity and function. In contrast, proteins with high eccentricity are more peripheral, involved 

in specialized or isolated interactions and may have more specific, less central roles within the network. 

Definition 4.2.2 The radiality is a measure of a node’s closeness to the center of the network and is normalized by the 

network’s diameter. For a node 𝑣 in a graph, the radiality 𝑟(𝑣) is defined as: 

𝑟(𝑣) = 1 −
𝑒(𝑣)

𝐷 − 1
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Here, 𝑒(𝑣) is the eccentricity of node 𝑣 and 𝐷 is the diameter of the network, which is the maximum eccentricity among all 

nodes. 

The proteins with high radiality are central and being close to all other nodes. In contrast, the proteins with low radiality are 

peripheral and being farther from the most distant nodes. 

Definition 4.2.3 The average shortest path length (ASPL) of a graph measures the typical distance between pairs of nodes. 

It is calculated as: 

𝐴𝑆𝑃𝐿 =
1

𝑁(𝑁 − 1)
∑

𝑢≠𝑣

𝑑(𝑢, 𝑣) 

Here, 𝑁 is the total number of nodes in the graph, 𝑑(𝑢, 𝑣) represents the shortest path distance between nodes 𝑢 and 𝑣 and 

the sum is taken over all distinct pairs of nodes (𝑢, 𝑣) where 𝑢 ≠ 𝑣. 

In PPIN, a lower average shortest path length indicates that proteins are generally more closely connected, which can enhance 

the efficiency of interactions within the network. Conversely, a higher average shortest path length suggests that proteins are 

more distant from each other, potentially leading to less efficient communication. 

Definition 4.2.4 If 𝐴 is the adjacency matrix of a graph, the eigenvector centrality (ℰ𝒞) 𝑥𝑖 of a node 𝑖 is given by the solution 

to the following eigenvector equation: 

𝐴𝒙 = 𝜆𝒙 

where 𝒙 is the eigenvector associated with the largest eigenvalue 𝜆 of the matrix 𝐴. The centrality score for node 𝑖 is the 𝑖-
th component of the eigenvector 𝒙. 

Definition 4.2.5 The betweenness centrality (ℬ𝒞) of a node 𝑣𝑖 in a graph is defined as 

ℬ𝒞(𝑣𝑖) = ∑

𝑠≠𝑣𝑖≠𝑡

𝜎𝑠𝑝(𝑣𝑖)

𝜎𝑠𝑝

 

where 𝜎𝑠𝑝 is the number of shortest paths between nodes 𝑠 and 𝑡 and 𝜎𝑠𝑝(𝑣𝑖) is the number of those shortest paths that pass 

through node 𝑣𝑖. 

Definition 4.2.6 The closeness centrality (𝒞𝒞) of a node 𝑣𝑖 in a graph is defined as: 

𝒞𝒞(𝑣𝑖) =
1

∑𝑗≠𝑣𝑖
𝑑(𝑣𝑖 , 𝑗)

 

where 𝑑(𝑣𝑖 , 𝑗) is the shortest path distance between nodes 𝑣𝑖 and 𝑗. 

This measure indicates how quickly a node can reach all other nodes in the network, with higher values representing nodes 

that are more centrally located and can access other nodes more efficiently. 

Thus, eigenvector centrality identifies proteins that are connected to other highly influential proteins. Betweenness centrality 

highlights proteins that serve as important intermediaries or bridges within the network, controlling the flow of interactions 

between different nodes and maintaining network connectivity. Closeness centrality measures how efficiently a protein can 

interact with all other proteins in the PPIN. 

Choosing proteins with high centralities as target proteins and developing drugs against them can lead to significant changes 

in the network, such as altering its structure, disrupting crucial pathways and modifying information flow. This strategic 

targeting can effectively influence the behavior of the network, potentially controlling disease progression or cellular 

dysfunction by impacting key nodes and interactions within the network. 

4.3  Graph Reduction through Dominating Set Analysis 

In complex networks, graph domination is a powerful technique used to identify a minimal set of nodes that can collectively 

cover or reach all other nodes in the network. This approach is valuable for various applications, including efficient placement 

of monitoring devices, simplifying network analysis and identifying crucial drug targets. 

There are plenty of domination parameters available [9]. Here, the Minimum Connected Domination is preferred since it 

balances minimal size with essential connectivity [10]. It ensures that a small, strategically chosen subset of proteins covers 

the entire network while remaining connected, which is crucial for maintaining functional interactions. Consequently, MCDS 

naturally includes hubs or central nodes, which are often key targets in therapeutic interventions. Therefore, focusing on 

networks derived from MCDS is sufficient. 

Definition 4.3.1 A set 𝐷 ⊆ 𝑉 is a dominating set if every vertex 𝑣 ∈ 𝑉 is either in 𝐷 or adjacent to at least one vertex in 𝐷. 

In other words, for every vertex 𝑣 ∉ 𝐷, there exists a vertex 𝑢 ∈ 𝐷 such that (𝑢, 𝑣) ∈ 𝐸. The set 𝐷 is a connected dominating 
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set if the subgraph induced by 𝐷 is connected. 

A connected dominating set 𝐷 is a minimum connected dominating set if it has the smallest possible cardinality among all 

connected dominating sets in the graph. This means that there is no other connected dominating set in 𝐻 with fewer vertices 

than 𝐷. 

The MCDS was derived from the LCC of the PPIN using 26 key proteins. These proteins are linked by 49 interactions, 

forming a connected structure illustrated in Figure 4. 

 

 

Figure  4: MCDS taken from the LCC of the PPIN 

4.4  Statistical Test 

Finding rank correlation is useful because it shows how two sets of data are related, even if they don’t follow a straightforward 

pattern. It helps to identify whether an increase in one variable consistently matches an increase or decrease in the other. It 

is also good for handling data that doesn’t fit normal assumptions or has outliers, since it uses rankings instead of exact 

values. This makes it a helpful tool for comparing different rankings or uncovering patterns in complex datasets. It is 

calculated by using the following formula. 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 

where, 𝑑𝑖 is the difference between the ranks of corresponding values in the two datasets and 𝑛 is the number of data points. 

𝜌 ranges from -1 (perfect negative correlation) to +1 (perfect positive correlation). Positive correlation reflects that the 

behavior or role of the proteins in the two different networks is consistent, suggesting functional or structural similarities 

between the two PPINs. Positive correlations often highlight key proteins that play significant roles across both networks. 

5. RESULTS AND DISCUSSION 

 

Figure  5: Degree distribution of LCC of PPIN 
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The figure 5 shows that 𝐻 has a few nodes with many connections and many nodes with only a few connections. This pattern 

means the PPIN follows a power-law degree distribution with a scaling exponent of 2.1852, which indicates it is a scale-free 

network. Hence it contains hubs. 

 

Figure  6: The stacked bar diagram 6 presents the orbit counts for the top 10 proteins that belong to the LCC  

 

 

Figure  7: The stacked bar diagram presents the orbit counts for the top 10 proteins that belong to the MCDS  

From the stacked bar charts in figure 6-7, we observe that ORF9b and NSP8 consistently emerge as the most influential 

proteins across both PPIN, particularly in Orbits 5, 6 and 7, they acting as key hubs in central substructures like cliques. In 

both PPIN, ORF3a shows a consistent presence in Orbits 5 and 7, though its values are slightly lower compared to ORF9b 

and NSP8. Protein E has high values in Orbit 6 in the LCC based PPIN and in Orbits 5 and 6 in the MCDS based PPIN, 

indicating a specialized role in central network regions. Other proteins, such as NSP13, NSP2, NSP7 and NSP5 show 

moderate influence, suggesting specialized roles in specific parts of the network. Thus, proteins like ORF9b and NSP8 are 

central to the network, while proteins like ORF3a and NSP12 serve as intermediaries and those like NSP2 and NSP5 are 

involved in more peripheral and niche substructures. 

 

S.No Maximal Clique of LCC S.No Nodes involved in Maximal Clique 

1 ORF9b   NSP7   NSP5   NSP8 16 MARK3    ORF9b    NSP13 

2 ORF9b    NSP7    NSP13    NSP8 17 ORF9b    NSP15    ORF8a 

3 ORF9b    E    NSP8    ORF8b 18 ORF3a    NSP2    NSP3N 

4 ORF9b    NSP13    NSP8    NSP12 19 ORF3a    NSP2    NSP3C 

5 ORF9b    NSP8    ORF14    ORF8b 20 NSP14    ORF9b    NSP8 

6 ORF7b    ORF9b    E    ORF8b 21 SERPING1    NSP2    NSP8 
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7 ORF3a    S    ORF7a    ORF8b 22 SERPING1    NSP13    NSP8 

8 ORF8ab    ORF3a    S    ORF7a 23 SERPING1    NSP8    ORF14 

9 ORF9b    ORF8a    NSP8    ORF8b 24 BCL2L1    E    ORF7a 

10 M    ORF3a    ORF7a    ORF8b 25 ORF8a    S    ORF8b 

11 ORF3a    NSP3N    ORF7a    ORF8b 26 ORF3a    PFDN5    NSP12 

12 NSP7    NSP8    NSP9 27 SERPING1    NSP14    NSP8 

13 NSP2    NSP8    NSP6 28 ORF9b    NSP3N    ORF8b 

14 NSP1    ORF3a    E 29 ORF3a    NSP10 

15 NSP14    ORF9b    NSP10 30 NSP2    NSP4 

Table  1: Proteins involved in Maximal Clique of LCC 

From the table 1, we observe that NSP8 appears in 13 of 30 cliques and ORF9b is present in 12 cliques. ORF8b and ORF3a 

are found in 9 cliques, which contribute to various parts of the network but are less central compared to NSP8 and ORF9b. 

S.No Maximal Clique of MCDS based PPIN 

1 S   ORF3a   ORF7a   ORF8ab 

2 NSP13  NSP7  NSP8   ORF9b 

3 ORF9b   NSP8   NSP5   NSP7 

4 ORF9b   NSP8   NSP13   NSP12 

5 E   ORF3a   NSP1 

6 ORF14   ORF9b   NSP8 

7 ORF8b   ORF9b   NSP8 

8 E   ORF9b   NSP8 

9 NSP9   NSP8   NSP7 

10 NSP9   NSP8   NSP6 

11 NSP2   NSP8   NSP6 

12 E   ORF9b   ORF7b 

13 E   ORF3a   ORF7a 

14 M   ORF3a   ORF7a 

Table  2: Proteins involved in Maximal Clique of MCD based PPIN 

 

Similarly, from table 2, we observe that NSP8 appears in 9 of 14 cliques, ORF9b is present in 12 cliques and ORF3a and E 

are involved in 5 cliques. These frequencies highlight the roles of these nodes in maintaining the network’s overall structure 

and connectivity. Their high occurrence suggests they are key hubs within the network and reveals the important biological 

interactions that are essential for cellular function. 

Next to filter the crucial proteins based on global metrics, ranks are assigned to the various metrics of both LCC based PPIN 

and MCDS based PPIN since directly ordering the metrics values is a little complicated due to its decimation. Initially, the 

top 20 proteins are filtered from both PPIN and shown in the bar diagrams (refer figures 8, 9, 10 and 11) for readers’ 

understanding. Out of 20 proteins, 18 proteins are common in both data sets which reflect that the MCDS based PPIN is 

enough to identify the crucial proteins of PPIN. 
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Figure  8: Bar diagram based on the top 20 proteins that belong to the LCC based PPIN 

 

Figure  9: Bar diagram based on the top 20 proteins that belong to the MCDS based PPIN 

 

Figure  10: Bar diagram based on the top 20 proteins that belong to the LCC based PPIN 
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Figure  11: Bar diagram based on the top 20 proteins that belong to the MCDS based PPIN 

From the bar diagrams figure 8-11, we observe that NSP8 and ORF9b are constantly lead in all the metrics. This indicates 

that NSP8 and ORF9b have the most significant impact on network integration, control, and accessibility, while ORF3a also 

maintain the third position in most of the metrics and hence it plays a significant role in these aspects. The rank correlation 

between the various metrics of 18 common proteins are explored in the following table 3 and indicated that the metrics based 

on both PPIN are strongly positively related. It reflects the rank similarity between the metrics of both PPINs and emphasizes 

that both networks possess common crucial proteins. For better understanding, the scatter plot is shown in figure 12. 

Metrics 𝝆 

Degree 0.8107 

Radiality 0.8943 

ASPL 0.8943 

Eigenvector 0.8088 

Betweenness 0.7080 

Closeness 0.8943 

Table  3: Rank Correlation between metrics of LCC and MCDS based PPIN 

 

Figure  12: Scatter plot of rank of metrics in LCC based PPIN vs MCDS based PPIN 
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Out of 20 proteins, the top 10 are selected based on centrality metrics and orbit counts rather than other metrics such as 

degree, radiality, and ASPL. Centrality metrics consider both the quantity and quality of connections to assess a protein’s 

overall importance in the network by taking into account its position and influence. In contrast, degree, radiality, and ASPL 

provide a more limited view by focusing only on direct connections or distance without considering the broader context of 

the network structure. 

The top 10 proteins, shown in table 4 are common in both PPIN with little different rank positions. The rank correlation 

matrix of top 10 proteins based on centralities and orbit counts are presented in table 5, which helps to understand the relation 

between the LCC based PPIN and MCDS based PPIN and to explore the goodness of MCDS based PPIN. 

 

Ranks Centralities (LCC) Centralities (MCDS) Orbit (LCC) Orbit (MCDS) 

1 ORF9b NSP8 ORF9b NSP8 

2 NSP8 ORF9b NSP8 ORF9b 

3 ORF3a E ORF3a ORF3a 

4 NSP12 ORF3a NSP12 E 

5 ORF8b NSP13 NSP7 NSP12 

6 E NSP12 NSP13 NSP13 

7 NSP13 NSP2 E NSP2 

8 NSP7 NSP7 ORF8b ORF8b 

9 ORF7a ORF8b ORF7a NSP7 

10 NSP2 ORF7a NSP2 ORF7a 

Table  4: Top 10 proteins in both PPIN based on centrality and orbit counts 

 

 Centralities(LCC) Centralities(MCDS) Orbit (LCC) Orbit (MCDS) 

Centralities (LCC) 1.0000 0.8576 0.8788 0.7303 

Centralities (MCDS) 0.8576 1.0000 0.7818 0.9758 

Orbit(LCC) 0.8788 0.7818 1.0000 0.8697 

Orbit (MCDS) 0.7303 0.9758 0.8697 1.0000 

Table  5: Rank Correlation matrix 

The correlation matrix (Table 5) reflects a strong correlation between the centralities and orbit counts of the same PPIN. 

Furthermore, the centralities and orbit counts of the LCC-based PPIN are strongly correlated with those of the MCDS-based 

PPIN. The strong correlation between the LCC-based and MCDS-based networks shows that the MCDS keeps the main 

features of the full network. This means we can use the smaller MCDS network for further study or to find possible drug 

targets, without losing important information. 

6. CONCLUSION 

This study highlights the importance of using graph metrics to understand the complex interactions within PPIN. Through 

this study, we identified that the PPIN is a scale-free network. Based on the evaluation of local and global metrics, E, NSP12, 

NSP13, NSP2, NSP7, NSP8, ORF3a, ORF7a, ORF8b, ORF9b are identified as the top 10 key proteins and NSP8, ORF9b, 

and ORF3a emerged as protein targets. Consequently, focusing drug development efforts on these proteins could be the most 

effective strategy for disrupting the PPIN. Also, this study confirms that instead of analyzing the entire network to identify 

key proteins, using the MCDS based PPIN is sufficient to fix the targets and to pinpoint the key proteins, as it encompasses 

all the essential proteins. 

However, it is essential to acknowledge that other studies may have identified additional proteins as potential therapeutic 

targets. The true adaptability of our approach can only be fully assessed when researchers apply the same graphical analysis 
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to different biological networks and subsequently develop medications based on their findings. Such experimental validation 

is crucial to determining the practical effectiveness and worthiness of our approach in therapeutic development. Moreover, 

we can extend this type of work to distinct networks with distinct domination parameters. 
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