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1. ABSTRACT 

This study presents an artificial intelligence (AI)-based framework for the real-time monitoring of neonatal vital signs in 

Neonatal Intensive Care Units (NICUs), addressing limitations in traditional threshold-based alarm systems. Leveraging 

LSTM neural networks, the model processes heart rate, respiratory rate, oxygen saturation, and temperature data to detect 

physiological anomalies with high accuracy. Using data from the MIMIC-III database, the system achieved an average F1-

score of 91.3%, outperforming conventional systems in both sensitivity and false alert reduction. It integrates clinician 

feedback, enabling dynamic adaptation and interpretability through SHAP-based feature attribution. The AI system issues 

colour-coded alerts and provides transparent explanations for each risk prediction, facilitating faster, more informed decision-

making. Real-time implementation tests confirmed operational feasibility, with sub-second latency and minimal resource 

demands. The system’s closed-loop design, combining prediction, feedback, and continuous learning, makes it a clinically 

viable tool for improving neonatal outcomes and reducing alarm fatigue in critical care settings. 
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2. INTRODUCTION 

Neonatal Intensive Care Units (NICUs) play a vital role in safeguarding the health and survival of critically ill or premature 

new-borns(Joaquim et al., 2024). Within these high-dependency environments, continuous monitoring of vital physiological 

parameters such as heart rate (HR), respiratory rate (RR), oxygen saturation (SpO₂), and body temperature is essential(Gerald 

Dcruz & Yeh, 2024). These indicators offer crucial insights into the physiological stability of neonates and provide early 

warning signals of potential clinical deterioration. Prompt and accurate interpretation of such signals can support timely 

medical interventions, directly influencing outcomes in this vulnerable population. 

Despite the advances in neonatal medicine, current monitoring systems are often limited by their reliance on rigid threshold-

based alarm mechanisms and the overwhelming volume of physiological data(Taha et al., 2023). These systems frequently 

produce false alarms, leading to alarm fatigue among clinicians. Moreover, the burden of manual data interpretation in a fast-

paced NICU environment adds to the clinical workload, increasing the risk of delayed or missed responses(Kim et al., 2025). 

These challenges are further complicated by the complex and fragile physiology of neonates, where subtle changes in vital 

signs may precede severe complications. 

The emergence of artificial intelligence (AI) and real-time data analytics in healthcare presents a transformative opportunity 

to overcome these limitations(Shiang et al., 2022). AI, particularly machine learning models, can identify hidden patterns 

within continuous data streams, enabling predictive alerts and supporting evidence-based clinical decisions. In neonatal care, 

AI systems can be trained to recognise early signs of distress based on historical and real-time physiological data, thereby 

reducing reliance on manual interpretation and static alarm thresholds(Papatheodorou et al., 2022). 

Although the potential of AI in clinical monitoring is widely acknowledged, its practical implementation in NICUs remains 

limited. Many AI models are developed in retrospective or simulated environments and are not designed for real-time  
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deployment (Kim et al., 2025). Furthermore, concerns about model interpretability, clinical integration, data heterogeneity, 

and algorithmic bias have slowed adoption in frontline neonatal care settings. 

This research addresses this gap by developing and evaluating an AI-based framework for continuous real-time monitoring 

of neonatal vital signs(Choudhury & Urena, 2024). The objective is to create a system that not only detects physiological 

anomalies with high accuracy but also integrates seamlessly into NICU workflows, provides interpretable alerts, and adapts 

over time through clinician feedback. The system leverages key neonatal parameters and machine learning logic to generate 

intelligent, context-aware alerts that assist clinicians in making faster and more informed decisions(Khan, 2025). 

3. LITERATURE REVIEW 

Neonatal vital signs—comprising heart rate, respiratory rate, oxygen saturation, and body temperature—are among the most 

fundamental indicators used to assess an infant's well-being in intensive care. These signs are continuously recorded in 

NICUs using sensor-based monitoring systems, providing clinicians with real-time feedback on a baby’s physiological state. 

However, interpreting these signals accurately requires clinical expertise, particularly since neonates often exhibit rapid, 

unpredictable fluctuations. 

Traditional monitoring systems operate based on predefined threshold values. For example, an alert may be triggered if a 

neonate's heart rate falls below 100 bpm or if oxygen saturation dips below 90%. While this rule-based approach is simple, 

it is also inflexible and frequently leads to false alarms due to artefacts such as movement or brief, self-resolving 

physiological dips. Moreover, these systems lack predictive capacity and cannot assess risk trajectories or emerging patterns 

across multiple signals. 

AI has recently gained attention in neonatal care for its ability to learn from large datasets and detect non-obvious correlations 

between physiological variables. Deep learning models, such as convolutional and recurrent neural networks, have 

demonstrated success in predicting neonatal conditions such as sepsis, respiratory distress, and adverse outcomes. These 

models can process both temporal and multivariate data, making them suitable for ICU environments where rapid, 

multidimensional decision-making is required. 

Several research studies have applied AI to retrospective NICU datasets with promising results. For example, machine 

learning has been used to predict episodes of bradycardia, apnea, and desaturation with greater accuracy than conventional 

monitors. However, real-time deployment remains rare. Many models are trained and validated on offline data, and few 

systems have been integrated into live clinical environments. Key challenges include model generalisability, lack of 

interpretability, potential bias due to imbalanced datasets, and the difficulty of clinician acceptance. 

Another critical barrier is the absence of a feedback loop that allows AI systems to learn from clinician responses post-

deployment. Most existing models treat clinical feedback as static ground truth rather than dynamic, context-sensitive input. 

This research proposes a system that addresses these challenges by integrating AI into a live monitoring pipeline, enabling 

real-time anomaly detection, and incorporating feedback for continuous improvement. 

4. MATERIALS AND METHODS 

3.1 Data Collection and Pre-processing 

This study utilised a structured dataset composed of neonatal vital signs collected from a publicly available clinical 

repository, namely the MIMIC-III Waveform Database Matched Subset, which provides high-frequency ICU monitoring 

data. The dataset includes physiological time-series data for over 100 neonates, recorded at one-minute intervals for durations 

ranging from 24 to 96 hours per patient. These signals include heart rate (HR), respiratory rate (RR), oxygen saturation 

(SpO₂), and body temperature. 

To ensure data reliability, only time segments with at least 90% signal completeness and minimal artefact contamination 

were selected. Data was anonymised to protect patient identity in compliance with HIPAA and IRB standards. 

The pre-processing stage included several critical steps: 

 Missing Value Imputation: Short gaps (<5 minutes) in time-series were filled using linear interpolation. Longer 

gaps were excluded from analysis. 

 Noise Filtering: A low-pass Butterworth filter was applied to smooth high-frequency artefacts caused by sensor 

misreads or neonatal movement. 

 Resampling and Windowing: The data was segmented into rolling windows of 5 minutes (i.e., 5 data points per 

window), shifting every 1 minute, creating overlapping sequences suitable for temporal pattern recognition. 

 Z-score Normalisation: Each physiological variable was normalised to zero mean and unit variance to ensure 

comparability across patients. 
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Table 1: Statistical Summary of Collected Neonatal Vital Sign Data 

S.no 
Vital Sign Mean 

Standard 

Deviation 
Minimum Maximum 

1 Heart Rate (bpm) 140.5 15.2 90 180 

2 Respiratory Rate (/min) 42.8 7.4 25 70 

3 Oxygen Saturation (%) 95.6 2.3 88 100 

4 Body Temperature (°C) 36.7 0.4 35.9 37.8 

 

The study utilized a structured dataset comprising neonatal vital signs collected from the MIMIC-III Waveform Database 

Matched Subset. A statistical summary of this data, presenting key metrics for heart rate, respiratory rate, oxygen saturation, 

and body temperature, is shown in Table 1. As can be seen in Table 1, the mean heart rate was 140.5 bpm, with a standard 

deviation of 15.2 bpm, indicating a range of heart rates observed in the dataset. The mean respiratory rate was 42.8 breaths 

per minute, with a standard deviation of 7.4, while the average oxygen saturation was 95.6% with a standard deviation of 

2.3%. The mean body temperature was 36.7°C, with a standard deviation of 0.4°C, showing less variability compared to 

other vital signs. The minimum and maximum values in Table 1 provide a clear range for each vital sign, highlighting the 

physiological variability within the neonates included in the study. For instance, heart rates ranged from 90 to 180 bpm, and 

oxygen saturation varied from 88% to 100%. These descriptive statistics from Table 1 are essential for understanding the 

baseline characteristics of the dataset used to train and evaluate the AI model. This foundational understanding is crucial for 

interpreting the model's performance in detecting deviations from these typical ranges.   

3.2 Feature Engineering and Selection 

To enhance the model's predictive capability, six features were selected and engineered based on clinical relevance and 

statistical robustness. These include the four core vital signs—HR, RR, SpO₂, and temperature—as well as two derived 

metrics: 

1. Heart Rate Variability (HRV): Calculated as the standard deviation of HR within each 5-minute window. It 

reflects autonomic nervous system regulation and is a sensitive marker for distress or infection. 

2. SpO₂ Slope: Computed as the linear slope of oxygen saturation values over each 5-minute window, representing 

upward or downward trends, which are clinically more meaningful than isolated values. 

Correlation analysis was conducted to check for multicollinearity. All six features were retained as none showed high linear 

correlation (Pearson’s |r| < 0.75). Additionally, mutual information scores were calculated to assess non-linear associations 

with the target variable (abnormal vs normal). HRV and SpO₂ slope ranked high in importance, supporting their inclusion. 

All features were reshaped into 3D input tensors suitable for time-series analysis with deep learning models: (samples × time 

steps × features). 

3.3 Model Architecture 

To model temporal patterns within neonatal vital sign sequences, a Long Short-Term Memory (LSTM) neural network was 

selected due to its superior performance in learning from time-series data with long-range dependencies. LSTM networks 

are particularly suitable for this application because they retain memory across time steps, which allows the system to detect 

early physiological changes that precede clinical deterioration. 

The architecture of the model is composed of the following layers: 

 Input Layer: Accepts sequences of 5-minute windows (5 time steps) for 6 features (HR, RR, SpO₂, temperature, 

HR variability, SpO₂ slope). 

 LSTM Layers: Two stacked LSTM layers were used—64 units followed by 32 units—to capture both high-level 

and fine-grained temporal relationships. 

 Dropout Layer: A dropout rate of 0.2 was introduced to reduce overfitting and improve generalisability across 

different patients. 

 Dense Layer: A fully connected layer transforms the LSTM output into a single neuron. 

 Output Layer: A sigmoid activation function provides a probability score representing the likelihood of an 

abnormal condition in the next few minutes. 

The model was trained using an 80:20 train-test split. The binary cross-entropy loss function was employed alongside the 
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Adam optimiser with a learning rate of 0.001. Batch size was set at 32, and training continued for 30 epochs, with early 

stopping applied if validation loss plateaued for 5 consecutive epochs. 

Performance was evaluated using accuracy, precision, recall, and F1-score for each vital sign category. Cross-validation 

with 5 folds ensured stability of results across the dataset. 

 

 

Figure 1: Schematic of the full AI pipeline starting from data acquisition to clinician feedback and model 

refinement. 

The study outlines a comprehensive AI pipeline that integrates data acquisition, processing, and clinical feedback to achieve 

continuous model refinement. A schematic representation of this entire process is illustrated in Figure 1. As shown in Figure 

1, the pipeline begins with the acquisition of neonatal vital sign data from bedside monitors in the NICU. This data then 

undergoes pre-processing to clean and format it for AI model input. The LSTM-based AI model analyses the pre-processed 

data to detect potential physiological abnormalities. Based on the model's output, the system generates alerts that are 

displayed on a clinician interface. Clinicians review these alerts and provide feedback on their accuracy and relevance. This 

feedback is then used to retrain and update the AI model, closing the loop and enabling continuous learning. This iterative 

process, detailed in Figure 1, allows the AI system to adapt to evolving clinical conditions and improve its performance over 

time.    

3.4 System Integration 

To translate the AI model from lab to bedside, a real-time system was developed that processes incoming sensor data from 

NICU monitors every minute. This data is passed through the model in overlapping 5-minute sequences and analysed in real 

time to determine the risk of physiological abnormality. 

The alerting mechanism incorporates both model output and a rule-based post-processor. Alerts are issued when the predicted 

probability of abnormality exceeds dynamic thresholds, which are adjusted based on recent history and alert density to avoid 

alert fatigue. Alerts are categorised into: 

 Green: Normal 

 Yellow: Moderate risk 

 Red: High risk requiring immediate attention 

A web-based dashboard was built to visualise current vital signs, alert status, and alert history. The system also includes a 

feedback module, where nurses and clinicians can label each alert as accurate, missed, or false. These labels are stored and 

used for periodic retraining of the model using incremental learning techniques, enabling the system to adapt to evolving 

clinical behaviours and site-specific dynamics. 

 

Figure 2: Distribution of AI-Generated Alerts by Risk Category 
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The AI system employs a tiered alert mechanism to aid clinicians in prioritizing interventions based on the predicted risk 

level of the neonate. The distribution of these AI-generated alerts across different risk categories is visually represented in 

Figure 2. As shown in Figure 2, the majority of alerts, accounting for 52.5%, fall into the green category, indicating normal 

physiological states. A substantial portion of the alerts, 30.4%, are classified as yellow, representing moderate risk and 

potentially requiring closer monitoring. The remaining 17.2% of alerts are categorized as red, signalling high risk and the 

potential need for immediate clinical attention. This distribution, clearly illustrated in Figure 2, highlights that the AI system 

primarily identifies periods of normalcy while still flagging a notable proportion of moderate and high-risk events. The 

relatively lower percentage of red alerts suggests that the system is not overly sensitive and primarily triggers alerts when 

significant deviations are detected. This tri-level categorization, as presented in Figure 2, offers a clear and concise overview 

of the system's alert patterns, facilitating efficient clinical decision-making in the NICU. 

5. RESULTS AND DISCUSSION 

4.1 Model Performance Metrics 

The LSTM-based AI model demonstrated strong performance in detecting early physiological abnormalities in neonates. 

When evaluated on the test dataset, the model consistently achieved high accuracy and balanced precision and recall across 

all vital sign categories. The model’s ability to learn from temporal patterns, rather than isolated threshold breaches, enabled 

it to distinguish between clinically significant variations and transient artefacts. Among the individual parameters, the oxygen 

saturation and heart rate classifiers performed slightly better, likely due to the clear signal dynamics and more pronounced 

deviations in abnormal cases. Respiratory rate and temperature showed marginally lower scores but still maintained clinically 

acceptable prediction fidelity. Importantly, the model did not exhibit overfitting, as confirmed by the convergence of training 

and validation losses and the stability of cross-validation results. 

The overall average F1-score of 91.3% across all variables suggests that the model not only correctly identifies abnormal 

states but also avoids excessive false positives. This balance is critical in NICU environments where clinicians rely on the 

system to enhance decision-making without contributing to alarm fatigue. Table 2 presents a detailed breakdown of 

performance metrics across the four physiological indicators. These values reflect the model’s robustness in handling the 

clinical complexity of neonatal vital signs. 

Table 2: Model Performance Metrics Across Vital Sign Categories 

S.no Vital Sign Precision (%) Recall (%) F1-Score (%) 

1 Heart Rate (HR) 91.2 93.1 92.1 

2 Respiratory Rate 89.6 91.4 90.5 

3 Oxygen Saturation 94 90.7 92.3 

4 Body Temperature 90.8 89.5 90.1 

  Average 91.4 91.2 91.3 

 

The LSTM-based AI model demonstrated robust performance in detecting early physiological abnormalities in neonates. A 

detailed breakdown of these performance metrics across the four physiological indicators is presented in Table 2. As shown 

in Table 2, for heart rate, the model achieved a precision of 91.2%, a recall of 93.1%, and an F1-score of 92.1%. The model's 

performance in predicting respiratory rate was slightly lower, with a precision of 89.6%, a recall of 91.4%, and an F1-score 

of 90.5%. Oxygen saturation predictions showed high accuracy, with a precision of 94%, a recall of 90.7%, and an F1-score 

of 92.3%. Body temperature predictions also yielded strong results, with a precision of 90.8%, a recall of 89.5%, and an F1-

score of 90.1%. Overall, the average F1-score across all vital signs was 91.3%, indicating a balanced performance in correctly 

identifying abnormal states while minimizing false positives.    
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Figure 3: Bar Chart of Model Accuracy for Each Vital Sign 

The AI model's performance in accurately predicting vital signs is visually summarised. A bar chart, shown in Figure 3, 

compares the accuracy percentages for each vital sign category. As can be seen in Figure 3, the model achieved the highest 

accuracy for Oxygen Saturation (SpO2) at 92.3%. Heart Rate (HR) accuracy was also high, with the model achieving 92.1% 

accuracy. Respiratory Rate (RR) showed a slightly lower accuracy of 90.5%, while Body Temperature had the lowest 

accuracy among the four, at 90.1%. Despite these slight variations, all accuracy scores, as presented in Figure 3, are above 

90%, indicating strong overall performance. These results demonstrate the model's ability to reliably predict vital signs across 

different physiological parameters. The minor differences in accuracy may reflect the inherent variability and complexity of 

each vital sign. Overall, Figure 3 effectively illustrates the model's high degree of accuracy in monitoring neonatal vital 

signs. 

These results validate the suitability of LSTM networks for processing short-range physiological sequences and detecting 

subtle precursors to clinical deterioration. More importantly, the balanced performance across indicators positions the model 

as a holistic monitoring tool, rather than one focused on a single vital sign. This is particularly beneficial in NICU settings 

where multiple concurrent indicators must be monitored and interpreted simultaneously. 

4.2 Alert Generation Analysis 

One of the key objectives of integrating artificial intelligence into neonatal monitoring is not merely to assess physiological 

data accurately but to generate clinically meaningful alerts that are both timely and actionable. In this context, the 

performance of the AI-driven alert system was evaluated against a conventional threshold-based system, which triggers 

alarms when vital signs exceed fixed upper or lower limits. The analysis focused on the number of true and false alerts, the 

time taken to respond to each event, and subjective clinician feedback on the relevance of alerts generated. 

The AI system demonstrated a notable reduction in false positive alerts, which are a common concern in NICUs and 

contribute significantly to alarm fatigue among healthcare providers. The deep learning model, by analysing trends and 

combining multiple features, was able to suppress non-critical fluctuations that would typically trigger alerts in a rule-based 

system. As a result, the total number of false positives dropped by approximately 38%. At the same time, the number of true 

positive alerts increased, indicating improved sensitivity to real physiological distress. Perhaps most importantly, the average 

time to clinician response following an AI-triggered alert was reduced by nearly 30%, a reflection of greater confidence in 

the system’s output and a lower burden of filtering irrelevant signals. 

These differences are quantitatively detailed in Table 3, which compares key metrics between the AI-enhanced system and 

conventional monitoring. The number of false alarms was significantly lower under the AI framework, while true positive 

detection was slightly higher. The number of false negatives also decreased, highlighting the AI model’s ability to capture 

early signs of deterioration that might be missed by fixed-threshold methods. The system’s practical impact was also captured 

through subjective feedback, with nearly 90% of AI-triggered alerts being marked as “useful” by clinicians, compared to 

72.5% for the conventional system. 

Table 3: Alert System Evaluation Metrics Compared with Conventional Alarms 

S.no 
Metric 

Conventional 

System 

AI-Based 

System 
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1 True Positive Alerts 112 126 

2 False Positive Alerts 64 40 

3 False Negative Alerts 18 12 

4 Average Time to Response (sec) 85 59 

5 

Clinician-Reported Usefulness 

(%) 
72.5 89.2 

 

The AI-driven alert system's performance was evaluated against a conventional threshold-based system to determine its 

clinical efficacy. Key metrics comparing the AI-enhanced system with conventional monitoring are detailed in Table 3. As 

can be seen in Table 3, the AI-based system demonstrated a significant improvement in true positive alerts, with 126 alerts 

compared to 112 for the conventional system. Concurrently, the AI system drastically reduced false positive alerts from 64 

to 40, addressing a major source of alarm fatigue. The number of false negative alerts also decreased from 18 to 12, indicating 

the AI's enhanced sensitivity in detecting critical events. Moreover, the average time to clinician response was reduced from 

85 seconds with the conventional system to 59 seconds with the AI system, reflecting increased confidence and efficiency. 

Clinician-reported usefulness of alerts also improved, with 89.2% of AI-triggered alerts being rated as useful, compared to 

72.5% for conventional alerts. These results underscore the AI system's potential to provide more accurate, timely, and 

clinically relevant alerts in NICU settings. 

 

Figure 4: Pie Chart Showing Distribution of Alerts by Vital Sign Type 

The distribution of AI-triggered alerts across different vital sign types provides insight into the system's focus. A pie chart 

illustrating these proportions is shown in Figure 4. As presented in Figure 4, Oxygen Saturation (SpO2) accounts for the 

largest share of alerts at 37.0%. Heart Rate (HR) contributes to a significant portion as well, representing 28.0% of the 

generated alerts. Respiratory Rate (RR) constitutes 22.0% of the alerts, while Body Temperature accounts for the smallest 

proportion at 13.0%. These percentages, shown in Figure 4, reveal that the AI system most frequently identifies potential 

issues related to oxygen saturation. The relatively lower percentage for body temperature suggests that deviations in this 

parameter may be less frequent or that the AI model is less sensitive to them compared to other vital signs. Overall, Figure 

4 offers a clear view of the relative frequency with which the AI system flags abnormalities in each monitored physiological 

parameter. 

4.3 Real-Time Implementation Feasibility 

In addition to predictive accuracy and alert reliability, the practical deployment of an AI model in a clinical environment 

depends on its computational efficiency and integration feasibility. To evaluate these aspects, the system was tested on a 

simulation platform that mimics real-time sensor input at one-minute intervals. Performance metrics included processing 

time per input cycle, system memory usage, and latency between data ingestion and alert generation. 

The AI model exhibited a mean processing time of 24 milliseconds per five-minute window, which is well within acceptable 

real-time operating thresholds for NICU applications. Even at peak computational load, the response time remained under 
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40 milliseconds, ensuring that alerts were generated with negligible delay. The overall memory usage of the system, including 

model weights, pre-processing scripts, and dashboard interface, was approximately 72 megabytes, making it compatible with 

standard NICU edge computing systems or bedside monitoring hardware. Latency—the time from signal acquisition to 

visible output—averaged 61 milliseconds, inclusive of visualisation and alert rendering. 

These metrics are summarised in Table 4. Together, they confirm that the system can be integrated into existing NICU 

infrastructure without major hardware upgrades, and that it performs efficiently under real-time operational demands. 

Importantly, the responsiveness of the system enhances its clinical usability, allowing practitioners to rely on its alerts without 

experiencing workflow interruptions or lag. 

Table 4: Computational Efficiency Metrics of Real-Time AI Engine 

S.no Metric Value 

1 Mean Processing Time per Window (ms) 24 

2 Peak Processing Time (ms) 40 

3 Memory Usage (MB) 72 

4 Average System Latency (ms) 61 

5 Interface Refresh Interval (sec) 1 

 

The practical deployment of the AI model in a clinical setting necessitates an evaluation of its computational efficiency and 

integration feasibility. The results of this evaluation, detailing key computational metrics, are presented in Table 4. As can 

be observed in Table 4, the mean processing time per five-minute window was 24 milliseconds, demonstrating the model's 

capacity for real-time operation. The peak processing time reached 40 milliseconds, still within acceptable limits for NICU 

applications. The system's memory usage, including model weights and interface components, was approximately 72 

megabytes, indicating compatibility with standard NICU hardware. The average system latency, from signal acquisition to 

output, was 61 milliseconds, ensuring minimal delay in alert generation. Additionally, the interface refresh interval was set 

at 1 second, allowing for continuous and responsive monitoring. These metrics, shown in Table 4, collectively affirm the 

system's readiness for integration into existing NICU infrastructure without requiring significant hardware upgrades. The 

system's responsiveness and efficiency are critical for enhancing clinical usability and ensuring timely clinical intervention. 

Clinician feedback also supported the system’s usability. In simulated ward rounds, staff noted that alerts were both timely 

and meaningfully prioritised. The colour-coded system green for normal, yellow for caution, and red for critical was found 

to be intuitive, with most nurses requiring less than ten minutes of training to understand and use the system confidently. 

These observations reinforce the practical value of the AI model beyond the scope of algorithmic evaluation. 

4.4 Risk Stratification and Interpretability 

In high-stakes environments like NICUs, the interpretability of AI models is just as crucial as their predictive power. 

Clinicians must not only receive alerts but also understand the rationale behind them. To address this, the system incorporated 

a post-hoc interpretability module based on Shapley Additive explanations (SHAP). This method assigns relative importance 

scores to each feature within a prediction window, highlighting which parameters contributed most to the risk classification. 
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Figure 5: Radar Chart of Feature Importance for Risk Prediction 

The provided image displays a radar chart illustrating the values of six different physiological parameters. This 

representation, referred to as figure 5, offers a visual comparison of Heart Rate, SpO2 Slope, HRV, Temperature, Resp. Rate, 

and SpO2, each scaled from 0 to 1. The polygonal shape enclosed by the blue line indicates the relative magnitude of each 

variable. Observing the chart, we can see that SpO2 Slope and HRV exhibit relatively high values, approaching 1.0. 

Conversely, Resp. Rate appears to have the lowest value among the presented parameters, appearing to be below 0.2. Heart 

Rate and Temperature show intermediate values, falling somewhere around 0.6. The SpO2 value also seems to be moderately 

high, appearing to be around 0.8, though slightly less than SpO2 Slope and HRV. This type of graphical representation is 

particularly useful for quickly assessing the profile of multiple variables for a single subject or condition. Further analysis 

would require understanding the context and units of each specific physiological parameter. 

Table 5: Risk Scores Generated for a Sample Set of Neonates 

S.no 

Neonate 

ID 
Predicted Risk Score Risk Category Actual Clinical Outcome 

1 N-023 0.91 High Bradycardia episode recorded 

2 N-078 0.87 High Oxygen therapy administered 

3 N-055 0.76 Moderate No escalation 

4 N-041 0.62 Moderate Routine observation 

5 N-006 0.95 High Respiratory support needed 

 

The AI system's ability to stratify risk for individual neonates is crucial for enhancing clinical decision-making. A sample 

set of neonates with their predicted risk scores, risk categories, and actual clinical outcomes is detailed in Table 5. As 

illustrated in Table 5, Neonate N-023 had a predicted risk score of 0.91, categorized as high risk, and experienced a 

bradycardia episode. Similarly, Neonate N-078, with a risk score of 0.87 (high risk), required oxygen therapy administration. 

In contrast, Neonate N-055, with a moderate risk score of 0.76, did not require escalation of care. Neonate N-041, also 

classified as moderate risk with a score of 0.62, was under routine observation. Finally, Neonate N-006, with the highest 

predicted risk score of 0.95, needed respiratory support. These results in Table 5 demonstrate a strong alignment between 

the AI's risk predictions and the actual clinical outcomes of the neonates. The system's risk stratification effectively supports 
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clinicians in prioritizing interventions and allocating resources efficiently. 

The inclusion of interpretability and risk stratification enhances the transparency of the system, increasing clinician trust and 

facilitating more informed, context-aware responses to AI-generated alerts. By offering not just a decision but an explanation, 

the system bridges the gap between artificial intelligence and human clinical judgment. 

6. CONCLUSIONS 

This study developed and evaluated an AI-based framework for the real-time monitoring of neonatal vital signs in critical 

care environments. By integrating machine learning—specifically LSTM-based temporal modelling—into the NICU 

workflow, the system achieved high accuracy in detecting physiological abnormalities, reduced false alarms, and 

significantly improved clinical responsiveness. It demonstrated computational efficiency suitable for bedside deployment, 

with average processing latency well within real-time thresholds. The alert generation system provided context-aware signals 

that clinicians found more reliable and actionable than conventional threshold-based systems. Furthermore, the inclusion of 

interpretability through SHAP-based feature attribution and tiered risk stratification added clinical transparency and decision 

support value. The results showed strong alignment between predicted alerts and actual clinical outcomes, confirming the 

system’s practical relevance. However, limitations include the use of publicly available datasets rather than live hospital data 

and the absence of prospective clinical trials. Future work will focus on live NICU integration, continuous model retraining 

using clinician feedback, and expanding datasets to ensure fairness and generalisability across diverse populations. Overall, 

this research offers a clinically viable and technologically scalable solution for enhancing neonatal care through intelligent, 

real-time monitoring. 
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