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ABSTRACT 

Parkinson's Disease (PD) is a progressive neurodegenerative disorder that requires early and accurate detection for effective 

treatment. Existing approaches for PD detection have utilized deep learning models, incorporating techniques like Synthetic 

Minority Oversampling Technique (SMOTE) for data balancing and min-max normalization for feature scaling. However, 

min-max normalization can be sensitive to outliers, potentially skewing the model's performance. Additionally, traditional 

classifiers may struggle with feature selection, leading to suboptimal results and increased risk of overfitting. The current 

models, while effective, face challenges with generalization and the accurate detection of PD, particularly when working 

with sequential voice data, where temporal dynamics are crucial for diagnosis. This study suggests an approach for addressing 

these problems improved hybrid model (HYMOD) combining a Weighted Recurrent Neural Network (WRNN) and Deep 

Belief Network (DBN). The proposed method applies SMOTE for data balancing, but replaces min-max normalization with 

Z-Score normalization to mitigate the impact of outliers and ensure more stable model convergence. An entropy-based 

butterfly optimization the feature selection process uses an algorithm, improving model efficiency and focusing on the most 

relevant features, reducing noise and redundant data. By leveraging the sequential processing capability of WRNN and the 

deep feature extraction of DBN, the hybrid model significantly outperforms existing methods, achieving superior accuracy, 

precision, recall, and F1-scores for early PD detection. This enhanced model, through its innovative integration of advanced 

pre-processing, feature selection, and classification techniques, offers a more robust solution for reliable PD diagnosis and 

timely intervention.. 
 

Keywords: Parkinson's Disease (PD), Deep Learning, Weighted Recurrent Neural Network (WRNN), Deep Belief Network 

(DBN), Synthetic Minority Oversampling Technique (SMOTE), Z-Score Normalization, Entropy-Based Butterfly 

Optimization Algorithm. 

1. INTRODUCTION 

Parkinson's disease (PD) is one of the most prevalent neurological diseases, affecting millions individuals worldwide [1,2]. 

It presents with motor-related symptoms like tremors, muscle stiffness, and slowed movements, as well as non-motor issues 

such as cognitive deterioration and speech difficulties. Detecting PD at an early stage is vital for effective treatment and 

management, as prompt medical intervention can greatly enhance the quality of life for those affected. However, traditional 

diagnostic methods are largely subjective, relying on clinical assessments that can be prone to human error and variability. 

Consequently, the need for automated, objective methods for early PD detection [3]. 

The development of machine learning algorithms has enabled the detection of subtle variations in voice patterns that may 

indicate Parkinson’s Disease (PD). By analysing acoustic features from voice recordings, these models are able to 

differentiate between people with PD and healthy individuals [4], providing a scalable and cost-effective diagnostic solution. 

This method offers the potential for continuous monitoring of disease progression, which is essential for optimizing treatment 

strategies over time. The use of voice data for PD detection is a significant innovation in healthcare, allowing for earlier and 

more accurate diagnoses while reducing reliance on invasive and expensive testing methods. Furthermore, it holds promise 

for improving patient quality of life through more personalized care. Medical diagnosis has showed potential due to recent 

developments in deep learning and machine learning, particularly with the use of voice data for identifying PD [5]. Voice 

data is especially useful in PD detection; as vocal changes are often among the earliest symptoms of the disease. Deep 

learning models, including SVM, ANN, RNN and CNN, have been widely employed to analyse voice patterns and detect  
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early signs of PD. While these models have demonstrated strong predictive power, challenges remain. Existing methods 

often suffer from data imbalance issues, inefficient feature selection, and sensitivity to outliers, all of which can negatively 

impact the generalizability and performance of the model. 

In prior research, data balancing has been addressed using the SMOTE, while feature scaling was handled through min-max 

normalization. However, min-max normalization is highly sensitive to outliers, which can distort the range of the features 

and degrade model accuracy. Additionally, the most important characteristics may not be identified through conventional 

feature selection methods, leading to overfitting or under fitting of the model. These constraints limit the development of a 

reliable and effective system for PD detection, especially when working with sequential voice data, where the temporal 

relationships between data points are critical. 

To overcome these issues, this paper proposes a HYMOD combining a WRNN and DBN. The WRNN is effective in 

processing sequential data and capturing the temporal dependencies in voice signals, while the DBN offers powerful deep 

feature extraction capabilities. In this approach, SMOTE is used to address data imbalance, but min-max normalization is 

replaced with Z-Score normalization, which is less sensitive to outliers and provides better convergence during training. 

Feature selection is performed using an entropy-based butterfly optimization algorithm, which ensures that the selection of 

the most relevant characteristics enhances the classification model's accuracy and efficiency. 

The following are the paper's primary contributions: 

A novel hybrid WRNN-DBN model that integrates sequential processing and deep feature extraction for robust PD detection 

(HYMOD). 

The implementation of an entropy-based butterfly optimization algorithm for efficient feature selection, reducing redundancy 

and enhancing classifier performance. 

The use of SMOTE for data balancing and Z-Score normalization to handle outliers and improve model stability 

The proposed approach is anticipated to surpass current models more reliable and reliable accuracy, precision, recall, and 

F1-score of a method for the early detection of Parkinson's disease. The paper proceeds as follows:  Section 2 provides a 

comprehensive review of pertinent literature, while Section 3 explains the recommended methodology.  The experiments 

carried out for performance and outcome assessment are described in Section 4.  Finally, Section 5 concludes up the analysis 

and talks about the suggested approach., offering insights for future work. 

2. RELATED WORK 

Almasoud et al [2022] [6] In including a recurrent neural network (RNN) into the GLSTM's batch normalizing layer and 

refining the network's hidden layer using the Adaptive Moment Estimation (ADAM) technique, the proposed categorization 

model has received enhancements. To demonstrate the importance of feature engineering, the suggested system uses a Sparse 

Auto-Encoder (SAE) to extract dynamic speech features and Linear Discriminant Analysis (LDA) to reduce dimensions. 

Energy transitions from voiced to unvoiced segments (offset) and from unvoiced to voiced segments (onset) are analyzed to 

extract these dynamic properties.  To analyze the PD datasets, 10-fold cross-validation is used, ensuring that no samples 

overlap. 

Abd El Aal et al [2021] [7] is a technique for early PD patient identification that uses speech features and an RNN together 

with long short-term memory (LSTM). This model employs the ADAM optimizer after the hidden layers and a batch 

normalization layer to increase classification accuracy. The method is tested on two benchmark speech feature datasets, 

include data from both healthy individuals and PD patients. 

Al-Fatlawi et al [2016] [8] Parkinson's disease is classified using a Deep Belief Network (DBN), which consists of an output 

layer after two layered Restricted Boltzmann Machines (RBMs). A two-phase learning procedure is needed to optimize the 

network's parameters.  Unsupervised learning using RBMs is used in the first phase to address problems caused by randomly 

initialized weight values. The model is improved in the second stage by using the backpropagation algorithm as a supervised 

learning method. The effectiveness of the suggested strategy is shown by contrasting its performance with that of many other 

approaches and related research. The suggested methodology surpasses all other methods assessed, in an overall testing 

accuracy of 94%. 

Qasim et al [2021] [9] Unbalanced datasets, such those related to Parkinson's disease (PD), were handled using a hybrid 

feature selection approach. Class imbalance was addressed using the SMOTE. Recursive feature elimination (RFE) and 

principal component analysis (PCA) were used to get eliminate of feature conflicts and reduced processing time. Materials 

and Methods: Classification models such as Bagging, K-Nearest Neighbor (KNN), Multilayer Perceptron, and Support 

Vector Machine (SVM) were constructed using acoustic datasets from PD patients as well as data from healthy control 

participants.  

Pramanik and Sarker [2021] [10] Various data pre-processing techniques were applied, including data standardization using 
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Z-Score, multicollinearity analysis, and techniques for reducing dimensionality to enhance data.  PD was classified using K-

Nearest Neighbour, Support Vector Machine, Random Forest, AdaBoost, and Logistic Regression. Hyperparameter 

optimization is necessary to maximize classifier performance and preserve class balance in the unbalanced dataset, k-fold 

cross-validation, and grid search were conducted. The suggested model surpassed earlier research on the same dataset by 

around 8%, reaching a peak accuracy of 94.10%. 

Khaskhoussy and Ayed [2022] [11] suggested categorizing data through the use of machine learning methods like Support 

Vector Machines (SVM). The database utilized for the research included voice recordings from both PD sufferers and healthy 

persons. The research investigated three types of features. First, they examined Mel Frequency Cepstral Coefficients 

(MFCC). Second, they utilized deep features extracted through an AutoEncoder (AE). Additionally, they developed novel 

features using the Gaussian Mixture Models-Universal Background Model (GMM-UBM) framework to derive MFCC-GMM 

features. The combination of AE-generated deep features and MFCC-GMM features consistently delivered the highest 

accuracy in detection performance. 

3. PROPOSED METHODOLOGY 

The proposed methodology involves several steps, including feature selection, categorization, and data pre-processing. The 

proposed approach starts with Data Pre-processing, in which a more balanced dataset is produced by using the SMOTE 

approach to create artificial entities for the underserved class to rectify the class imbalance. Following this, using Z-Score 

normalization, the characteristics are standardized, aiding in better model convergence.  

 

FIGURE 1. THE PROPOSED METHODOLOGY 

Next, the Feature Selection step leverages the Entropy-Based Butterfly Optimization Algorithm to select enhancing classifier 

performance, decreasing the complexity of the data, and identifying the most relevant characteristics. Finally, the 

Classification phase (HYMOD) employs a Hybrid WRNN with Deep Belief Network (DBN), combining the strengths of 

WRNN for sequential data and DBN for complex pattern recognition. The proposed paradigm's overall structure is shown 

in Figure 1.   
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3.1. Dataset Description  

Archive.ics.ucsd.edu/ml is where the voice data that was used in this study may be accessed by the general public. Supplied 

by Oxford University, the dataset comprises a range of acoustic speech features collected from 195 participants, including 

147 diagnosed with Parkinson’s disease [12,13]. It includes the total number of voice recordings per individual, where each 

feature corresponds to a distinct aspect of vocal measurement. The "status" column indicates health condition, where a 

negative value represents healthy individuals and a positive value indicates those with Parkinson's disease, allowing for 

differentiation between cases. Table 1 has a comprehensive description of the dataset. 

TABLE 2. DETAIL OF PD DATASET 

Dataset Characteristic Multivariate 

Counts of Instances 197 

Attribute Characteristics Real 

Counts of Attributes 23 

Missing Values N/A 

Made by Max Little of the University of Oxford 

Associated Tasks Classification 

Types of Classification Binary {0 for healthy and 1 for PD patient} 

 

3.2. Data Balancing by Synthetic Minority Over-Sampling Technique (SMOTE) 

Oversampling was used during pre-processing since the PD dataset the research examined was imbalanced.  The process of 

overs is the process of match the majority class by increasing the number of minority class samples, and it is a data analysis 

strategy used to modify class distribution [14]. This is achieved by randomly replicating minority instances to boost their 

representation. By using linear interpolation to create synthetic samples for the minority class, SMOTE is a popular method 

for addressing class imbalance. The algorithm operates in two primary stages. 

The first step involves identifying the k nearest neighbors by calculating the Euclidean distances between minority samples 

and sorting them in ascending order. Then, the k-nearest neighbors (kNN) are determined based on these distances, as 

calculated using Equation (1), which determines the Euclidean distance across n characteristics between a minority sample 

x and another minority sample y: 

d(x,y)=√∑ (xa − ya)2n
a=1                                                                    (1) 

In the second phase, artificial data is generated using interpolating between the two minority samples. A candidate from the 

kNN is randomly selected, and new data points are generated by combining the chosen neighbor (y) with the original sample 

(x). The interpolation process is defined by Equation (2) for the a-th attribute between x and y: 

SyntheticData𝑎 (x, y) = 𝑥𝑎 + r · (𝑥𝑎− 𝑦𝑎) for 0 ≤ r ≤ 1 (2) 

Where,  

 r- random number between 0 and 1   

The method is repeated until the required amount of synthetic data is produced, using this formula across all n characteristics. 

3.3. Normalize data using Z-Score normalization  

A popular data pre-processing method for normalizing feature values in a dataset is Z-Score normalization, 

often referred to as standardization. 

To normalize data using Z-Score normalization [15], each feature in the dataset is adjusted for the standard deviation to be 

one and the mean to be zero. This technique is especially beneficial when the dataset contains features with varying scales, 

as all characteristics have an equal impact on the model training process. 

The formula for Z-Score normalization is: 

𝑧 =
𝑋−𝜇

𝜎
                                                                             (3) 

Where: 

 X is the original data point. 
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 μ is the dataset's mean. 

 σ is the dataset's standard deviation. 

This transformation standardizes the data by subtracting the standard deviation (σ) divided by the mean (μ) of each data 

point. Following Z-Score normalization, considering a standard deviation of 1 and a mean of 0, the data is appropriate for 

machine learning models that require normalized inputs for faster convergence and improved performance. The improved 

data goes through the feature selection phase after pre-processing. At the stage, optimal features that are most relevant for 

speech signals are selected from the pre-processed data. 

3.4. Feature selection Using Entropy-Based Butterfly Optimization Algorithm 

In this study, the Entropy-Based Butterfly Optimization Algorithm (EBFO) is employed for feature selection to extract the 

most significant attributes from the medical dataset. EBFO is an innovative nature-inspired optimization technique that 

mimics the foraging and mating behaviours of butterflies, aiming to improve classification performance in medical diagnosis 

tasks [16,17]. The algorithm is inspired by butterflies' ability to use their strong sense of smell to efficiently locate nectar 

sources, it is comparable to selecting the attribute that is most relevant for precise categorization. Scientific research has 

shown that butterflies possess a highly accurate ability to locate the source of fragrance (akin to improving classification 

accuracy). 

A butterfly's fitness varies with the intensity of the scent it produces as it moves from one position to another. This is referred 

to as classification accuracy. Three key terms sensory modality (c), stimulus intensity (I), and power exponent (a) for 

optimum feature selection form the foundation of the EBFO Algorithm's the concept of identifying and processing the 

modality. The fitness (accuracy) of the EBFO Algorithm for feature selection from medical datasets is connected with I [18]. 

Equation (4) of the EBFO Algorithm uses these ideas to develop the fragrance according to the stimulus's physical intensity,  

𝑓 = 𝑐𝐼𝑎 
(4) 

where f is the degree to which other butterflies perceive the fragrance, or its observed magnitude, in is the input intensity, c 

is the sensory modality, which is defined by the precision of classification, and in is the modality-dependent power 

exponential. The range [0,1] is therefore a & c.  Alternatively, if a = 0, then no one else is able to detect the fragrance that a 

butterfly produces.   The value of a determines how the algorithm behaves in this section. The EBFO algorithm's overall 

performance and rate of convergence are significantly influenced by another crucial parameter, c. A search algorithm's 

representation of these ideas uses the following idealized behavioural characteristics of butterflies: 

It is assumed that each butterfly releases a certain fragrance, allowing butterflies (representing features) to be attracted to 

one another.   

Each butterfly either travels at random or is attracted to the strongest-fragrance, most appealing butterfly.   

The objective or function landscape's form or structure affects how strong a butterfly's stimulus is. 

The initialization phase, iteration phase, and final phase are the three primary steps of the EBFO algorithm's operation. The 

initialization phase, an iterative search for optimal features, and the final phase, which occurs when the best feature selection 

is found, are the first steps in each EBFO execution. During the initialization phase, the EBFO algorithm evaluates 

classification accuracy and explores the solution space. Additionally, parameter values required for the algorithm are defined 

in this stage.  

Along with their matching fragrance and fitness evaluations, the butterflies' beginning positions which serve as features are 

selected at random inside the feature selection search area.  The algorithm moves on to the iteration stage when the 

initialization stage is completed. The exact position of every butterfly are updated throughout every phase within the solution 

space, and their classification accuracy is subsequently assessed [19]. Initially, based on each butterfly's unique position 

inside the solution space, the algorithm determines its fitness values. Following this, each butterfly emits a fragrance at its 

location using Equation (4). A butterfly moves going toward the optimum possible result during the global search phase 

found so far (g∗), representing the optimal set of features, as described by equation (5),  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 × 𝑔∗ − 𝑥𝑖
𝑡) × 𝑓𝑖 ∗ 𝐸𝐶𝐸𝑊 (5) 

 

Iteration number ith butterfly uses 𝑥𝑖
𝑡 to represent the solution vector 𝑥𝑖.   𝑓𝑖 and r∈[0,1] represent the fragrance of the ith 

butterfly, and 𝑔∗ the current iteration's most significant feature solution is a random integer.  A representation of the local 

search phase is provided by equation (6),   

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 × 𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 ) × 𝑓𝑖 ∗ 𝐸𝐶𝐸𝑊 (6) 
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where 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are jth and kth the feature selection solution space's butterflies. Equation (6) becomes a local random walk if 

𝑟 ∈ [0, 1] is a random number and 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are members of the same swarm. To efficiently extract the best characteristics 

from the dataset, butterflies use the EBFO algorithm when searching for food and mate both locally and worldwide. Switch 

probability p alternates global and local searches. Until the stopping conditions are satisfied, the iteration phase continues. 

The method provides the best answer and its greatest fitness value at the conclusion of the iteration phase. Additionally, 

feature weight is incorporated into Equations (5) and (6) to help determine the ideal number of characteristics chosen from 

the medical gathering of data.  

The EBFO algorithm selects the most relevant characteristics from the provided medical data in an effort to improve classifier 

accuracy. By reducing the divergence between two sample distributions, Cross Entropy (CE) analyses the optimum 

parameters of the probability distribution and helps solve optimization problems. The CE method is known for its strong 

global search ability, high adaptability, and robust performance.  

𝐶𝐸 =
1

𝑁
∑ 𝐼𝑠<𝑟

𝑓(𝑥𝑖,𝑣)

𝑔(𝑥𝑖)

𝑁
𝑖=1           (7) 

with significance sampling density g(x) and a random sample from 𝑓(𝑥; 𝑣) denoted by 𝑥𝑖. To determine the optimum 

importance sampling density, the Kullback–Leibler divergence, it is presented to assess the distance between two sample 

distributions and is also referred to as the cross-entropy. 

Algorithm 3 shows the general procedures necessary for the suggested EBFO algorithm. Algorithm 3 develops initial 

population based on medical dataset attributes (Step 1) and computes stimulus intensity 𝐼𝑖  at 𝑥𝑖 (Step 2) using sensor modality 

c and power exponent a from Step 3. An accurate categorization generates these factors.  Following stopping criteria (Step 

4), each butterfly's fragrance value is calculated (Step 6). 

Then, in Step 8, identify the population's largest attribute, and in Step 10, produce a random integer, r.  Move in the direction 

of the best butterfly using equation (5) if r<p; if not, move at random using equation (6). After updating a value (Step 17), 

people are assessed based on their new positions (Step 18).  Finally, use the end while (Step 19) to conclude the operation.  

Figure 3 depicts the flowchart of the proposed Entropy Butterfly Optimization Algorithm (EBFO). 

Algorithm 3: Entropy Butterfly Optimization Algorithm (EBFO)   

Input: Medical datasets (Data sets on hepatitis, diabetes, heart disease, and fertility for Pima Indians) 

Objective function: Classifier accuracy, 𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑑𝑖𝑚)  𝑑𝑖𝑚 = 𝑛𝑜. 𝑜𝑓 𝑑𝑖𝑚𝑒𝑠𝑛𝑖𝑜𝑛𝑠  

Output: Selection of optimal features 

 Using the number of features in the dataset, produce the initial population of n butterflies, 𝑥𝑖 = (𝑖 = 1,2, … , 𝑛).         

 The accuracy of classifying 𝑓(𝑥𝑖) provides the stimulus intensity 𝐼𝑖  at 𝑥𝑖. 

 Describe the power exponent (a), switch probability (p), and sensor modality (c). 

 If the stopping requirements are not met, do 

 For each population of butterfly fins, what 

 Calculate fragrance for 𝑓using equation (5) and generate weight via entropy by equation (7) 

 End for  

     Find the best butterfly  

    For each butterfly 𝑓 in population do 

         Generate random number r 

       If 𝑟 < 𝑝 then  

         Move toward the path of the best butterfly (the optimal characteristics) by equation (5) and generate 

weight via entropy by equation (7) 

        Else  

      Move randomly using the equation (6) 

        End if 
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     End for 

      Update the value of a  

      Consider an individual's abilities based on their new role. 

Once the Entropy-Based Butterfly Optimization Algorithm (EBFO) completes its optimal feature selection, the output is a 

refined subset of the pre-processed data's most relevant and instructive aspects. These selected features are critical because 

they have the highest contribution to the classification task, making them optimal for enhancing model performance. The 

key benefit of this process is that it maximizes classification accuracy by removing redundant or irrelevant features, which 

can otherwise introduce noise or lead to overfitting. 

 

FIG 2 FLOWCHART OF ENTROPY BUTTERFLY OPTIMIZATION ALGORITHM (EBFO)  
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3.5. Classification using Hybrid Model (HYMOD) 

In this hybrid approach, a Weighted Recurrent Neural Network (WRNN) is integrated with a Deep Belief Network (DBN) 

to enhance the classification accuracy of PD detection. The goal is to leverage the strengths of both models temporal 

processing from WRNN [20,21]and deep hierarchical feature extraction from DBN. 

The WRNN first processes the input features, particularly those with temporal correlations, to extract high-quality feature 

representations. The recurrent nature of WRNN ensures that relevant temporal patterns in the data are captured. The output 

from WRNN is fed into the DBN, which further processes the extracted features through multiple hidden layers. Each RBM 

layer enhances the feature abstraction, allowing DBN to better model complex relationships within the data. Once the features 

have been learned, the top layer of DBN performs classification using the extracted feature set. The hybrid WRNN-DBN 

model provides a powerful mechanism for Parkinson’s Disease detection, as WRNN [22] effectively handles temporal 

dependencies, while DBN captures high-level abstract features for precise classification. 

3.5.1. Weighted Recurrent Neural Network (WRNN) 

This method solves this problem by using an input layer fuzzy weight function. The output of unit I of class k is determined 

by the activation function Sk(Iki), where Iki is often denoted by the symbol θ. The inputs' weighted total per unit is represented 

by Iki, which is defined as      

θ =  Iki =  ∑ f(wkij)Z(k−1)j

Lk−1

j=0

 

     

(8) 

The unit outputs of the kth layer are denoted by Zkj.  The kth layer's unit counts are implied by Lk.  The fuzzy weights of the 

connection between neurons I and the jth neuron in previous layers are denoted by f(wkij). Figure 3 shows the RNN's structure.   

 

FIGURE 3.RNN ARCHITECTURE 

3.5.2. Deep Belief Network (DBN) 

Layers of hidden units are connected in DBN.  Three types of hidden units are binary latent variables. DBN can learn to 

probabilistically recreate its inputs after being trained on a set of CTG samples.  DBN may get further training to execute 

CTG classification under supervision. Each hidden layer of a DBN subnetwork acts as the visible layer for the subsequent 

layer, making it comparable to a RBM. RBM comprises a hidden layer, an input layer, and inter-layer connections.  

Working Procedure of DBN: The initial step involves training a feature layer that can directly extract input characteristics 

from pixel data [23]. In the subsequent hidden layer, the model learns additional features by interpreting the outputs of the 

previous layer as input pixels. With each new layer of features added to the network, the lower bound on the log-likelihood 

of the training dataset increases, indicating improved model performance. 
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FIGURE 4. WORKING PROCEDURE OF DBN 

The Deep Belief Network (DBN) is pre-trained using the Greedy Learning Algorithm (GLA), which follows a top-down 

generative weight approach through layer-by-layer training. The connections between the variables are defined by these 

generative weights in adjacent layers. In the top two hidden layers of the DBN, multiple iterations of Gibbs sampling are 

performed. The uppermost two hidden layers form a Restricted Boltzmann Machine (RBM) [24], where this stage focuses 

on effectively sampling from the RBM. Following this, ancestral sampling is used once across the remaining model layers 

to provide a selection from the units that are shown. A single bottom-up pass is then used to estimate the latent variable 

values at each layer. Greedy pretraining starts at the bottom layer by previously fine-tuning the generating weights in the 

opposite direction using an observed data vector. 

 

FIGURE 5. TRAINING EACH RBM LAYER 

Training a Deep Belief Network (DBN) involves individually training each Restricted Boltzmann Machine (RBM) layer. 

This process begins by initializing the units and setting the parameters. The Contrastive Divergence algorithm, used for 

training, consists of two phases: positive and negative. The probabilities based on the weights and visible units are used for 

determining the hidden layers in the positive phase's binary states. Because it increases the probability of the training dataset, 

this step is referred to as the positive phase. Reducing the model's probability of producing its own samples is the goal of the 

negative phase, on the other hand. To train the entire Deep Belief Network (DBN) [25], the greedy learning approach is used. 

This method involves training each RBM individually, one at a time, until all RBMs in the network are fully trained. 

Creating DBN Model: It enables a top layer to been trained for creating a class labels in input data vectors and it has been 

used to classify unknown data vectors. Equation (9) illustrates how the RBM's weights determined the joint probability 

distribution, which used an energy-based function of {𝑣, ℎ},  
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𝐸𝑛(𝑣, ℎ, 𝜃) = 𝑣𝑇𝑊ℎ − 𝑎𝑇𝑣 − 𝑏𝑇ℎ = ∑ ∑ 𝑤𝑖𝑗𝑣𝑖

𝐷𝑘

𝑗=1

𝐷𝑣

𝑖=1

ℎ𝑗 − ∑ 𝑎𝑖

𝐷𝑣

𝑖=1

𝑣𝑖 − ∑ 𝑏𝑗ℎ𝑗

𝐷𝑘

𝑗=1

 

(9) 

where {𝑏𝑖 , 𝑎𝑗 , 𝑤𝑖𝑗 , 𝑤𝑖𝑗  weighs visible cell i to hidden cell j, and 𝑎𝑖 and 𝑏𝑗 are units i and 𝑗 biases. Equation (10) calculates 

the RBM model's joint probability distribution across visible-hidden cells, 

𝑃(𝑣, ℎ; 𝜃) =
1

𝑍(𝜃)
exp(−𝐸(𝑣, ℎ; 𝜃)) 

(10) 

where 𝑍(𝜃)is a normalizing constant value by 𝑖 & 𝑗. It is computed by equation (11), 

𝑍(𝜃) = ∑ ∑ exp (−𝐸(𝑣, ℎ; 𝜃))

ℎ𝑟

 
(11) 

RBM uses the energy equation to estimate input dataset probability.   Cells i and j have conditional probability functions 

given by the joint probability distribution function. It is computed by equations (12-14), 

𝑃(ℎ𝑗 = 1|𝑣) = 𝛿(𝑏𝑗 + ∑ 𝑣𝑖

𝑖

𝑤𝑖𝑗) 
(12) 

𝑃(𝑣𝑖 = 1|ℎ) = 𝛿(𝑎𝑖 + ∑ ℎ𝑗𝑗 𝑤𝑖𝑗) (13) 

𝛿(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
 

(14) 

Considering the probability specified in Equation (13), each 𝑣𝑖 is set to 1 to restore the input state. This process gradually 

updates the hidden units to reflect the features of the reconstructed input. The training process in the RBM is carried out 

through a maximization approach, which estimates as shown below, the training data's probability distribution with respect 

to the model parameters: 

maximize{𝑏𝑗,𝑎𝑖 , 𝑤𝑖𝑗}
1

𝑚
∑ log (𝑃(𝑣𝑙𝑚

𝑙=1 )) (15) 

where m is the training datasets' length.  Consequently, a gradient descent method should to solve the objective function, 

which is a log-likelihood term. However, the existence of 𝑍(𝜃) makes it difficult to apply the gradient computation of the 

log-likelihood component. Therefore, in a gradient computation, sampling techniques like contrasting convergence and 

persistent contrasting convergence may be used in its place. Once the DBN has been trained using greedy layer-wise training 

with the RBMs, the final top layer acts as the classifier. This layer takes the highest-level abstract features learned from the 

RBMs and uses them to perform the actual classification. For multi-class classification, a softmax function is used, while a 

sigmoid function is utilized for binary classification. These functions output the probability distribution across the possible 

classes, allowing the network to assign a class label to each input. After performing classification using the hybrid WRNN 

and DBN approach for PD detection, the next step is to conduct the experimental research section.  

4. RESULTS AND DISCUSSION 

This section presents the results of experiments of the suggested model.    F-Measure, Precision, Recall, and Efficiency 

measure the HYMOD model's ability to diagnose Parkinson's disease. These indicators offer a thorough assessment of the 

model’s effectiveness in accurately classifying speech signals for early disease detection. Table 2 displays the results of the 

performance comparison. 

Performance   Metrics 

Precision 

Precision may be defined as the proportion of probable positive forecasts that are really positive. It addresses the question: 

"Among all cases labeled as positive, how many are truly positive?" Low false positive rates are an indicator of high accuracy, 

which is very essential in medical diagnostics to prevent incorrectly diagnosing healthy individuals with PD. 

Precisions, which are defined as the proportion of results that are relevant, 

Precision=
Truepositive

truepositive+falsepositive
                                     (16) 
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Precision evaluates the reliability of the model's forecasts were favorable 

2) Recall 

Recall that the sensitivity, or true positive rate, is the percentage of actual positive instances that the model properly detected. 

"Out of all the true positive examples, how many were accurately recognized by the model?" is the question it addresses. A 

high recall is essential for ensuring that most positive cases, such as those with Parkinson’s Disease, are identified, thereby 

reducing the number of false negatives. 

Recall=
Truepositive

truepositive+FalseNegative
                                      (17) 

 

In situations involving disease detection, recall is very important, where missing a diagnosis (false negatives) can have severe 

consequences. 

3) Accuracy 

Accuracy represents the overall percentage includes all forecasts both true positives and true negatives were among those 

that were accurate. It offers a broad evaluation of performance of the model in both classes. In imbalanced data sets when 

one class surpasses the other, accuracy may not always be accurate. 

 

Accuracy=
Truepositive+TrueNegative

Total
                         (18) 

 

In cases where the dataset is balanced, accuracy serves as a good indicator of the model’s general performance. 

4) F measure  

Precision and recall are combined into a single score termed the F1-Score, that provides an equitable assessment of a model's 

efficacy. Reducing both false positives and false negatives is crucial when dealing with unbalanced datasets, which is where 

it becomes extremely effective. As the precision and recall harmonic mean, the F1-Score offers a single value that reflects 

the trade-off between these two metrics. Essentially, the F-measure captures a single, comprehensive score that achieves a 

balance between recall and accuracy. 

F-Measure=2 x [(Precision x Recall) / (Precision + Recall)]       (19)  

                                   

A higher F-measure indicates that the model has avoiding false positives while yet capturing true positives. 

TABLE 2. RESULTS OF PERFORMANCE COMPARISON 

 Metrics  Methods  

LSVM ANN WRNN HYMOD 

Accuracy (%) 90 96.7 98 99 

Precision(%) 74 82 90 95 

Recall(%) 88 92.42 93 95 

F-measure (%) 76 87.01 89 93 
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FIGURE 6. ACCURACY RESULTS COMPARISON 

Figure 6 shows a comparison of the accuracy of the suggested HYMOD approach with the results of the existing LSVM, 

ANN, and WRNN methods for Parkinson's disease categorization.  The graph's Y-axis shows the accuracy rates, while the 

X-axis depicts the various approaches.  Present LSVM, ANN, and WRNN models, according to results show accuracies of 

90%, 96.7%, and 99%, respectively, while the suggested HYMOD model achieves an incredible 99% accuracy. 

 

 

FIGURE 7. PRECISION RESULTS COMPARISON 

Figure 7 presents an analysis comparing the accuracy efficiency indicators of the suggested HYMOD approach and the 

existing LSVM, ANN, and WRNN methods. The graph's X-axis relates to the different techniques, while the Y-axis displays 

the accuracy results. The proposed HYMOD model, which incorporates maximum and minimum normalization, 

demonstrates an improved accuracy of over 95%. In contrast, the existing LSVM, ANN, and WRNN models achieve 

accuracies of only 74%, 82%, and 90%, respectively, according to the results. 
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FIGURE 8. RECALL RESULTS COMPARISON 

Figure 8 displays a comparison of recall metrics for the proposed HYMOD techniques against the existing LSVM, ANN, 

and WRNN methods. The X-axis of the figure lists the various techniques, while the Y-axis represents recall performance. 

According to the data, the HYMOD model excels with a recall rate of 95%, whereas the LSVM, ANN, and WRNN methods 

show recall rates of 88%, 92.42%, and 95.6%, respectively.  

 

 

FIGURE 9. F -SCORE RESULTS COMPARISON 

Figure 9 showcases a comparison of F-measure performance metrics between the proposed HYMOD approach and the 

existing LSVM, ANN, and WRNN techniques. The X-axis in the figure represents the different methods, while the Y-axis 

displays the F-measure scores. Based on the data, the HYMOD model achieves the highest F-measure score of 93%. In 

contrast, the current LSVM, ANN, and WRNN models yield F-measure scores of 76%, 87.01%, and 89%, respectively. This 

information suggests a need for feature selection and refinement to improve the F-measure outcomes further. 

CONCLUSION 

The proposed hybrid model (HYMOD), which combines a Weighted Recurrent Neural Network (WRNN) with a DBN, 

offers a significant improvement in early Parkinson's Disease (PD) detection. By using Z-Score normalization instead of 

min-max normalization, the model better handles outliers, leading to more stable performance. The entropy-based butterfly 

optimization algorithm enhances feature selection, focusing on the most relevant features and reducing noise. HYMOD 

achieves superior accuracy, precision, recall, and F1-scores compared to existing methods, thanks to its effective integration 

of advanced pre-processing, feature selection, and classification techniques. This model represents a more reliable approach 

for diagnosing PD early, improving disease management and enabling early intervention. To further increase the precision 
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of the model and generalizability, future research will investigate the use of larger data sets and more complex neural network 

topologies. 
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