

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 143

Journal of Neonatal Surgery
ISSN(Online): 2226-0439
Vol. 14, Issue 18s (2025)
https://www.jneonatalsurg.com

Intrusion Detection System Optimization Using ConvXGBoost for Enhanced Threat Detection

R.Usha Devi1, Dr. R.Kannan2

1Ph.D Research Scholar, Department of Computer Science, SRMV College of Arts & Science, Coimbatore-49.,

usha121196@gmail.com
2Associate Professor, Department of Computer Science, SRMV College of Arts & Science, Coimbatore-49.

Cite this paper as: R.Usha Devi, Dr. R.Kannan, et.al (2025) Intrusion Detection System Optimization Using

ConvXGBoost for Enhanced Threat Detection. Journal of Neonatal Surgery, 14 (18s), 143-154.

ABSTRACT

Enhancing Intrusion Detection Systems (IDS) is critical for strengthening cybersecurity against evolving threats. This

research presents a comparative analysis of five machine learning algorithms such as Random Forest (RF), K-Nearest

Neighbors (KNN), Support Vector Machines (SVM), XGBoost, and Convolutional XGBoost (ConvXGBoost) for IDS

classification. The evaluation is based on key performance metrics, including Accuracy, Precision, Recall, and F1-Score,

across multiple attack categories such as DoS, Probe, R2L, and U2R. The experimental results indicate that ConvXGBoost

outperforms other models, achieving the highest accuracy (0.97), precision (0.97), recall (0.88), and F1-score (0.93).

Furthermore, the integration of Convolutional Neural Networks (CNN) with XGBoost enhances feature extraction,

leading to improved classification performance. The research also presents an analysis of training performance over

epochs, a confusion matrix for error assessment, and insights into model generalization. The findings highlight the

potential of ConvXGBoost in optimizing IDS efficiency, offering a scalable and robust solution for cybersecurity

applications.

Keywords: Intrusion Detection System, Machine Learning, Convolutional XGBoost, Cybersecurity, Classification

1. Introduction:

The rise of sophisticated cyber threats poses significant challenges to network security, necessitating robust IDS capable

of identifying and mitigating attacks in real time. Traditional IDS models often fail to detect evolving attack patterns,

leading to increased vulnerabilities. This research focuses on enhancing IDS performance using advanced ML techniques,

evaluating five key algorithms such as RF, KNN, SVM, XGBoost, and ConvXGBoost. ConvXGBoost, integrating CNN

with XGBoost, offers improved feature extraction and classification, making it a promising approach for network security

[1].

The proposed approach involves preprocessing network traffic data, extracting key features, and applying ML models for

classification. Performance evaluation is conducted using accuracy, precision, recall, and F1-score metrics to compare

algorithm effectiveness [2]. ConvXGBoost is optimized for spatial feature extraction, enhancing its detection capabilities.

• Enhanced IDS Performance: The research integrates deep learning-based feature extraction with ensemble learning

for improved threat detection.

• Comparative Analysis: A detailed evaluation of five ML algorithms provides insights into their strengths and

weaknesses in handling cyber threats.

• Optimized Feature Learning: ConvXGBoost leverages CNNs to capture spatial correlations in network traffic,

outperforming traditional models.

The findings demonstrate that ConvXGBoost achieves superior accuracy and reliability, making it a viable solution for

modern cybersecurity applications.

2. LITERATURE REVIEW:

Chua et al. (2023) [3] evaluated the sustained efficacy of machine learning (ML)-based intrusion detection systems (IDS)

in detecting zero-day cyber-attacks. Their approach used testing datasets generated after training datasets to account for

evolving attack types and network infrastructure. They tested six ML models such as decision tree (DT), random forest

(RF), support vector machine (SVM), naïve Bayes (NB), artificial neural network (ANN), and deep neural network (DNN)

on the CIC-IDS2017, CSE-CIC-IDS2018, and LUFlow datasets. SVM and ANN showed the greatest resistance to

overfitting, while DT and RF exhibited overfitting despite strong training performance. All models performed well when

training and testing datasets were similar.

Aljuaid et al. (2024) [4] proposed a deep learning (DL)-based IDS using convolutional neural networks (CNNs) to address

escalating cybersecurity threats in cloud computing. Their model incorporated dataset pre-processing, feature selection,

and the SMOTE balancing method, achieving over 98.67% accuracy, precision, and recall in detecting and classifying

mailto:usha121196@gmail.com

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 144

R.Usha Devi, Dr. R.Kannan et.al

cyber-attacks. This approach significantly enhances cloud network security. Awajan (2023) [5] developed DL-based IDS

for IoT networks using a four-layer fully connected DNN architecture. The system detected attacks like Black hole, DDoS,

Sinkhole, Work hole, and Opportunistic Service attacks with an average accuracy of 93.74%. It achieved an average

precision of 93.71%, recall of 93.82%, F1-score of 93.47%, and detection rate of 93.21%, demonstrating its effectiveness

in securing IoT networks.

Budania et al. (2023) [6] introduced DL-based IDS combining CNN, bi-directional LSTM, and encoders to monitor

communication networks and detect zero-day attacks. Their model achieved a high detection rate and low false positive

rate, outperforming existing models in identifying both novel and conventional attack types. Kasongo (2023) [7] proposed

an ML-based IDS framework using RNN variants (LSTM, GRU, and Simple RNN) with XGBoost-based feature

selection. The XGBoost-LSTM model achieved 88.13% test accuracy on the NSL-KDD dataset, while XGBoost-Simple

RNN achieved 87.07% on the UNSW-NB15 dataset. The framework improved intrusion detection performance across

diverse network environments.

Rushendra et al. (2021) [8] presented real-time IDS using the Residual Feedforward Neural Network (RFNN) algorithm.

Tested on the NSL-KDD dataset, the system achieved 84.7% accuracy for binary classification and 90.5% for five-class

classification, with detection speeds of 15 μs and 14 μs, respectively. The RFNN demonstrated potential for real-time

intrusion detection. Cao et al. (2022) [9] proposed a hybrid CNN-GRU model for network intrusion detection, addressing

class imbalance with ADASYN and RENN. The model achieved classification accuracies of 86.25%, 99.69%, and 99.65%

on the UNSW-NB15, NSL-KDD, and CIC-IDS2017 datasets, respectively, outperforming comparable models.

Thirimanne et al. (2022) [10] developed a Real-Time Intrusion Detection System (RT-IDS) using DNN trained on 28

features from the NSL-KDD dataset. The system achieved 81% accuracy, 96% precision, 70% recall, and an 81% F1-

score, demonstrating its effectiveness in real-time intrusion detection. Azar et al. (2023) [11] proposed four hybrid IDS

for satellite-terrestrial integrated networks (STINs), combining RF, LSTM, ANN, and GRU with sequential forward

feature selection (SFS). The RF-SFS-GRU model achieved 87% accuracy on the STIN dataset and 79% on UNSW-NB15,

highlighting the importance of feature selection in improving detection accuracy. Asgharzadeh et al. (2024) [12]

introduced enhanced IDS for IoT using CNN and a binary multi-objective enhanced Gorilla Troops Optimizer (BMEGTO)

for feature selection. The CNN-BMEGTO-KNN model achieved 99.99% and 99.86% accuracy on the NSL-KDD and

TON-IoT datasets, respectively, demonstrating its effectiveness in IoT anomaly detection.

This review highlights advancements in IDS using ML and DL techniques, focusing on zero-day attack detection, cloud

and IoT security, and real-time intrusion detection. Key contributions include hybrid models, feature selection methods,

and innovative architectures like CNN-GRU and DNN, which have significantly improved detection accuracy and

efficiency across diverse network environments.

3. MATERIALS AND METHODOLOGY

The proposed IDS framework integrates advanced machine learning for cyber threat detection. It begins with data

collection from cybersecurity datasets, ensuring diverse attack scenarios. Preprocessing handles missing values,

normalizes data, encodes categorical features, and filters noise. Feature selection extracts key attributes to enhance

classification. The model, trained on machine learning algorithms, classifies network traffic as normal or malicious,

identifying attack types like DoS, Probe, R2L, and U2R [13]. An alert mechanism notifies security teams, while automated

mitigation applies security updates and blocking. The framework ensures high accuracy, fewer false positives, and

adaptability to evolving threats.

Fig.1. Machine Learning-Based Intrusion Detection System Architecture

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 145

R.Usha Devi, Dr. R.Kannan et.al

The above figure presents a flowchart of an intrusion detection system, detailing the process from data collection to

decision-making using machine learning models.

3.1. Data Description:

The NSL-KDD dataset is an improved iteration of the KDD CUP 99 dataset, extensively utilized for research in intrusion

detection. It removes redundant entries, guaranteeing impartial assessment and enhanced classifier efficacy [14]. The

dataset comprises 41 features, encompassing nominal variables such as Protocol type, Service, and Flag, as well as

numeric (double) attributes including duration, src_bytes, dst_bytes, and numerous connection statistics. Records are

categorized as either normal (no attack) or as specific attack kinds, including nmap, Neptune, and multichip, with

supplementary levels denoting the severity of the attacks. Its equitable form renders it a dependable standard for assessing

intrusion detection systems.

Table.1. Feature Description

Feature

Type

Features

Nominal

Features

Protocol type, Service, Flag

Binary

Features

Land, Logged_in, Root_shell, Su_attempted, Is_host_login, Is_guest_login

Numeric

Features

Duration, Src bytes, Dst bytes, Wrong fragment, Urgent, Hot, Num failed logins, Num_compromised,

Num root, Num file creations, Num shells, Num access files, Num outbound_cmds, Count, Srv_count,

Serror_rate, Srv_serror_rate, Rerror_rate, Srv_rerror_rate, Same_srv_rate, Diff_srv_rate,

Srv_diff_host_rate, Dst_host_count, Dst_host_srv_count, Dst_host_same_srv_rate,

Dst_host_diff_srv_rate, Dst_host_same_src_port_rate, Dst_host_srv_diff_host_rate,

Dst_host_serror_rate, Dst_host_srv_serror_rate, Dst_host_rerror_rate, Dst_host_srv_rerror_rate

The `attack categories` dictionary maps various attack names to their respective categories, such as 'DoS', 'Probe', 'R2L',

and 'U2R'. Each key represents a specific attack type (e.g., 'normal', 'back', 'land'), while the corresponding value indicates

its classification.

Fig.2. Label Distribution after Converting to Categories

The above bar chart illustrates the distribution of labels across different categories. The 'normal' category is the most

prevalent, with nearly 391,500 labels, while the 'U2R' category is the least frequent, containing only 52 labels. Overall,

the dataset comprises over 400,000 labels distributed across five categories.

3.2. Pre-processing

3.2.1. One-Hot Encoding

It is used to convert categorical features, such as protocol types, service names, and flags, into numerical vectors suitable

for machine learning models. For example, a categorical feature like Protocol with values {TCP, UDP, ICMP} can be

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 146

R.Usha Devi, Dr. R.Kannan et.al

encoded into binary vectors where each unique category is represented as a vector with a 1 at the index corresponding to

the category and 0 elsewhere. Specifically, if 𝑋𝑖 is the categorical feature and 𝐶𝑗 is a specific category, the one-hot encoded

vector is defined as:

𝑶𝒏𝒆 − 𝑯𝒐𝒕 𝑬𝒏𝒄𝒐𝒅𝒊𝒏𝒈(𝑿𝒊 = 𝑪𝒋) = {
𝟏 𝒊𝒇 𝑿𝒊 = 𝑪𝒋

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

This transformation helps machine learning algorithms in IDS by representing categorical attributes in a numerical format,

enabling the detection of intrusions based on patterns in the encoded data [15].

3.2.2. Data normalization

Data normalization is a crucial pre-processing step in an Intrusion Detection System (IDS) to ensure that numerical

features are on a similar scale, which is especially important for machine learning algorithms. In IDS, features such as

packet size, duration, and byte counts can have vastly different ranges, and if one feature has a much larger scale, it could

dominate the model's learning process. A common method of normalization is min-max normalization, which scales the

values of each feature to a range between 0 and 1 using the formula:

𝑿′ =
𝑿 − 𝑿𝒎𝒊𝒏

𝑿𝒎𝒂𝒙 − 𝑿𝒎𝒊𝒏

Where, X is the original value of the feature, 𝑿𝒎𝒊𝒏 is the minimum value, 𝑿𝒎𝒂𝒙 is the maximum value, and 𝑿′ is the

normalized value. The process involves identifying the features that need normalization, calculating their minimum and

maximum values, and applying the normalization formula to scale each data point to the [0, 1] range. This ensures that all

features contribute equally to the model, preventing any single feature from disproportionately influencing the model's

performance and improving the overall efficiency of the IDS [16].

3.3. Feature Analysis

This section visualizes the distribution of selected features across attack categories ('DoS', 'Probe', 'R2L', 'U2R') using box

plots. Each subplot represents a feature, highlighting variations in its values across different attack types. This comparative

analysis helps identify patterns and anomalies, offering insights into feature behaviour in network attacks. The grid layout

ensures clear interpretation of feature-attack relationships.

Fig.3. Feature Distribution across Attack Categories: Box Plot Analysis

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 147

R.Usha Devi, Dr. R.Kannan et.al

The above image contains multiple box plots visualizing feature distributions across attack categories in an IDS dataset

(KDD Cup 99/NSL-KDD). Key features like root_shell, hot, srv_count, and serror_rate show distinct patterns, aiding in

attack detection and feature selection.

3.4. Classification

Classification in IDS uses various ML algorithms to detect threats. RF builds multiple decision trees using bootstrap

sampling and aggregates predictions via majority voting. KNN classifies data based on the majority class of its k-nearest

neighbors using distance metrics. XGBoost sequentially constructs decision trees, minimizing loss with gradient boosting

and regularization. SVM find an optimal hyperplane to separate classes, using kernels for non-linear data. ConvXGBoost

combines CNNs for feature extraction and XGBoost for classification, leveraging both spatial pattern recognition and

robust prediction. These algorithms enhance IDS by addressing overfitting, feature selection, and non-linear separability.

Fig.4. IDS Classification with ML Algorithms

The above figure illustrates machine learning models employed for threat classification, encompassing SVM, KNN, RF,

XGBoost, and ConvXGBoost [17].

3.4.1. Random Forest:

Random Forest is a supervised ML algorithm commonly used for IDS. It constructs multiple decision trees from various

samples of training data and aggregates their predictions through majority voting for classification tasks, enhancing

detection accuracy and robustness against over fitting compared to single decision trees.

i. Input: Dataset D with mmm features and N samples, Number of trees T and features per split M (where 𝑀 <
𝑚)

ii. Construct Random Forest: For t=1 to T

a. Sample Selection: Create bootstrap sample 𝑫𝒕 by randomly selecting N samples from D with replacement.

b. Feature Selection: Randomly select M features from m

c. Decision Tree Construction: Build tree 𝑻𝒕 using 𝑫𝒕 and selected features. At each node, use Gini impurity to

find the best split:

𝑮𝒊𝒏𝒊(𝒕) = 𝟏 − ∑ 𝒑(𝒊|𝒕)𝟐

𝒄

𝒊=𝟏

iii. Prediction: For a new sample x, each tree predicts 𝒚̂𝒕 . Final prediction 𝒚 ̂majority voting:

𝒚̂ = 𝒂𝒓𝒈 𝐦𝐚𝐱
𝒚∈𝒄𝒍𝒂𝒔𝒔𝒆𝒔

∑ 𝑰(𝒚̂𝒕 = 𝒚)

𝑻

𝒕=𝟏

3.4.2. K-Nearest Neighbours (KNN)

KNN in IDS is a classification method that detects potential security threats by categorizing network connections

according to the behaviours of their nearest neighbours in a multi-dimensional feature space. It use distance measures to

evaluate similarity and classifies an unknown data point through majority vote among the k nearest distances [18].

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 148

R.Usha Devi, Dr. R.Kannan et.al

i. Data Representation: Each network connection or packet is depicted as a point within a multi-dimensional

feature space, with each feature reflecting attributes such as protocol type, IP addresses, and packet size

ii. Distance Metric: The Euclidean distance is commonly used to measure proximity:

𝒅(𝒙𝒊, 𝒙𝒋) = √∑(𝒙𝒊𝒑 − 𝒙𝒋𝒑)
𝟐

𝒏

𝒑=𝟏

iii. Choosing k: The parameter k specifies the number of nearest neighbours taken into account. A diminutive k is

susceptible to noise, whilst an extensive k may excessively smooth outcomes.

iv. Classification Process:

• Compute Distances: Calculate the distances between the new data point x and all training points.

• Choose Neighbours: Determine the k closest neighbours.

• Electoral Participation: Assign the class to x according to the predominant class among the neighbours:

𝑪(𝒙) = 𝒎𝒐𝒅𝒆(𝑪(𝒙𝟏), 𝑪(𝒙𝟐), … 𝑪(𝒙𝒌))

3.4.3. XGBoost (Extreme Gradient Boosting)

XGBoost is an ensemble learning method that integrates several weak learners, usually decision trees, to formulate a

robust prediction model. It employs a gradient boosting framework, constructing trees consecutively, with each tree

endeavouring to rectify the flaws of its predecessors. XGBoost is a robust machine learning method frequently employed

for classification problems, including IDS.

i. Objective Function: The goal function in XGBoost is defined as:

𝑳 = ∑ 𝑳

𝒏

𝒊=𝟏

(𝒚𝒊, 𝒚̂𝒊) + ∑ 𝜴(𝒇𝒌)

𝑲

𝒌=𝟏

Let L denote the overall loss function, n represent the number of training examples, 𝒚𝒊 signify the true label for the

i-th instance, 𝒚̂𝒊 indicate the predicted label for the i-th instance, L be a loss function (e.g., logistic loss for binary

classification), K denote the number of trees, 𝒇𝒌 represent the k-th tree, and Ω(𝒇𝒌) serve as a regularization term to

regulate the model's complexity.

ii. Tree Construction: In XGBoost, trees are incrementally added by minimizing the loss function according

to the following formula:

𝒚̂𝒊
(𝒕)

= 𝒚̂𝒊
(𝒕−𝟏)

+ 𝒇𝒕(𝒙𝒊)

Where, 𝒚̂𝒊
(𝒕)

 is the prediction after t trees, 𝒇𝒕(𝒙𝒊) is the output of the t-th tree for input 𝒙𝒊 .

iii. Gradient and Hessian: The updates are derived from the gradient and the second derivative (Hessian) of

the loss function:

𝒈𝒊 =
𝝏𝑳(𝒚𝒊,𝒚̂𝒊)

𝝏𝒚̂𝒊

𝒉𝒊 =
𝝏𝟐𝑳(𝒚𝒊, 𝒚̂𝒊)

𝝏𝒚̂𝒊
𝟐

iv. Final Prediction: The conclusive prediction is derived by aggregating the predictions from all the trees:

𝒚̂ = ∑ 𝒇𝒕(𝒙)

𝑻

𝒕=𝟏

Where, T is the total number of trees [18].

3.4.4. Support Vector Machines (SVM)

SVM are robust supervised learning algorithms employed for classification tasks, including IDS. SVMs demonstrate

notable efficacy in high-dimensional domains, rendering them appropriate for network traffic monitoring. SVMs operate

by identifying a hyper plane that optimally distinguishes data points belonging to disparate groups. The objective is to

optimize the separation between the nearest points (support vectors) of each class [18].

i. Hyper plane: In an n-dimensional space, a hyper plane can be expressed as:

𝒘. 𝒙 + 𝒃=0

In this context, w represents the weight vector (perpendicular to the hyper plane), x is the input feature vector,

and b signifies the bias term.

ii. Maximizing the Margin: The objective of SVM is to optimize the margin M, which is defined as the

distance from the hyper plane to the closest data point of either class. The margin is defined as:

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 149

R.Usha Devi, Dr. R.Kannan et.al

𝑴 =
𝟐

‖𝒘‖

Consequently, maximizing the margin is synonymous with minimizing ‖𝒘‖𝟐

iii. Objective Function: The optimization problem can be articulated as: 𝐦𝐢𝐧
𝒘,𝒃

𝟏

𝟐
‖𝒘‖𝟐

Contingent upon the limitations: 𝒚𝒊(𝒘. 𝒙𝒊 + 𝒃) ≥ 𝟏 ∀𝒊

Here, 𝑦𝑖 represents the true label of the i-th instance, assuming values of +1 or -1.

iv. Kernel Trick: To address non-linearly separable data, SVM employs the kernel trick to transform the input

space into a higher-dimensional space. The decision function is expressed as:

𝒇(𝒙) = ∑ 𝜶𝒊𝒚𝒊𝑲(𝒙𝒊, 𝒙) + 𝒃

𝑵

𝒊=𝟏

Where, 𝜶𝒊 are the Lagrange multipliers, is the kernel function (e.g., linear, polynomial, radial basis function).

v. Decision Rule: The ultimate determination for a new data point x is expressed as:

𝑷𝒓𝒆𝒅𝒊𝒄𝒕(𝒙) = {
+𝟏 𝒊𝒇 𝒇(𝒙) > 𝟎

−𝟏 𝒊𝒇 𝒇(𝒙) ≤ 𝟎

3.4.5. ConvXGBoost (proposed)

The convXGBoost technique integrates CNNs with XGBoost for IDS. The objective is to employ CNNs to extract spatial

characteristics from network traffic data, thereafter transmitting these features to the XGBoost classifier for final

prediction.

i. CNN Feature Extraction: CNN Extraction of Features: The input of the CNN is generally network traffic data,

frequently represented as multi-dimensional feature matrices. The convolutional layers utilize filters to identify

spatial patterns within the data. The convolution process in each layer is expressed as:

𝒁(𝒍) = 𝒇(𝑾(𝒍) ∗ 𝑿(𝒍−𝟏) + 𝒃(𝒍))

𝒁(𝒍) represents the output of the l-th layer, 𝑾(𝒍) denotes the filter/kernel utilized at layer l, * signifies the

convolution operation, 𝑿(𝒍−𝟏) is the input to the current layer from the preceding layer, 𝒃(𝒍) is the bias term, and,

𝒇(.) is the activation function (e.g., ReLU).

ii. Pooling and Flattening: Following the convolutional layers, a pooling layer decreases the dimensionality, and

the feature map is converted into a vector. The vector is subsequently transmitted to the XGBoost model.

iii. XGBoost Classifier: XGBoost operates by constructing an ensemble of decision trees through a gradient-

boosting architecture. The optimization method seeks to minimize a loss function. The objective function for

XGBoost is:

𝑳(𝜽) = ∑ 𝒍(𝒚̂𝒊, 𝒚𝒊) + ∑ 𝜴(𝒇𝒌)

𝒌𝒊

Where, 𝒍(𝒚̂𝒊, 𝒚𝒊) represents the loss function (e.g., log loss for classification), and 𝜴(𝒇𝒌) denotes the

regularization term for each tree. 𝒇𝒌, 𝒚̂𝒊 represents the projected output, 𝒚𝒊 while denotes the true label.

XGBoost employs a second-order Taylor expansion to estimate the loss and enhance tree construction.

𝑳(𝒕) ≈ ∑ [𝒈𝒊𝒇𝒕(𝒙𝒊) +
𝟏

𝟐
𝒉𝒊𝒇𝒕

𝟐(𝒙𝒊) + 𝜴(𝒇𝒕)]

𝒊

In this context,𝒈𝒊 and 𝒉𝒊 represent the first and second derivatives of the loss function, respectively, whereas

𝒇𝒕 denotes the prediction from the current tree.

iv. Conclusive Result: The ultimate result of convXGBoost is the classification label for the network traffic sample,

denoting whether it is normal or indicative of an intrusion.

This hybrid model utilizes CNN's capacity to identify intricate data patterns and XGBoost's proficiency in robust

classification, rendering it effective for intrusion detection applications.

Pseudo code for ConvXGboost:

Step 1: Prepare the data.

Input: Network traffic data (X), Labels (Y)

Standardize X and partition into training and testing datasets: (𝒙𝒕𝒓𝒂𝒊𝒏, 𝒙𝒕𝒆𝒔𝒕, 𝒚𝒕𝒓𝒂𝒊𝒏, 𝒚𝒕𝒆𝒔𝒕)

Step 2: Convolutional Neural Network for feature extraction

Function CNN Feature Extractor(X):

 Implement convolutional layers followed by ReLU activation and pooling layers.

 Render the output in a flat format

 Return flattened characteristics (F)

Step 3: Train XGBoost classifier

For every batch in 𝑿𝒕𝒓𝒂𝒊𝒏:
 Derive characteristics 𝑭𝒕𝒓𝒂𝒊𝒏𝒃𝒂𝒕𝒄𝒉= CNN Feature Extractor (𝑿𝒕𝒓𝒂𝒊𝒏𝒃𝒂𝒕𝒄𝒉)

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 150

R.Usha Devi, Dr. R.Kannan et.al

Train XGBoost (XGB) on 𝑭𝒕𝒓𝒂𝒊𝒏𝒃𝒂𝒕𝒄𝒉, 𝒚𝒕𝒓𝒂𝒊𝒏

Step 4: Assessment and Evaluation

For each batch in 𝒙𝒕𝒆𝒔𝒕:

 Derive characteristics 𝑭𝒕𝒆𝒔𝒕𝒃𝒂𝒕𝒄𝒉 = CNN Feature Extractor(𝑿𝒕𝒆𝒔𝒕𝒃𝒂𝒕𝒄𝒉)

 Predict 𝒀𝒑𝒓𝒆𝒅= 𝑿𝑮𝑩. 𝑷𝒓𝒆𝒅𝒊𝒄𝒕 = 𝑭𝒕𝒆𝒔𝒕𝒃𝒂𝒕𝒄𝒉

Assess the model utilizing 𝒀𝒑𝒓𝒆𝒅 and 𝒚𝒕𝒆𝒔𝒕

Return: Assessment metrics and trained model

4. RESULT AND DISCUSSION

The results and discussion section presents a comparative evaluation of various machine learning algorithms applied to

intrusion detection systems. It analyses the performance of RF, KNN, SVM, XGBoost, and ConvXGBoost using key

metrics such as accuracy, precision, recall, and F1-score. Through detailed tables and visualizations, this section highlights

the strengths and limitations of each algorithm, demonstrating how ConvXGBoost achieves superior detection

capabilities. Additionally, training performance, confusion matrix insights, and model effectiveness are discussed to

emphasize the impact of advanced ML techniques on cybersecurity.

4.1. Performance Metrics

Performance metrics such as Accuracy, Precision, Recall, and F1-Score [18] assess the effectiveness of IDS by measuring

its ability to correctly classify cyber-attacks while balancing detection and false alarms.

Accuracy: Accuracy in Cyber Attacks pertains to the capability of IDS to accurately categorize network data as either

malicious (attack) or benign (normal). Accuracy is determined by the ratio of correctly detected instances (true positives

and true negatives) to the total occurrences, expressed by the formula:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵

Where, TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively.

Although accuracy serves as a broad indicator of system efficiency, it may be deceptive in imbalanced datasets with

limited attack samples, rendering precision, recall, and F1-score more pertinent in certain contexts.

Precision: Precision in Cyber Attacks quantifies the ratio of accurately recognized attacks (True Positives) to the total

instances categorized as attacks (True Positives + False Positives). It signifies the reliability of the system in categorizing

traffic as an attack. The equation for precision is:

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷

Where, TP (True Positives) refers to accurately identified attacks, while FP (False Positives) denotes legitimate traffic

erroneously classed as assaults. High precision signifies a reduction in false alarms, which is essential for minimizing

unnecessary alerts in IDS.

Recall: Recall in Cyber Attacks assesses the capability of an Intrusion Detection System (IDS) to accurately identify

genuine attacks. The ratio of accurately diagnosed attacks (True Positives) to the total number of real attacks (True

Positives + False Negatives). The equation for recall is:

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

In this context, TP (True Positives) refers to accurately identified attacks, while FN (False Negatives) denotes attacks that

were not detected. High recall guarantees the detection of the majority of attacks, rendering it essential for reducing

overlooked dangers in cyber security.

F1-Score: The F1-Score in cyber-attacks is the harmonic mean of precision and recall, offering a balanced assessment of

an Intrusion Detection System's performance, particularly in instances of class imbalance. The F1-Score is computed using

the formula:

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 =
𝟐. (𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏. 𝑹𝒆𝒄𝒂𝒍𝒍)

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍

Precision assesses the accuracy of attack predictions, whereas recall evaluates the system's capacity to identify all genuine

attacks. An elevated F1-score signifies an effective equilibrium between detecting the majority of attacks (recall) and

reducing false positives (precision).

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 151

R.Usha Devi, Dr. R.Kannan et.al

Experimental Analysis

The experimental analysis evaluates the performance of various machine learning algorithms for intrusion detection,

comparing their accuracy, precision, recall, and F1-score to determine the most effective model.

Table 1: Comparison of Performance Metrics of ML Algorithms

Algorithm Accuracy Precision Recall F1-Score

RF 0.90 0.92 0.84 0.88

KNN 0.93 0.93 0.85 0.90

SVM 0.94 0.95 0.86 0.91

XGBoost 0.96 0.96 0.88 0.92

Conv XGBoost 0.97 0.97 0.88 0.93

Fig.5. Comparison of ML Algorithms

The above table and figure contrasts the efficacy of five machine learning algorithms—RF, KNN, SVM, XGBoost, and

Conv XGBoost—according to Accuracy, Precision, Recall, and F1-Score. Conv XGBoost exhibits the greatest values

across all measures (accuracy 0.97, precision 0.97, recall 0.88, F1-score 0.93), succeeded by XGBoost (accuracy 0.96,

precision 0.96, recall 0.88, F1-score 0.92). SVM and KNN demonstrate robust performance, but marginally inferior to

XGBoost and Conv XGBoost, whilst RF exhibits the least performance overall.

Table 2: Comparison of ML Algorithm Performance Based on Accuracy and Precision

 Accuracy Precision

Class RF KNN SVM XGBoost Conv

XGBoost

 RF KNN SVM XGBoost Conv

XGBoost

DoS 0.86 0.93 0.93 0.97 0.98 0.93 0.97 0.98 0.98 0.99

Probe 0.89 0.90 0.92 0.94 0.96 0.93 0.95 0.96 0.96 0.97

R2L 0.90 0.91 0.91 0.92 0.93 0.92 0.92 0.94 0.96 0.98

U2R 0.94 0.96 0.97 0.99 1.00 0.83 0.85 0.89 0.89 0.90

Normal 0.93 0.97 0.98 1.00 1.00 0.97 0.97 0.98 0.99 1.00

The above table and figure contrasts the Accuracy and Precision of five algorithms (RF, KNN, SVM, XGBoost, and

ConvXGBoost) across five categories. ConvXGBoost attains the best accuracy in most categories: DoS (0.98), Probe

(0.96), R2L (0.93), U2R (1.00), and Normal (1.00), as well as the most precision in DoS (0.99), Probe (0.97), R2L (0.98),

U2R (0.90), and Normal (1.00). XGBoost exhibits accuracy values of: DoS (0.97), Probe (0.94), R2L (0.92), U2R (0.99),

and Normal (1.00), and precision values of: DoS (0.98), Probe (0.96), R2L (0.96), U2R (0.89), and Normal (0.99). SVM

and KNN exhibit commendable performance, albeit marginally inferior, particularly in U2R. Random Forest exhibits the

lowest overall performance, especially in U2R, with an accuracy of 0.94 and a precision of 0.83.

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 152

R.Usha Devi, Dr. R.Kannan et.al

Fig.6. Comparative Analysis of ML algorithms based on Accuracy and Precision.

Table 3: Comparison of ML Algorithm Performance Based on Recall and F1-Score

 Recall F1-Score

Class RF KNN SVM XGBoost Conv XGBoost RF KNN SVM XGBoost Conv XGBoost

DoS 0.94 0.96 0.97 0.99 0.99 0.95 0.97 0.98 0.99 1.00

Probe 0.95 0.96 0.96 0.97 0.98 0.96 0.97 0.98 0.99 1.00

R2L 0.93 0.94 0.95 0.96 0.97 0.96 0.97 0.98 0.98 0.99

U2R 0.41 0.43 0.46 0.47 0.47 0.58 0.60 0.62 0.64 0.65

Normal 0.95 0.97 0.98 0.99 1.00 0.97 0.98 0.98 0.99 1.00

Fig.7. Comparative Analysis of ML Algorithms based on Recall and F1-Score.

The above table and figure juxtaposes the Recall and F1-Score of five algorithms (RF, KNN, SVM, XGBoost, and

ConvXGBoost) across five categories. ConvXGBoost attains the highest recall and F1-score across most categories,

exhibiting recall values of DoS (0.99), Probe (0.98), R2L (0.97), U2R (0.47), and Normal (1.00), alongside F1-scores of

DoS (1.00), Probe (1.00), R2L (0.99), U2R (0.65), and Normal (1.00). XGBoost exhibits strong performance with recall

values of DoS (0.99), Probe (0.97), R2L (0.96), U2R (0.47), and Normal (0.99), alongside F1-scores of DoS (0.99), Probe

(0.99), R2L (0.98), U2R (0.64), and Normal (0.99). SVM and KNN provide robust performance; however they lag

marginally behind XGBoost and Convolutional XGBoost. RF exhibits the lowest recall and F1-scores, particularly in U2R

(recall 0.41, F1-score 0.58).

Fig.8. Model Accuracy over Epochs

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 153

R.Usha Devi, Dr. R.Kannan et.al

The above training log illustrates the performance of a deep learning model throughout 10 epochs. The model commences

with an accuracy of 99.23% and progressively enhances, attaining 99.75% by the concluding epoch. The validation

accuracy rises from 99.59% to 99.76%, accompanied by a reduction in validation loss, signifying effective generalization.

The test accuracy reaches 99.77%, validating the model's exceptional performance.

Fig.9. Confusion Matrix for Proposed Model

The above Confusion Matrix provides a visual assessment of a categorization model's efficacy. The confusion matrix

presented above evaluates the performance of a classification model. The matrix consists of five classes (0 to 4) for both

true and predicted labels. The highest number of correctly classified instances is in class 0, with 78,322 true positives,

followed by class 4 with 19,301 true positives. Class 1 has 797 correctly classified instances, while class 2 and class 3

have 154 and 6 correctly classified instances, respectively. Misclassifications are observed across all classes, with notable

cases such as 31 false positives in class 0, 30 in class 1, and 77 in class 2. Class 4 shows minor misclassification with 38

instances predicted as class 0, 4 as class 1, and 21 as class 2. Overall, the model demonstrates high accuracy for classes 0

and 4, while performance declines for class 3 due to fewer correct predictions.

5. CONCLUSION

The proposed research enhances intrusion detection by evaluating five machine learning algorithms such as RF, KNN,

SVM, XGBoost, and ConvXGBoost across key performance metrics. The findings highlight ConvXGBoost as the most

effective model, achieving the highest accuracy (0.97), precision (0.97), recall (0.88), and F1-score (0.93), demonstrating

its superior ability to detect cyber threats. By integrating CNNs with XGBoost, the approach improves feature extraction

and classification performance, reducing false positives and increasing detection accuracy. The experimental results,

confusion matrix, and training analysis validate the model's efficiency in real-world cybersecurity applications. This

research contributes to developing robust, scalable, and adaptive IDS solutions capable of mitigating evolving cyber

threats effectively.

REFERENCES

1. S. M, A. G. S, H. B, A. S and M. G, "Intrusion Detection System Using Web Application," 2024 Ninth International

Conference on Science Technology Engineering and Mathematics (IEEE), Chennai, India, 2024, pp. 1-6.

2. M. K. Nallakaruppan, S. R. K. Somayaji, S. Fuladi, F. Benedetto, S. K. Ulaganathan and G. Yenduri, "Enhancing

Security of Host-Based Intrusion Detection Systems for the Internet of Things," in IEEE Access, vol. 12, pp. 31788-

31797, 2024, doi: 10.1109/ACCESS.2024.3355794.

3. Aljuaid, W.H.; Alshamrani, S.S. A Deep Learning Approach for Intrusion Detection Systems in Cloud Computing

Environments. Appl. Sci. 2024, 14, 5381.

4. Chua, T.-H.; Salam, I. Evaluation of Machine Learning Algorithms in Network-Based Intrusion Detection Using

Progressive Dataset. Symmetry 2023, 15, 1251.

5. Awajan, A. A Novel Deep Learning-Based Intrusion Detection System for IoT Networks. Computers 2023, 12, 34.

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s
Pg 154

R.Usha Devi, Dr. R.Kannan et.al

6. V. Budania, M. Ahmed and A. Verma, "Deep Learning with Encoders for Intrusion Detection Systems (IDS)," 2023

10th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India,

2023, pp. 1604-1609.

7. Sydney Mambwe Kasongo, A deep learning technique for intrusion detection system using a Recurrent Neural

Networks based framework, Computer Communications, Volume 199, 2023, Pages 113-125, ISSN 0140-3664.

8. Rushendra, K. Ramli, N. Hayati, E. Ihsanto, T. S. Gunawan and A. H. Halbouni, "Development of Intrusion Detection

System using Residual Feedforward Neural Network Algorithm," 2021 4th International Seminar on Research of

Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 2021, pp. 539-543.

9. Cao, B.; Li, C.; Song, Y.; Qin, Y.; Chen, C. Network Intrusion Detection Model Based on CNN and GRU. Appl. Sci.

2022, 12, 4184.

10. Thirimanne, S.P., Jayawardana, L., Yasakethu, L. et al. Deep Neural Network Based Real-Time Intrusion Detection

System. SN COMPUT. SCI. 3, 145 (2022).

11. Azar, A.T., Shehab, E., Mattar, A.M. et al. Deep Learning Based Hybrid Intrusion Detection Systems to Protect

Satellite Networks. J Netw Syst Manage 31, 82 (2023).

12. Asgharzadeh, H., Ghaffari, A., Masdari, M. et al. An Intrusion Detection System on the Internet of Things Using

Deep Learning and Multi-objective Enhanced Gorilla Troops Optimizer. J Bionic Eng 21, 2658–2684 (2024).

13. B. K. A and M. Vijayakumar, "Enhancing Intrusion Detection System (IDS) Through Deep Packet Inspection (DPI)

with Machine Learning approaches," 2024 International Conference on Advances in Data Engineering and Intelligent

Computing Systems (ADICS), Chennai, India, 2024, pp. 1-7.

14. Du, C.; Guo, Y.; Zhang, Y. A Deep Learning-Based Intrusion Detection Model Integrating Convolutional Neural

Network and Vision Transformer for Network Traffic Attack in the Internet of Things. Electronics 2024, 13, 2685.

15. Mubarak Albarka Umar, Zhanfang Chen, Khaled Shuaib, Yan Liu, Effects of feature selection and normalization on

network intrusion detection, Data Science and Management, Volume 8, Issue 1, 2025, Pages 23-39, ISSN 2666-7649.

16. B. Al-Fuhaidi, Z. Farae, F. Al-Fahaidy, G. Nagi, A. Ghallab, and A. Alameri, "Anomaly-Based Intrusion Detection

System in Wireless Sensor Networks Using Machine Learning Algorithms," Appl. Comput. Intell. Soft Comput., vol.

2024, Art. no. 2625922, Sep. 2024.

17. Javed, A.; Ehtsham, A.; Jawad, M.; Awais, M.N.; Qureshi, A.-u.-H.; Larijani, H. Implementation of Lightweight

Machine Learning-Based Intrusion Detection System on IoT Devices of Smart Homes. Future Internet 2024, 16, 200.

https://doi.org/10.3390/fi16060200.

18. M. Benmalek and K.-D. Haouam, "Advancing Network Intrusion Detection Systems with Machine Learning

Techniques," Adv. Artif. Intell. Mach. Learn., vol. 4, no. 3, pp. 2575–2592, Sep. 2024.

