
 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s 
Pg 255 

Journal of Neonatal Surgery  
ISSN(Online): 2226-0439  
Vol. 14, Issue 18s (2025)  
https://www.jneonatalsurg.com  

 

Enhancing Network Traffic Classification Using Multi-Tier Reinforced Salp Optimization Algorithm 

and Deep Learning Models 
 

S.Padmavathy1, Dr. R.Kannan2 
 

1Ph.D Research Scholar, Department of Computer Science, SRMV College of Arts & Science, Coimbatore-49.  

amulusugavanam@gmail.com 
2Associate Professor, Department of Computer Science,  SRMV College of Arts & Science.Coimbatore-49. 

 

Cite this paper as: S.Padmavathy, Dr. R.Kannanet.al (2025) Enhancing Network Traffic Classification Using Multi-Tier 

Reinforced Salp Optimization Algorithm and Deep Learning Models. Journal of Neonatal Surgery, 14 (18s), 255-267.  

 

ABSTRACT 

Accurate and efficient detection of cyber threats is essential for effective network traffic analysis. This research introduces 

a Multi-Tier Reinforced Salp Optimization Algorithm (MTR-SOA) for feature selection, integrated with deep learning 

(DL) models to enhance network traffic classification. The proposed method is evaluated against traditional optimization 

techniques, including Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA), 

across various DL models such as FNN, CNN, DELM, and LSTM. Experimental results reveal that MTR-SOA 

consistently delivers superior performance, with the LSTM model achieving the highest accuracy of 98.2% and 

demonstrating strong classification across all traffic categories. Furthermore, MTR-SOA reduces computational time by 

up to 30%, making it suitable for real-time network traffic analysis. Class-wise evaluation on the HIKARI-2021 dataset 

highlights its effectiveness in identifying complex cyber-attacks like XMRIGCC CryptoMiner and Probing. These 

findings confirm that integrating MTR-SOA with DL models enhances network traffic analysis by improving both 

accuracy and computational efficiency, offering a robust solution for detecting and classifying diverse traffic patterns. 

 

Keywords: Multi-Tier Reinforced Salp Optimization Algorithm, Deep Learning Models, Network Traffic Classification, 

Feature Selection, Cyber Threat Detection. 

 

1. INTRODUCTION 

With the rapid expansion of digital networks and increasing volumes of data exchange, effective network traffic analysis 

has become essential for ensuring cyber security and maintaining stable network performance. Analysing network traffic 

enables the identification of abnormal patterns, detection of potential cyber threats, and optimization of network resources. 

However, the growing complexity and diversity of network traffic present significant challenges in accurately classifying 

and detecting malicious activities, especially when dealing with high-dimensional data and overlapping traffic patterns 

[1]. 

Recent advancements in DL have shown great potential for enhancing network traffic analysis due to their ability to learn 

complex patterns and generalize across diverse datasets. However, the effectiveness of DL models heavily depends on the 

quality of the selected features. Redundant or irrelevant features can increase computational costs and degrade model 

performance. To address this issue, feature selection techniques are employed to identify the most relevant features, 

thereby improving classification accuracy and reducing computational complexity [2]. 

This research introduces a novel MTR-SOA for feature selection, designed to enhance the efficiency and accuracy of deep 

learning models for network traffic analysis. The proposed MTR-SOA approach is compared against traditional 

optimization algorithms, including PSO, GWO, and GA, across various DL models such as FNN, CNN, DELM, and 

LSTM. 

Experimental results demonstrate that the MTR-SOA significantly improves classification performance, with the LSTM 

model achieving the highest accuracy of 98.2% and effectively identifying both benign and malicious traffic patterns. 

Additionally, the proposed method reduces computational time by up to 30%, making it suitable for real-time applications. 

The class-wise performance evaluation using the HIKARI-2021 dataset highlights the model's capability to detect complex 

cyber threats, including XMRIGCC CryptoMiner and Probing attacks. 

This research underscores the importance of integrating advanced feature selection techniques with deep learning models 

to enhance network traffic analysis. By improving detection accuracy and computational efficiency, the proposed MTR-

SOA-based approach offers a robust solution for effectively managing and analyzing network traffic in evolving 

cybersecurity environments. 
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2. LITERATURE SURVEY 

Alabduallah et al. (2024) introduced a Hybrid Salp Swarm Algorithm with Deep Learning (HSSADL-CAC) for the 

classification of cyber-attacks, tackling the issue of class-imbalanced data. The approach incorporates data normalization, 

ADASYN for addressing class imbalance, and a feature selection mechanism based on HSSA. The method utilizes a Deep 

Extreme Learning Machine (DELM) for cyber-attack detection, incorporating hyper parameter optimization through the 

Beluga Whale Optimization (BWO) model. Performance investigation on benchmark datasets revealed the HSSADL-

CAC's enhanced accuracy and resilience in identifying minority class cyber-attacks, underscoring its applicability for real-

time cyber security solutions [3]. 

Jullian et al. (2023) introduced a distributed DL system for identifying cyber-attacks in Internet of Things networks (IoT) 

tackling vulnerabilities associated with the extensive deployment of smart devices. The framework assesses two deep 

learning models: a Feed Forward Neural Network (FNN) and a Long Short-Term Memory (LSTM) network, utilizing the 

NSL-KDD and BoT-IoT datasets. The models proficiently categorize various assault kinds, attaining a detection accuracy 

of up to 99.95% across diverse configurations. This study emphasizes the effectiveness of a distributed method in 

improving IoT security by addressing various risks within a cohesive protection framework [4]. 

C. C. et al. (2022) introduced a robust DL system, ScaleMalNet, aimed at improving cyber security via multifarious 

detection and classification methodologies. The architecture includes domain generation algorithm (DGA) detection, a 

hybrid IDS for monitoring Ethernet LAN operations, and a consolidated model for detecting spam and phishing across 

email, social media, and URLs. It also presents DL-based techniques for classifying secure shell (SSH) traffic and 

distinguishing between malicious and benign network traffic. ScaleMalNet utilizes a bifurcated malware analysis 

methodology, using static and dynamic analysis to categorize malware and classify it into families. A hybrid deep learning 

framework for Android ransom ware detection has been developed, surpassing conventional machine learning methods. 

The research investigates DNS-based botnet identification and network intrusion detection specifically designed for IoT 

and smart city contexts, showcasing the adaptability and scalability of deep learning in various cyber security applications 

[5]. 

Aljebreen et al. (2023) presented the Modified Equilibrium Optimization Algorithm with DL-based DDoS Attack 

Classification (MEOADL-ADC) to improve security in 5G networks. The MEOADL-ADC method utilizes a three-phase 

approach comprising feature selection, classification, and hyper parameter optimization. The feature selection phase 

employs the MEOA methodology, whilst the LSTM model is applied for DDoS attack classification. The hyper parameter 

optimization of the LSTM model is conducted using the Tunicate Swarm Algorithm (TSA). Experimental results on a 

benchmark dataset indicated that the MEOADL-ADC technology surpassed existing methods, attaining an accuracy of 

97.60%, hence demonstrating its efficacy in DDoS attack detection within 5G networks [6]. 

Abu Al-Haija and Zein-Sabatto (2020) introduced an innovative deep-learning detection and classification system for 

cyber-attacks in IoT communication networks, termed IoT-IDCS-CNN, which utilizes CNN for enhanced cyber security 

performance. The system employs CUDA-based Nvidia GPUs and Intel I9-core CPUs for effective parallel computing. 

The system has three subsystems: feature engineering, feature learning, and traffic categorization, all of which have been 

created, validated, and integrated. The system was assessed utilizing the NSL-KDD dataset and exhibited outstanding 

performance, attaining over 99.3% accuracy in binary-class classification and 98.2% in multi-class classification. The 

outcomes exceeded those of most contemporary ML-based intrusion detection systems (IDCS), establishing IoT-IDCS-

CNN as a highly efficient approach for safeguarding IoT networks [7]. 

Fernandes and Lopes (2022) examined the application of the HIKARI-2021 dataset, sourced from authentic laboratory 

network traffic data, to enhance network performance. Feature selection approaches were employed to discern pertinent 

information, diminishing the dataset from 83 to 22 features while preserving a high classification accuracy of 99%. The 

research indicated that the dataset is appropriate for ML algorithms, with over 80% accuracy with balanced samples across 

multiple machine learning techniques. The study underscores the HIKARI-2021 dataset's capacity to improve IDS 

efficacy, providing a pragmatic approach for expedited and more effective cyber-attack identification [8]. 

Judith et al. (2023) investigated the application of deep learning for identifying cyber security vulnerabilities in the Internet 

of Medical Things (IoMT), with a special emphasis on man-in-the-middle attacks in medical device communication 

networks. The research applied principal component analysis (PCA) for feature reduction and implemented a multi-layer 

perceptron (MLP) for attack categorization, employing real-time data from the St. Louis Enhanced Healthcare Monitoring 

System (WUSTL-EHMS). The results indicated that the MLP classifier surpassed previous models, attaining an accuracy 

of 96.39% while concurrently decreasing time complexity, underscoring its efficacy in tackling the dynamic 

characteristics of cyber threats in IoMT systems [9]. 

Taşcı (2024) proposed an optimized one-dimensional convolutional neural network (1D CNN) model to improve IoT 

security through the effective classification of IoT-related assaults and malware. The model comprises input, 

convolutional, self-attention, and output layers, utilizing GELU activation, dropout, and normalization methods to mitigate 

over fitting and enhance performance. The model, assessed using the CIC IoT 2023, CIC-MalMem-2022, and CIC-

IDS2017 datasets, attained exceptional results, with accuracy rates above 99%, and exhibited elevated precision, recall, 

and F1-scores. The research highlights the efficacy of deep learning in safeguarding IoT ecosystems, providing a low-

complexity solution appropriate for real-time and resource-limited applications. Future endeavours will concentrate on 

augmenting dataset evaluation and integrating adaptive learning to enhance resilience [10]. 
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Singh et al. (2023) presented RANSOMNET+, a hybrid model that integrates CNNs with pre-trained transformers to 

address the classification of ransom ware attacks on cloud-encrypted data. The model surpassed conventional architectures 

like ResNet 50 and VGG 16, attaining remarkable metrics, including a precision of 99.5%, recall of 98.5%, and an F1 

score of 97.64%. RANSOMNET+ exhibited elevated training and testing accuracy, accompanied by minimal loss values 

during the procedure. The model's interpretability was improved by feature distribution analysis, outlier detection, and 

feature importance evaluation, rendering it a potent instrument for safeguarding cloud data. The study introduces 

RANSOMNET+ as an effective solution for ransom ware detection, equipping cyber security experts with a formidable 

defence against assaults on cloud-based systems [11]. 

Fernandes et al. (2023) examined the influence of identifiable characteristics on machine learning classification techniques 

utilizing the HIKARI-2021 dataset. Their research underscores the significance of these attributes for model efficacy, 

demonstrating a notable 20% decline in accuracy upon the removal of identifying traits. The study highlights the essential 

function of these properties in improving the efficacy of network IDS. This analysis enhances the continuous advancement 

of datasets and algorithms in the sector, emphasizing the importance of feature relevance in the creation of effective cyber 

security solutions [12]. 

Noori et al. (2023) tackle the issue of feature drift in IDS by introducing an enhanced Genetic Programming (GP)-based 

ensemble classifier, termed the Dynamic Feature Aware GP Ensemble (DFA-GPE). The research presents an improved 

iteration of Variable Length Multi-Objective Particle Swarm Optimization (VLMO-PSO) for the effective management 

of feature drift. DFA-GPE optimizes feature selection through tactics such as intelligent population initialization and 

innovative exemplar selection, achieving a balance between accuracy and memory efficiency. DFA-GPE exhibited 

remarkable performance on the HIKARI 2021 and TON-IoT 2020 datasets, achieving accuracies of 99.09% and 92.64%, 

respectively, surpassing current methodologies and offering a viable solution for dynamic feature selection in online 

intrusion detection systems [13]. 

 

Table.1. Literature Review 

Author(s) Proposed Method Datasets Key Results Research Gap 

Alabduallah et 

al. (2024) 

HSSADL-CAC (Hybrid 

Salp Swarm Algorithm 

with Deep Learning) 

Benchmark 

datasets 

Enhanced accuracy and 

resilience in minority 

class detection 

Limited validation 

for real-time 

deployment 

scenarios 

Jullian et al. 

(2023) 

Distributed DL System 

for IoT 

NSL-KDD, 

BoT-IoT 

Up to 99.95% 

detection accuracy 

Scalability for 

large-scale IoT 

networks remains 

unexplored 

C. C. et al. 

(2022) 

ScaleMalNet Various IoT and 

smart city 

datasets 

Effective malware 

classification and 

adaptable 

cybersecurity solution 

Lack of focus on 

real-time detection 

capabilities 

Aljebreen et al. 

(2023) 

MEOADL-ADC Benchmark 

dataset 

97.60% accuracy for 

DDoS detection in 5G 

networks 

Requires testing on 

real-time 5G 

network traffic 

Abu Al-Haija 

& Zein-Sabatto 

(2020) 

IoT-IDCS-CNN NSL-KDD 99.3% (binary) and 

98.2% (multi-class) 

accuracy 

Limited evaluation 

on emerging IoT 

threats 

Fernandes & 

Lopes (2022) 

Feature Selection for 

IDS 

HIKARI-2021 Maintained 99% 

accuracy with reduced 

features 

Need for validation 

across diverse 

network 

environments 

Judith et al. 

(2023) 

IoMT Cyberattack 

Detection 

WUSTL-EHMS 96.39% accuracy with 

reduced time 

complexity 

Limited exploration 

of adaptive learning 

for dynamic threats 

Taşcı (2024) 1D CNN for IoT 

Security 

CIC IoT 2023, 

CIC-MalMem-

2022, CIC-

IDS2017 

Accuracy above 99%, 

suitable for real-time 

applications 

Requires testing on 

resource-

constrained IoT 

devices 

Singh et al. 

(2023) 

RANSOMNET+ Cloud-encrypted 

data 

Precision: 99.5%, 

Recall: 98.5%, F1 

Score: 97.64% 

Lack of real-time 

ransomware 

detection 

assessment 
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Fernandes et al. 

(2023) 

Feature Relevance 

Analysis 

HIKARI-2021 20% decline in 

accuracy when key 

features removed 

Limited analysis of 

feature impact on 

evolving threats 

Noori et al. 

(2023) 

DFA-GPE (Dynamic 

Feature Aware GP 

Ensemble) 

HIKARI-2021, 

TON-IoT 2020 

99.09% and 92.64% 

accuracy, respectively, 

outperforming existing 

methods 

Need for testing in 

real-time intrusion 

detection scenarios 

 

3. PROPOSED METHOD 

The flow diagram illustrates a systematic approach to network traffic analysis using the HIKARI-2021 dataset. The 

process starts with data pre-processing, where the dataset undergoes normalization to ensure uniformity. To address class 

imbalance, Adaptive Synthetic Sampling (ADASYN) is applied, enhancing the representation of minority classes. Next, 

feature selection is conducted using advanced optimization techniques, including MTR-SOA, PSO, GWO, and GA, to 

identify the most discriminative features. These features are then utilized to train deep learning models such as DELM, 

FNN, LSTM, and CNN, which are designed to classify network traffic effectively. The final stage involves performance 

evaluation, where the models are assessed using key metrics like accuracy, precision, recall, F1-score, and computation 

time, ensuring a comprehensive analysis of their effectiveness in detecting network anomalies. 

 
Fig.1. DL-Based Network Traffic Analysis Workflow 
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The figure is a flow diagram depicting the workflow for network traffic analysis using the HIKARI-2021 dataset. It starts 

with data normalization and ADASYN for class imbalance handling, followed by feature selection using techniques like 

MTR-SOA, PSO, GWO, and GA. The selected features are used to train deep learning models (DELM, FNN, LSTM, 

CNN), and their performance is evaluated using metrics such as accuracy, precision, recall, F1-score, and computation 

time. The diagram highlights the importance of preprocessing, feature selection, and model evaluation in robust network 

traffic analysis. 

 

3.1. Data normalization 

The proposed technique used to the HIKARI 2021 dataset involves data normalization, which standardizes feature values 

into the [1, +1] or [0, +1] range, contingent upon the deep learning model, to enhance convergence and minimize training 

duration. The data is standardized with a consistent scalar derived from the standard normal distribution (SND), 

characterized by a mean of 0 and a variance of 1. Mathematically, the standardization is expressed as 𝑧 =
𝑥−𝜇

 𝜎
   where 𝜇 =

∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
  is the mean and 𝜎 = √

∑ (𝑥𝑖−𝜇)2𝑁
𝑖=1

𝑁
 is the standard deviation, with 𝑥𝑖 representing individual samples from the 

HIKARI 2021 dataset [14]. 

 

3.2. Adaptive Synthetic Sampling based class imbalance handling 

The suggested strategy utilizes the Adaptive Synthetic Sampling method to address class imbalance by generating 

synthetic samples, specifically for the minority class, hence enhancing model performance on underrepresented classes. 

In contrast to conventional techniques that either oversample all classes or under sample the majority, adaptive synthetic 

sampling concentrates on areas where the classifier has difficulties, hence improving overall accuracy and robustness. 

Adaptive Synthetic Sampling produces new samples derived from the distribution of existing data, with the objective of 

estimating the probability distribution for each class. For each sample, the K-nearest neighbours (K-NN) of 𝑥𝑖 in n-

dimensional space are determined, and the ratio 𝑟𝑖 is computed as 𝑟𝑖 =
1

𝑘
∑ ‖𝑥𝑖 − 𝑥𝑗‖

2𝑘
𝑗=1 ,where ‖𝑥𝑖 − 𝑥𝑗‖

2
the squared 

distance between is 𝑥𝑖 and its neighbors. The normalized ratio is computed as 𝑟̂𝑖 =
𝑟𝑖

∑ 𝑟𝑖
𝑚
𝑖=1

 and the number of synthetic 

samples for each minority class sample is determined by 𝑔𝑗 = 𝑟̂𝑖. 𝛾 + 𝐺 , where γ is a scaling factor and G is a constant 

[15]. 

 

3.3. Feature selection using MTR-SOA 

The MTR-SOA (Multi-Tier Reinforced Salp Optimization Algorithm) employs a balanced exploration-exploitation 

strategy to enhance convergence rate and solution quality in feature selection. The population is initially created using a 

chaotic mapping, injecting complexity and uncertainty into the solution process. The subsequent variable 𝑥𝑗 is calculated 

as follows: 

𝒙𝒋 = 𝒍𝒃 + (𝒖𝒃 − 𝒍𝒃). (𝟏 − 𝒆−𝜶𝒛𝒋) 

In this context, 𝒍𝒃 and 𝒖𝒃 represent the bottom and upper limits of the search space, whereas α denotes a scaling factor 

for the chaotic dynamics. The leader's position update employs a variable weight parameter w, which adjusts throughout 

the iterations to facilitate extensive exploration in the initial phases and concentrated exploitation in the subsequent phases. 

The weight has been revised as follows: 

𝒘 = 𝒘𝒎𝒂𝒙 − (𝒘𝒎𝒂𝒙 − 𝒘𝒎𝒊𝒏). (
𝒍

𝑳
)

𝜸

 

Where, γ is a constant exponent that regulates the rate of variation in the weight parameter, and l and L denote the current 

and total number of iterations, respectively. To mitigate premature convergence, the Levy flight mechanism is 

implemented, facilitating varied step sizes during the search process. The step size is defined as: 

𝒔 = 𝜷. (
𝟏

|𝒗|
)

𝟏 𝜹⁄

 

Where, β is a scaling factor. 𝒗 is a stochastic variable adhering to a normal distribution, while δ is a parameter regulating 

the dispersion of the step size. The leader's status is subsequently revised as: 

𝒙𝒋 = 𝝎. 𝑭𝒋 + 𝒄𝟏. ((𝒖𝒃𝒋 − 𝒍𝒃𝒋). 𝒄𝟐 + 𝒍𝒃𝒋) . 𝒔 

Here, 𝒄𝟏 represents a coefficient that modulates the equilibrium between local and global search, 𝑭𝒋 denotes the location 

of the food supply, while 𝒄𝟐 and s regulate the extent of disruption. The Fitness Function (FF) evaluates solutions based 

on classification accuracy and the quantity of selected features, seeking to establish a balance between the two. 

𝑭𝒊𝒕𝒏𝒆𝒔𝒔 = 𝜷𝟏. 𝑬𝒓𝒓𝒐𝒓𝑹𝒂𝒕𝒆 + (𝟏 + 𝜷𝟏).
#𝑺𝑭

#𝑨𝒍𝒍𝑭

 

Here, 𝜷𝟏denotes a coefficient that modulates the significance of classification accuracy, ErrorRate signifies the 

classification error rate, #𝑺𝑭 indicates the count of selected features, and #𝑨𝒍𝒍𝑭 represents the entire number of available 

features. This strategy enables the MTR-SOA to effectively enhance the feature selection process, surpassing the 

performance of other strategies such as PSO and GWO. 
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Algorithm 1: Multi-Tier Reinforced Salp Optimization Algorithm (MTR-SOA) 

Retrieve system data 

Configure algorithm parameters (e.g., population size, maximum iterations, etc.) 

Generate the starting population of salps(𝑴𝒔𝒂𝒍𝒑𝒔) 

Compute the adaptation function utilizing the slave stage(𝑴𝑶𝒔𝒂𝒍𝒑)  

Choose the existing solution(𝑭(𝟏,𝒋)) 

Identify the leader salp and ascertain the follower salps. 

Set the parameters P, 𝑀𝑎𝑥, and 𝑀𝑖𝑛 

Initialize iteration counter 𝑙 = 1 

while 𝑙 ≤ 𝐿 do 

Initialize 𝑪𝟏 to a random value (e.g., 20) 

  for i = 1 to Size(𝑆𝑎𝑙𝑝𝑠) do 

  if i ≤ (Size(𝑆𝑎𝑙𝑝𝑠)/2) then 

              for j = 1 to Dim (dimension of the problem) do 

                  𝐶2 = rand [0–1]   

                  𝐶3 = rand [0–1]   

if 𝐶3 ≤ 0.5 then 

𝑺𝒋 = 𝑭(𝟏,𝒋) + 𝑪𝟏 ∗ ((𝒖𝒃𝒋 − 𝒍𝒃𝒋) ∗ 𝑪𝟐 + 𝒍𝒃𝒋) 

                 else 

𝑺𝒋 = 𝑭(𝟏,𝒋) − 𝑪𝟏 ∗ ((𝒖𝒃𝒋 − 𝒍𝒃𝒋) ∗ 𝑪𝟐 + 𝒍𝒃𝒋) 

 end if 

              end for 

         else if  i > (Size(𝑆𝑎𝑙𝑝𝑠)/2) and i ≤ Size(𝑆𝑎𝑙𝑝𝑠) then 

            𝑺(𝒊,𝒋) = 𝟏𝟐 ∗ (𝑺(𝒊,𝒋) − 𝑺(𝒊−𝟏,𝒋)) 

          end if 

      end for 

      Enhance each salp's solution according to the comments from the leader and follower salps. 

      Compute the adaption function (𝑆𝐴) 

     Revise the existing solution in accordance with the enhanced feedback. 

     Increment the  iteration counter (𝑙 = 𝑙 + 1) 

 end while 

 

4. RESULTS AND DISCUSSION 

This section presents the performance evaluation of various deep learning models (DELM, FNN, LSTM, GPU, and CNN) 

[16] [17] [18] applied to network traffic analysis using different feature selection techniques, including the proposed MTR-

SOA, PSO, GWO, and GA [19]. The models were trained and tested on the HIKARI-2021 dataset, with performance 

assessed using standard classification metrics such as Accuracy, Precision, Recall, F1-score, and Computation Time. 

 

4.1. Dataset description 

The HIKARI-2021 dataset is a comprehensive network traffic dataset developed for cyber threat detection and network 

traffic analysis. It comprises 86 features extracted from network flows, encompassing metadata, packet statistics, payload 

information, TCP flags, and timing metrics. The dataset is categorized into normal and attack classes, with a notable 

imbalance skewed toward normal traffic. It facilitates research on anomaly detection, zero-day attack identification, and 

the effects of dataset imbalance on machine learning models. Key features include flow duration, packet counts, payload 

sizes, inter-arrival times, and TCP flag counts, making it highly suitable for developing and evaluating robust solutions 

for cyber threat detection and network traffic analysis. The table below summarizes the key features and characteristics 

of the HIKARI-2021 dataset [18]. 

 

Table.2. Overview of the HIKARI-2021 Dataset 

Category Features Description 

Flow Metadata Unnamed: 

0, uid, originh, originp, respon

h, responp, flow_duration 

Unique flow identifiers, source/destination IPs and ports, 

and flow duration. 

Packet Statistics fwd_pkts_tot, bwd_pkts_tot, f

wd_data_pkts_tot, bwd_data_

pkts_tot, fwd_pkts_per_sec, b

Packet counts, rates, and downstream/upstream traffic 

ratios. 
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wd_pkts_per_sec, flow_pkts_

per_sec, down_up_ratio 

Header Sizes fwd_header_size_tot, fwd_hea

der_size_min, fwd_header_siz

e_max, bwd_header_size_tot, 

bwd_header_size_min, bwd_h

eader_size_max 

Total, minimum, and maximum sizes of packet headers in 

forward/backward directions. 

TCP Flags flow_FIN_flag_count, flow_S

YN_flag_count, flow_RST_fl

ag_count, fwd_PSH_flag_cou

nt, bwd_PSH_flag_count, flo

w_ACK_flag_count, fwd_UR

G_flag_count, bwd_URG_fla

g_count, flow_CWR_flag_cou

nt, flow_ECE_flag_count 

Counts of TCP flags (e.g., SYN, ACK, FIN) in the flow. 

Payload 

Information 

fwd_pkts_payload.min, fwd_p

kts_payload.max, fwd_pkts_p

ayload.tot, fwd_pkts_payload.

avg, fwd_pkts_payload.std, b

wd_pkts_payload.min, bwd_p

kts_payload.max, bwd_pkts_p

ayload.tot, bwd_pkts_payload.

avg, bwd_pkts_payload.std, fl

ow_pkts_payload.min, flow_p

kts_payload.max, flow_pkts_p

ayload.tot, flow_pkts_payload

.avg, flow_pkts_payload.std 

Payload size metrics (min, max, total, average, standard 

deviation) for forward/backward traffic. 

Inter-Arrival 

Times 

fwd_iat.min, fwd_iat.max, fw

d_iat.tot, fwd_iat.avg, fwd_iat.

std, bwd_iat.min, bwd_iat.ma

x, bwd_iat.tot, bwd_iat.avg, b

wd_iat.std, flow_iat.min, flow

_iat.max, flow_iat.tot, flow_ia

t.avg, flow_iat.std 

Inter-arrival time statistics for forward/backward traffic 

and the entire flow. 

Subflow and 

Bulk Traffic 

payload_bytes_per_second, f

wd_subflow_pkts, bwd_subflo

w_pkts, fwd_subflow_bytes, b

wd_subflow_bytes, fwd_bulk

_bytes, bwd_bulk_bytes, fwd_

bulk_packets, bwd_bulk_pack

ets, fwd_bulk_rate, bwd_bulk

_rate 

Subflow and bulk traffic statistics, including packet/byte 

counts and rates. 

Timing Statistics active.min, active.max, active.

tot, active.avg, active.std, idle.

min, idle.max, idle.tot, idle.av

g, idle.std 

Active and idle time statistics for the flow. 

Window Sizes fwd_init_window_size, bwd_i

nit_window_size, fwd_last_wi

ndow_size 

Initial and last window sizes for forward/backward traffic. 

Traffic Category traffic_category Categorical feature indicating the type of traffic (e.g., 

normal, DDoS, port scan). 

Label Label Binary classification: normal or attack. 

 

The HIKARI-2021 dataset features a large volume of network flow instances with a significant imbalance favouring 

normal traffic. It includes various attack types, supporting research on zero-day attack detection, traffic imbalance 

analysis, and feature importance evaluation. 

 

Table.3. Key Attributes of Network Traffic Dataset 

Attribute Description 

Size Large number of network flow instances. 
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Imbalance Heavily skewed toward normal traffic. 

Attack Types Multiple attack types included for evaluating zero-day attack detection. 

Use Cases Intrusion detection, zero-day attack identification, imbalance analysis, and feature importance. 

 

 
Fig.2. Distribution of Network Traffic Categories by Danger Level 

 

This bar chart illustrates the distribution of network traffic categories by danger level, highlighting the dataset's imbalance. 

It shows that benign and background traffic dominate, while malicious categories like Bruteforce and XMRIGCC 

CryptoMiner are less frequent. This visualization helps assess traffic composition, supporting security analysis and model 

training. 

 

Table.4. Network Traffic Categories and Cyber Attack Analysis 

Traffic Category Number of 

Instances 

Danger Level Description 

Benign 347,431 Benign Traffic Regular network activity without any malicious 

intent. 

Background 170,151 Uncategorized Non-malicious background network traffic. 

Probing 23,388 Medium 

Danger 

Attempts to gather information about the network, 

often a precursor to attacks. 

Bruteforce 5,884 High Danger Repeated attempts to gain unauthorized access by 

guessing passwords. 

Bruteforce-XML 5,145 High Danger Targeted attacks exploiting XML vulnerabilities 

through brute-force attempts. 

XMRIGCC 

CryptoMiner 

3,279 High Danger Malicious mining of cryptocurrencies using 

unauthorized system resources. 

 

 

4.2. Performance Metrics 

Performance metrics in network traffic analysis, such as Accuracy, Precision, Recall, and F1-Score, assess a model's 

ability to detect cyber-attacks effectively, reduce false positives, and manage data imbalance [19]. 

 

Accuracy: Accuracy is a performance indicator that quantifies the proportion of correctly identified instances (including 

both attacks and normal traffic) relative to the total number of occurrences. It assesses the frequency with which the deep 

learning model accurately detects cyber-attacks and legitimate traffic. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

Precision: Precision quantifies the ratio of accurately recognized cyber-attacks (True Positives) to the total instances 

anticipated as cyber-attacks (True Positives + False Positives). It assesses the model's capacity to prevent false positives. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
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Recall: Recall quantifies the ratio of accurately diagnosed cyber-attacks (True Positives) to the total number of real cyber-

attacks. It evaluates the model's capacity to identify all present cyber-attacks. 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

F1-Score: The F1-score is the harmonic mean of Precision and Recall, offering a balanced metric that accounts for both 

false positives and false negatives. It is particularly advantageous for imbalanced datasets, such as cyber-attack detection, 

where there may be a substantial disparity between the quantities of attack and regular traffic samples. 

 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 =
𝟐. (𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏. 𝑹𝒆𝒄𝒂𝒍𝒍)

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

 

4.3. Performance Comparison of DL Models with Different Feature Selection Techniques 

Table 5 provides a comparative analysis of deep learning models using various feature selection techniques. The proposed 

MTR-SOA method consistently outperforms the traditional PSO, GWO, and GA techniques, demonstrating higher 

accuracy and improved classification performance across all models. 

 

Table.5. DL Model Performance Evaluation with Different Feature Selection Techniques 

Model Feature 

Selection 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Computation 

Time (s) 

FNN MTR-SOA 

(Proposed) 

96.4 95.8 96.1 96.0 2.5 

PSO 92.7 92.2 92.5 92.3 3.8 

GWO 93.1 92.6 92.9 92.8 3.5 

GA 91.5 91.0 91.3 91.2 4.0 

CNN MTR-SOA 

(Proposed) 

97.5 96.8 97.2 97.0 2.1 

PSO 94.8 94.0 94.5 94.3 3.4 

GWO 95.2 94.5 94.9 94.7 3.1 

GA 93.9 93.3 93.7 93.5 3.7 

DELM 

 

MTR-SOA 

(Proposed) 

97.9 97.5 97.8 97.6 3.0 

PSO 96.1 95.7 95.9 95.8 3.9 

GWO 96.4 96.0 96.2 96.1 3.7 

GA 94.8 94.3 94.6 94.5 4.3 

LSTM MTR-SOA 

(Proposed) 

98.2 97.9 98.1 98.0 2.8 

PSO 95.9 95.4 95.7 95.6 3.6 

GWO 96.3 95.8 96.0 95.9 3.3 

GA 94.6 94.2 94.4 94.3 4.1 
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Fig.5. Comparison of DL Models with FS Algorithms 

 

4.4. Performance Evaluation on Benign and Attack Classes  

To further validate the effectiveness of the proposed MTR-SOA, Table 2 presents the performance of the best-

performing model (LSTM) on different classes in the HIKARI-2021 dataset. 

 

Table.6. Class-wise Performance of LSTM Model with MTR-SOA 

Class Precision (%) Recall (%) F1-score (%) Support (Instances) 

Background 97.1 96.5 96.8 170,151 

Benign 98.2 97.9 98.0 347,431 

Bruteforce 95.6 95.0 95.3 5,884 

Bruteforce-XML 94.9 94.5 94.7 5,145 

Probing 96.5 96.1 96.3 23,388 

XMRIGCC CryptoMiner 97.8 97.3 97.5 3,279 

 

From Table 2, the proposed method provides high classification accuracy across all categories, particularly in detecting 

complex attacks like XMRIGCC CryptoMiner and Probing. 

 

 
Fig.5. Confusion matrix for Proposed Model 
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The confusion matrix heatmap illustrates the performance of an LSTM model optimized with MTR-SOA for network 

traffic classification. The model demonstrates high accuracy in identifying Background and Benign traffic, with 164,196 

and 340,135 correct classifications, respectively. Probing and Bruteforce-XML also show strong results, with 22,476 

and 4,862 correctly classified instances. However, lower accuracy is observed for Bruteforce and XMRIGCC 

CryptoMiner, with 5,590 and 3,190 correct predictions. Misclassifications primarily occur between Background and 

Benign, with 1,247 Background instances misclassified as Benign and vice versa. This confusion suggests overlapping 

feature patterns, particularly between normal traffic categories. Overall, the model exhibits robust performance, though 

challenges remain in accurately distinguishing minority attack classes. This result is valuable for network traffic analysis 

as it highlights the model's effectiveness in accurately detecting normal and malicious traffic patterns. It also identifies 

areas for improvement in distinguishing minority attack classes, enhancing cyber threat detection capabilities. 

 
Fig.6. Accuracy and Loss Curves for a Proposed Model 

 

The above results show strong model performance, with both training and validation accuracy steadily increasing and 

reaching above 98% by the 20th epoch. The corresponding loss curves demonstrate a consistent decrease, with both 

training and validation loss dropping below 0.05, indicating effective learning and minimal overfitting. This suggests the 

model generalizes well and is highly effective for network traffic classification. 

 

4.5.  Computational Efficiency Analysis 

Apart from classification performance, computational efficiency is also a critical factor in real-time Intrusion Detection 

Systems (IDS). The MTR-SOA-based feature selection significantly reduces computational time compared to PSO, 

GWO, and GA, as shown in Table 3. 

 

Table.7. Computational Time Analysis (in seconds) for Different Feature Selection Techniques 

Feature Selection DELM FNN LSTM CNN 

MTR-SOA (Proposed) 2.1 2.5 2.8 3.0 

PSO 3.4 3.8 3.6 3.9 

GWO 3.1 3.5 3.3 3.7 

GA 3.7 4.0 4.1 4.3 

 
Fig.7. Computational Time Reduction with MTR-SOA 
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The results indicate that MTR-SOA reduces computational time by 20-30% compared to traditional optimization 

techniques, making it suitable for real-time IDS applications. 

 

The experimental results confirm the effectiveness of the Multi-Tier Reinforced Salp Optimization Algorithm (MTR-

SOA) in improving feature selection for deep learning-based detection of cyber threats. Across all models, MTR-SOA 

consistently achieved the highest accuracy, F1-score, and recall, demonstrating its capability to select the most relevant 

features. Notably, the LSTM model with MTR-SOA attained the best accuracy (98.2%), effectively classifying all attack 

types with high recall values (above 97%), and minimizing false negatives. Additionally, MTR-SOA significantly reduces 

computational time compared to PSO, GWO, and GA, making it a viable option for real-time cyber threat detection. In 

contrast, traditional methods exhibited lower accuracy and higher computational costs, reinforcing the superior trade-off 

provided by MTR-SOA between detection performance and efficiency. These findings emphasize that integrating deep 

learning models with MTR-SOA enhances cyber threat detection accuracy and efficiency, particularly in identifying 

complex attack patterns. Future research can explore its applicability to other cybersecurity datasets to further validate its 

robustness and adaptability. 

 

5. CONCLUSION 

The integration of the Multi-Tier Reinforced Salp Optimization Algorithm (MTR-SOA) with deep learning models 

presents a powerful advancement in network traffic classification and cyber threat detection. By consistently 

outperforming traditional optimization methods, MTR-SOA not only enhances feature selection but also significantly 

boosts detection accuracy, with the LSTM model achieving an impressive 98.2% accuracy and high recall rates across all 

attack categories. Its ability to reduce computational time by up to 30% underscores its suitability for real-time 

applications. These results highlight MTR-SOA’s potential as a robust, efficient solution for detecting complex cyber 

threats, paving the way for broader applications in future cybersecurity research. 

REFERENCE  

1. H. Zhou, X. Huang and L. Deng, "Enhancing Network Traffic Classification with Large Language Models," 2024 

IEEE International Conference on Big Data (BigData), Washington, DC, USA, 2024, pp. 7282-7291, doi: 

10.1109/BigData62323.2024.10825308. 

2. Nuñez-Agurto, D.; Fuertes, W.; Marrone, L.; Benavides-Astudillo, E.; Coronel-Guerrero, C.; Perez, F. A Novel 

Traffic Classification Approach by Employing Deep Learning on Software-Defined Networking. Future Internet 

2024, 16, 153. https://doi.org/10.3390/fi16050153. 

3. Bayan Alabduallah, Mohammed Maray, Nuha Alruwais, Rana Alabdan, Abdulbasit A. Darem, Fouad Shoie Alallah, 

Raed Alsini, Ayman Yafoz, Class imbalanced data handling with cyberattack classification using Hybrid Salp Swarm 

Algorithm with deep learning approach, Alexandria Engineering Journal, Volume 106, 2024, Pages 654-663, ISSN 

1110-0168, https://doi.org/10.1016/j.aej.2024.08.061. 

4. Jullian, O., Otero, B., Rodriguez, E. et al. Deep-Learning Based Detection for Cyber-Attacks in IoT Networks: A 

Distributed Attack Detection Framework. J Netw Syst Manage 31, 33 (2023). https://doi.org/10.1007/s10922-023-

09722-7. 

5. C. C, P. K. Pareek, V. H. Costa de Albuquerque, A. Khanna and D. Gupta, "Improved Domain Generation Algorithm 

To Detect Cyber-Attack With Deep Learning Techniques," 2022 IEEE 2nd Mysore Sub Section International 

Conference (MysuruCon), Mysuru, India, 2022, pp. 1-8, doi: 10.1109/MysuruCon55714.2022.9972526. 

6. M. Aljebreen, F. S. Alrayes, M. Maray, S. S. Aljameel, A. S. Salama and A. Motwakel, "Modified Equilibrium 

Optimization Algorithm With Deep Learning-Based DDoS Attack Classification in 5G Networks," in IEEE Access, 

vol. 11, pp. 108561-108570, 2023, doi: 10.1109/ACCESS.2023.3318176. 

7. Abu Al-Haija, Q.; Zein-Sabatto, S. An Efficient Deep-Learning-Based Detection and Classification System for 

Cyber-Attacks in IoT Communication Networks. Electronics 2020, 9, 2152. 

https://doi.org/10.3390/electronics9122152. 

8. R. Fernandes and N. Lopes, "Network Intrusion Detection Packet Classification with the HIKARI-2021 Dataset: a 

study on ML Algorithms," 2022 10th International Symposium on Digital Forensics and Security (ISDFS), Istanbul, 

Turkey, 2022, pp. 1-5, doi: 10.1109/ISDFS55398.2022.9800807. 

9. Judith, A.; Kathrine, G.J.W.; Silas, S.; J, A. Efficient Deep Learning-Based Cyber-Attack Detection for Internet of 

Medical Things Devices. Eng. Proc. 2023, 59, 139. https://doi.org/10.3390/engproc2023059139. 

10. Taşcı, B. Deep-Learning-Based Approach for IoT Attack and Malware Detection. Appl. Sci. 2024, 14, 8505. 

https://doi.org/10.3390/app14188505. 

11. Singh, A.; Mushtaq, Z.; Abosaq, H.A.; Mursal, S.N.F.; Irfan, M.; Nowakowski, G. Enhancing Ransomware Attack 

Detection Using Transfer Learning and Deep Learning Ensemble Models on Cloud-Encrypted Data. Electronics 

2023, 12, 3899.  

12. R. Fernandes, J. Silva, Ó. Ribeiro, I. Portela and N. Lopes, "The impact of identifiable features in ML Classification 

algorithms with the HIKARI-2021 Dataset," 2023 11th International Symposium on Digital Forensics and Security 

(ISDFS), Chattanooga, TN, USA, 2023, pp. 1-5, doi: 10.1109/ISDFS58141.2023.10131864. 

https://doi.org/10.3390/fi16050153


 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s 
Pg 267 

S.Padmavathy, Dr. R.Kannanet.al 

 
 

13. M. S. Noori, R. K. Z. Sahbudin, A. Sali and F. Hashim, "Feature Drift Aware for Intrusion Detection System Using 

Developed Variable Length Particle Swarm Optimization in Data Stream," in IEEE Access, vol. 11, pp. 128596-

128617, 2023, doi: 10.1109/ACCESS.2023.3333000. 

14. A. Khanan, Y. A. Mohamed, A. H. H. M. Mohamed, and M. Bashir, "From Bytes to Insights: A Systematic 

Literature Review on Unraveling IDS Datasets for Enhanced Cybersecurity Understanding," IEEE Access, vol. 12, 

pp. 1–15, Apr. 2024, doi: 10.1109/ACCESS.2024.3392338. 

15. Taskeen, A., Khan, S.U.R. & Mashkoor, A. An adaptive synthetic sampling and batch generation-oriented hybrid 

approach for addressing class imbalance problem in software defect prediction. Soft Comput 28, 13595–13614 

(2024). 

16. Y. Pristyanto, A. F. Nugraha, A. Dahlan, L. A. Wirasakti, A. Ahmad Zein and I. Pratama, "Multiclass Imbalanced 

Handling using ADASYN Oversampling and Stacking Algorithm," 2022 16th International Conference on 

Ubiquitous Information Management and Communication (IMCOM), Seoul, Korea, Republic of, 2022, pp. 1-5, doi: 

10.1109/IMCOM53663.2022.9721632. 

17. V. Hnamte, H. N. Nguyen, J. Hussain, and Y. H. Kim, "A Novel Two-Stage Deep Learning Model for Network 

Intrusion Detection: LSTM-AE," IEEE Access, vol. 11, pp. 1–12, Apr. 2023, doi: 10.1109/ACCESS.2023.3266979. 

18. L. Jiao, Y. Shao, L. Sun, F. Liu, S. Yang, W. Ma, L. Li, X. Liu, B. Hou, X. Zhang, R. Shang, Y. Li, S. Wang, X. 

Tang, and Y. Guo, "Advanced Deep Learning Models for 6G: Overview, Opportunities, and Challenges," IEEE 

Access, vol. 12, pp. 1–15, Sept. 2024, doi: 10.1109/ACCESS.2024.3418900. 

19. Quan Peng, Xingbing Fu, Fei Lin, Xiatian Zhu, Jianting Ning, Fagen Li, Multi-Scale Convolutional Neural Networks 

optimized by elite strategy dung beetle optimization algorithm for encrypted traffic classification, Expert Systems 

with Applications, Volume 264, 2025, 125729, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2024.125729. 

 


