
 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s 
Pg 138 

Journal of Neonatal Surgery  
ISSN(Online): 2226-0439  
Vol. 14, Issue 18s (2025)  
https://www.jneonatalsurg.com  

 

Virtual Sensor Design Using Convolutional Neural Networks and Image Processing Techniques 
 

Pankaj Naik1, Prof. Jayesh Surana2 
 

1Research Scholar, Department of Computer Science and Engineering, Medi-Caps University, Indore, Madhya Pradesh, 

India, pankaj.naik013@gmail.com 
2Assistant Professor, Department of Computer Science and Engineering, Medi-Caps University, Indore, Madhya Pradesh, 

India, jayesh.surana@medicaps.ac.in 

 

Cite this paper as: Pankaj Naik, Prof. Jayesh Surana, et.al (2025) Virtual Sensor Design Using Convolutional Neural 

Networks and Image Processing Techniques. Journal of Neonatal Surgery, 14 (18s), 138-142.  

 

ABSTRACT 

To achieve rapid decarbonisation and improve the performance of future internal combustion engines (ICEs), virtual 

sensors have emerged as a promising alternative to physical sensors. This study proposes a novel methodology for 

developing virtual sensors using advanced machine learning techniques, including image-based classification and 

generative adversarial networks (GANs), to predict key engine performance metrics and emissions. Real-time engine 

parameters such as in-cylinder pressure, engine speed, fuel injection rate, and oxygen concentration were used as input to 

train multiple machine learning models including ANN, Random Forest, SVM, XGBoost, and Decision Trees. Among 

these, the XGBoost regressor demonstrated the highest prediction accuracy with minimal computational cost. 

Furthermore, combustion data were transformed into grayscale images and used to train GANs, enabling the 

reconstruction of the rate of heat release (R.H.R) profiles. The results confirm that virtual sensors can achieve over 97% 

accuracy in predicting combustion characteristics and emissions, making them a viable tool for robust feedback control 

in ICEs operating under transient conditions. 
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1. INTRODUCTION 

To achieve rapid decarbonisation by 2030, efficient internal combustion engines (ICEs) should include hybridisation and 

electrification [1–3]. Despite the rapid advancement of vehicle electrification, the majority of future transportation and 

propulsion systems will continue to use internal combustion engines using hydrogen, e-fuels, and other fuels. Furthermore, 

there are challenging categories for electrification, including large vehicles, marine systems, and stationary propulsion 

systems. Recent research and development efforts aim to enhance the thermal efficiency of internal combustion engine 

brakes by over 50% by hybridisation, shown by initiatives like as Japan's national SIP program [4, 5]. These engines 

include sophisticated technology to enhance thermal efficiency, hence augmenting the latitude for control and calibration. 

Traditionally, lookup or map-based tables have been used in ICE control and calibration under steady-state settings. 

Nonetheless, these tables exhibit great dimensionality under various engine running circumstances and disturbances. 

Contemporary internal combustion engines use alternative fuels, hydrogen, e-fuels, or other low-carbon fuels and are often 

integrated with various technologies to enhance performance and reduce emissions. These technologies (turbocharging, 

exhaust gas recirculation systems, and sophisticated dual-fuel injection systems) prolong the duration required to generate 

the lookup or map-based tables. The prior engine calibration was adequate for steady-state operation; however, this 

traditional method is inadequate for engine feedback management owing to several challenges, particularly in transient-

cycle situations. A potential approach for feedback control and calibration is to include additional physical sensors into 

internal combustion engines. Nonetheless, supplementary sensors elevate vehicle expenses, and the physical sensors are 

susceptible to malfunctions, potentially transmitting erroneous data to controllers. The primary goals for creating virtual 

sensors are to decrease the expenses associated with real sensors and to attain rapid reaction times for feedback 

management throughout a broad operational range of internal combustion engines, which are characterised by high 

transience and cold starts. 

The virtual sensors exhibit no diagnostic concerns regarding durability and may serve as substitutes or operate 

concurrently with actual sensors to enhance control and calibration robustness [6–9]. The development of virtual sensors 

for feedback control systems has been increasing due to advancements in machine learning theory. Liu et al. used several 

machine learning regressors to forecast the exhaust gas temperature of natural gas engines [10] and ammonia engines [11]. 

The models were capable of predicting exhaust gas temperature under various running situations and other engine 

performance metrics without noise interference. Menink et al. [12] introduced an online implementation of a virtual NOx 

sensor for EURO-VI heavy-duty diesel engines. During engine operation, the crank angle signal fluctuates at high 
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frequencies, making it challenging to acquire a stable value. The virtual NOx sensor was calibrated offline and then 

implemented online. During offline calibration, in-cylinder pressure data was analysed at intervals of 0.1 degrees of crank 

angle, while in real-time, the step size was increased to 1 degree. This research presumes uniformity among all cylinders 

and bases its analysis on a singular in-cylinder pressure measurement. This advancement demonstrates the rapid reaction 

of virtual NOx sensors with great precision, especially under transient engine conditions. This study demonstrated that 

the virtual NOx sensor might serve as a viable alternative to the traditional physical NOx sensor. Henningsson et al. [13] 

proposed a methodology for forecasting engine emissions using in-cylinder pressure data. They affirmed that the 

hyperparameters of the developed neural network must be optimised in every conceivable manner. Furthermore, the 

selected input parameters have little correlation with the goal values. Studies in [14–17] explore an enhanced technique 

for estimating NOx emissions to minimise the reliance on engine parameter monitoring sensors. A physical model was 

created to predict engine combustion characteristics, including cylinder temperature, air flow rate, EGR rate, and 

combustion phasing, which are significantly correlated with engine-out NOx emissions. The neural network model is 

unable to monitor NOx emissions during tip-in acceleration. 

The prior research focused only on emission forecasts. The combustion forecasts relied on several physical sensors and 

short time intervals. Furthermore, the sensors were not used to forecast engine performance and emissions throughout 

driving cycle activities. The neural network architectures and parameterizations were neither optimised nor documented. 

The GAN image classification and translation models have not been used in the development of virtual sensor ICE 

feedback control systems. This paper introduces a unique approach for constructing virtual sensors using several machine 

learning techniques, including GAN-based picture categorisation and translation. Diverse machine learning regression 

methodologies are used to identify the ideal regressor for superior predictive accuracy and computational efficiency. To 

the authors' knowledge, this novel technique for the development of virtual sensors for future ICE feedback control using 

image processing and translation is being offered for the first time. 

 

2. METHODOLOGY 

2.1. Data collection and virtual sensor development 

The virtual sensors are designed to forecast engine performance metrics and emissions attributes for onboard engine 

management and diagnostics. A standardised method has been established for constructing virtual sensors, which are built 

offline and may be deployed online. The neural network has provided exceptional generalisation via off-board learning, 

enabling an optimised and adaptive engine management system to enhance the engine's thermal efficiency and other 

combustion and emissions parameters. This study employs real-time engine data inputs, including in-cylinder pressure 

sensor readings, engine speed, working gas quantity, and oxygen concentration, to forecast instantaneous engine 

performance metrics such as indicated torque (Tind), fuel consumption (Qfuel), maximum pressure rise rate (dP/dθ), brake 

thermal efficiency (BTE ηbr), and exhaust emissions, specifically NOx and CO2. This prediction enables the engine to 

function within a predetermined area, such as minimal emissions, optimal performance, and improved engine economy.  

 

2.2. Neural network selection 

The AI engine model must accurately forecast combustion characteristics while minimising processing time for onboard 

sensors. The generated virtual sensors must meet the processing time requirements of the electronic control unit. In the 

first section, the authors evaluated the predictive capabilities of the Artificial Neural Network (ANN) against the XG-

Boost regressor focussing on model performance. Consequently, this study only presents the final parameter optimisation 

and machine learning frameworks. Numerous machine learning algorithms were evaluated, since the optimal choice 

cannot be predetermined; the training and validation performance of machine learning models is significantly influenced 

by each method and the optimisation of hyperparameters. The hyperparameter tuning for the artificial neural network 

(ANN) was conducted using Bayesian optimisation and search methodologies, whereby the goal function for selecting 

suitable hyperparameters relies on a probabilistic model. This study examines the artificial neural network (ANN) 

hyperparameters, including the number of hidden layers (ranging from 1 to 3), the quantity of hidden neurones (spanning 

from 10 to 200 in increments of 20), activation functions (ReLU and Tanh), the Tree-Structured Parzen Estimator (TPE) 

algorithm, epochs (100, 500, 1000), iterations (5 to 30), and the R² evaluation metric. The GridSearchCV function was 

used for hyperparameter adjustment of the Random Forest to improve model training and validation. The random forest 

hyperparameters include min_sample_split, min_sample_leaf, max_depth, and n_estimators. The hyperparameters of 

XGBoost include learning rate (0.05–0.3), max_depth (1–15), n_estimators (40–200), alpha (L1 regularisation), gamma, 

and lambda (L2 regularisation). 

 

2.3. Data to image transformation 

The Python multiplatform data visualisation toolkit, Matplotlib, is used for data-to-image conversion. This research used 

greyscale pictures to diminish the pixel value for each image (image size). Consequently, the potential colours derived 

from the greyscale picture are black and white. 
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Figure 1. Image transformation process 

 

The cylinder pressure dP/dθ and RHR are forecasted using the VDE model and converted into black and white pictures 

with Matplotlib. This study utilises cylinder pressure data ranging from -110 degrees (intake valve closure or IVC timing) 

to 130 degrees (exhaust valve open or EVO timing), while RHR data spans from -25 degrees (pre-injection time) to 125 

degrees near EVO. The selected crank angle ranges (cylinder pressure range = -110 to 130 degrees, RHR range = -25 to 

125 degrees) are deemed realistic intervals that influence the combustion and emission characteristics of internal 

combustion engines, rather than including the whole 720 degrees of the four-stroke cycle. Furthermore, the chosen crank 

angle ranges will diminish the picture characteristics for a rapid GAN model by minimising image augmentation and 

feature extraction. This study examines actual JPG-format picture attributes to optimise the calculation speed of the GAN 

model.  

 

2.4. Construction of generative adversarial network (GAN) 

The primary objective of developing the GAN is to evaluate the R.H.R. profile using an in-cylinder pressure picture and 

outputs from the virtual sensor, including indicated torque, brake thermal efficiency, maximum pressure increase rate, and 

engine exhaust emissions of NOx and CO2. The R.H.R. profile estimated by GAN is juxtaposed with the target R.H.R. 

profile value. The error serves as feedback for regulating injection parameters, including amount and duration, known as 

injection patterns. The thermal efficiency of the engine brake and exhaust emissions may be enhanced by regulating the 

R.H.R. configuration. An overview of GAN is presented as follows. It is an unsupervised machine learning technique that 

requires the identification of regularities and patterns within the input data. The GAN model is designed to evaluate the 

optimiser.  

 

 
Figure 2. Construction of generative adversarial network 

 



 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s 
Pg 141 

Pankaj Naik, Prof. Jayesh Suranaet.al 

 
 

The discriminator model is trained directly using actual and produced pictures, whereas the generator model is trained 

utilising the discriminator model. The weights are adjusted to reduce the prediction loss by the discriminator for the 

produced picture. 

 

3. RESULTS AND DISCUSSION 

After optimizing the hyperparameters, the prediction accuracy is verified by cross-validation. The prediction accuracy is 

evaluated by the coefficient of determination R2. R2 value measures the proportion of variability in the output with respect 

to the input parameters explained by the regression model. The model accuracy and prediction time are shown in Table 1. 

 

Table 1 Accuracy comparison using cross validation of machine learning model (XG-Boost) 

Parameter 
R2 value 

(Model validation) 

R2 value 

(Cross validation) 

Indicated torque (Nm) 0.995 0.988 

Brake thermal efficiency (%) 0.987 0.982 

NOx emissions 0.969 0.968 

CO2 emissions 0.978 0.968 

 

 
Figure 3. Graphical representation of model cross valdation 

 

Accuracy can be used as an effective metric only if the model is trained with an equal number of sample images (balanced 

training dataset). In this work, the authors train the model using a balanced dataset; therefore, accurate results are relied 

on. From the above model classification results, the model training and validation accuracy value are over 97%, showing 

that the AI image classification model could accurately classify the desired and undesired combustion of the engine. The 

results also confirm that the engine performance parameters and exhaust emissions strongly correlate with cylinder 

pressure and R.H.R. profile shape. The cross-validation accuracy of R.H.R. image classifica- tion model is higher than 

that of the pressure image classification model. Therefore, the engine parameters are highly dependent on the shape of the 

R.H.R. profile. Fig. 4(a and b) shows the model accuracy and loss curve of the in-cylinder pressure image classification 

model. The accuracy curve helps to understand the model training progress of neural networks more efficiently. The gap 

between the training and validation accuracy indicates the amount of overfitting in the model. In the pressure image 

classification model, the value of training loss continuously decreases with an increase in epoch. In contrast, the vali- 

dation loss decreases to a certain point and begins to increase again. This may be subject to model fitting. In R.H.R. image 

classification model, the validation accuracy tracks the training accuracy reasonably well, the value of training loss 

decreases to a point of stability, and the validation loss decreases to a point and has a small gap with the training loss. 

 

 
Figure 4. Precision and recall tradeoffs result of the image classification model for a) cylinder pressure image, b) 

R.H.R image as a function of recall 
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4. CONCLUSION 

This study presents an innovative approach to virtual sensor development for internal combustion engines using a 

combination of regression models and image-based machine learning techniques. By integrating high-fidelity engine data 

and advanced algorithms like XGBoost and GANs, the proposed method achieves high predictive accuracy and 

computational efficiency, crucial for real-time engine control and diagnostics. The results demonstrate that the R.H.R. 

profile plays a significant role in determining engine emissions and performance. The image classification models, 

especially those based on R.H.R. data, provide strong correlation with target parameters and outperform pressure-based 

models in classification accuracy. The developed virtual sensors offer a scalable and cost-effective alternative to physical 

sensors, significantly enhancing the robustness and adaptability of ICE feedback control systems. Future research will aim 

to integrate this framework into onboard engine control units for real-time applications across various engine architectures 

and fuel types. 
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