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ABSTRACT  
Machine learning (ML) is an accelerating force in cardiac surgery, augmenting predictive accuracy, clinical judgment, and 
outcomes. Addressing the deficit in traditional models, its integration provides dynamic, data-driven insights for surgical care. 
This work is relevant as it assesses the clinical utility of machine learning methods, shifting attention from their use in mortality 
prediction, complication evaluation, and resource allocation in high-risk surgeries. Awareness of these implications is critical 
for the uptake of AI-based technologies in intricate cardiac surgeries. A systematic review of the narrative approach was used 
with peer-review articles from 2000 through 2024 in databases like PubMed, Scopus, and IEEE. The choice was based on 
predefined inclusion criteria, MeSH keywords, and AI-augmented research tools for complete coverage. The analysis 
concludes that machine learning methods, primarily ensemble and deep learning models, function superior to standard scores 
for predicting outcomes in surgeries, favoring a shift in the direction of precision-based cardiac care. The models provide high 
performance in predicting complications as well as blood transfusions. Nonetheless, issues like the heterogeneity of the data, 
its explainability, generalizability, and integration within clinical workstreams continue. The future holds prospects for 
technological convergence, personalized machine learning-based tools, and multi-disciplinary collaboration for expanded 
adoption. This review is useful for researchers, clinicians, and data scientists as it outlines the current scope and future direction 
of machine learning, leading to safer, smarter, and optimized cardiac surgeries. 
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1. INTRODUCTION 

 
Cardiac surgery represents one of the most complex and high-risk domains in medicine, where surgical outcomes depend on 
numerous patient-specific, procedural, and perioperative factors. The identification of patients at elevated risk for adverse 
outcomes represents a critical challenge in clinical decision-making. Over the past decade, machine learning (ML) has 
emerged as a promising approach to enhance risk prediction, optimize patient selection, and improve outcomes in cardiac 
surgery. Machine learning is a revolutionary technology that promises to change the way surgery is practiced. Spurred by 
advances in computing power and the volume of data produced in healthcare, ML has shown remarkable ability to master 
tasks once reserved for physicians (Ostberg, 2021). This literature review synthesizes current research on machine learning 
applications in cardiac surgery, examining methodological approaches, clinical implementations, key findings, and future 
directions in this rapidly evolving field. 
The integration of machine learning into cardiac surgery has been propelled by limitations in traditional risk prediction 
models. Most established prediction models are limited to the analysis of nonlinear relationships and fail to fully consider 
intraoperative variables, which represent the acute response to surgery (Tseng, 2020). Currently available risk prediction 
models either do not provide patient-specific risk factors or only predict in-hospital mortality rates (Jalali, 2020). These 
limitations have created an opportunity for machine learning to provide more personalized, accurate, and comprehensive risk 
assessment across various cardiac surgical populations and procedures. 
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2. METHOD 
 
This review study employed a comprehensive literature review methodology, focusing on peer-reviewed research articles 
published between January 2000 and August 2024 that explored the application of machine learning (ML) in adult cardiac 
surgery. Key databases including Google Scholar, PubMed, Scopus, Springer, IEEE, and ACM, along with other credible 
internet sources, were systematically searched. A structured keyword strategy was applied using MeSH terms such as 
“Cardiac Surgery,” “Machine Learning,” “Machine Learning Techniques,” and related variations. The review was narrative 
in nature, and studies were initially screened based on titles and abstracts to ensure thematic relevance. Only articles published 
in English were included, while studies focused on congenital heart surgery, general thoracic surgery, minimally invasive 
procedures, and cardiac transplants were excluded. The Concordance Index (C-index) was considered as the primary metric 
to assess model performance across the selected studies. Additionally, AI-powered research tools like Scispace, Answerthis, 
and Connectedpapers were utilized to enhance the efficiency and accuracy of literature selection. 
Here is the summary as a table (See Table 1), outlining the systematic approach adopted for literature selection. The table 
presents key parameters such as search duration, databases used, keyword strategy, inclusion/exclusion criteria, and AI-
supported selection tools. 

Table 1:  Search-Criteria and keywords 
        

Criteria Description 

Date of search window 12-02-2025 to 15-02-2025 

Source of published articles  Google Scholar + PubMed + Scopus + Springer + IEEE + ACM + Other 
Internet source 

Keywords for search used  “Cardiac Surgery” + “Machine Learning” + “Machine Learning 
Techniques” + “Machine Learning in Cardiac Surgery” + “Application of 
Machine Learning in healthcare” 

Timeframe window Jan 2000 to Aug 2024 

Inclusion and exclusion 
criteria  

 English language and adult heart surgery are required. 

General thoracic, aortic, congenital heart, or thoracic transplant surgery 
is not allowed. 

Selection process  AI tool like “answerthis” , “scispace”,” connectedpapers” etc. were used 
to select relevant sources. 

 
 
3. MACHINE LEARNING METHODS AND APPROACHES IN CARDIAC SURGERY 
 
Machine learning methods such as logistic regression, SVM, Random Forest (RF), XGBoost, and ensemble models have 
shown significant potential in cardiac surgery outcomes prediction [Tseng, 2020]. Tree-based models, particularly RF and 
ensemble combinations like RF-XGBoost, have demonstrated strong predictive performance with AUCs above 0.84 [Tseng, 
2020]. XGBoost combined with SMOTE has effectively addressed class imbalance issues in pediatric cardiac surgery, 
outperforming traditional models in sensitivity and overall AUC [Ghavidel, 2024]. 
Deep learning approaches, especially deep neural networks (DNN), have achieved high accuracy (up to 89%) and AUCs 
close to 0.95 for mortality prediction and prolonged hospital stays [Jalali, 2020; Petrosyan, 2022]. These models also surpass 
traditional ensemble models in metrics like precision, recall, F1-score, and balanced accuracy. Hybrid models, such as RF 
feature selection with logistic regression, further improve prediction quality in cases like acute kidney injury after cardiac 
surgery [Dong, 2023]. 
Ensemble learning techniques, particularly homogeneous ensembles like XGBoost and RF, show clinical superiority by 
integrating legacy and contemporary datasets for improved prediction accuracy [Allyn, 2017]. These ensemble strategies 
outperform single-time datasets by leveraging multiple data streams and modeling techniques, reinforcing the robustness and 
reliability of ML-based decision-making in cardiac surgical settings. 
Here is the summary as a table (See Table 2) highlighting the key techniques used in the field. The table provides a concise 
comparison of each method's strengths and limitations to assess their clinical applicability and predictive effectiveness. 
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Figure 1 illustrates a Machine Learning (ML) approach for extracting useful patterns from large-scale clinical or medicinal 
datasets. The workflow covers model selection, training, validation, optimization, and pattern recognition for applications 
such as disease detection, risk stratification, and treatment prediction. 
 

Table 2: Machine Learning Methods in Cardiac Surgery 
 

ML Method Description Strength Limitation 

Logistic Regression A statistical method using 
probability functions for binary 
classification tasks. 

Easy to interpret and 
apply in clinical 
contexts; works well 
with small, structured 
datasets. 

May underperform on 
non-linear data. 

Random Forest (RF) Ensemble of decision trees for 
robust predictions across 
variables. 

High AUC (0.839), 
strong generalization, 
and good handling of 
complex features 
[Tseng, 2020]. 

Can be computationally 
intensive. 

XGBoost (with 
SMOTE) 

Gradient boosting with 
synthetic oversampling to 
manage class imbalance. 

High sensitivity (0.74) 
and best performance in 
imbalanced pediatric 
surgery data [Ghavidel, 
2024]. 

Complex 
hyperparameter tuning. 

Deep Neural Networks 
(DNN) 

Multi-layer neural networks for 
complex, non-linear patterns. 

Achieved high AUC 
(0.95) and accuracy 
(89%) in mortality 
prediction [Jalali, 2020; 
Petrosyan, 2022]. 

Poor interpretability 
(“black-box”). 

Hybrid RF + Logistic 
Regression 

Combines RF for feature 
selection with logistic 
regression modeling. 

Balanced performance 
(C-statistic = 0.75), 
reliable after internal 
validation [Dong, 
2023]. 

Still requires robust 
variable tuning. 

Ensemble Learning Combines multiple base 
models 
(homogeneous/heterogeneous). 

Best overall 
performance (AUC up 
to 0.8327) using 
historical and updated 
data [Allyn, 2017]. 

Needs large and well-
structured data. 
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Figure 1: Machine Learning approach after method selection 

  

 
 
 
 
4. APPLICATIONS OF MACHINE LEARNING IN CARDIAC SURGERY 
 
The application of machine learning in cardiac surgery has shown transformative potential, offering enhanced predictive 
capabilities across various clinical scenarios. From accurately forecasting mortality and adverse outcomes [Du, 2022; Yu, 
2021; Parise, 2023], to identifying risks for specific complications like AKI, POAF, and infections [Tseng, 2020; Zhang, 
2023; Wang, 2022], ML models demonstrate superior performance over traditional methods. Furthermore, advanced 
algorithms have enabled precise prediction of blood product requirements, supporting efficient resource management and 
preoperative planning [Sinha, 2023]. 
 
4.1 Prediction of Mortality and Adverse Outcomes 
Machine learning models have consistently outperformed traditional risk scoring systems in predicting mortality and adverse 
outcomes in cardiac surgery, demonstrating higher AUC values and clinical utility [Du, 2022]. In pediatric cardiac surgery, 
XGBoost has significantly outperformed standard risk stratification methods like STS-EACTS and RACHS-1, achieving an 
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AUC of 0.887 [Yu, 2021]. Additionally, for long-term mortality prediction post-surgery, AdaBoost has shown superior 
accuracy and fit with the highest AUC among various algorithms applied [Parise, 2023]. 
 
4.2 Prediction of Specific Complications  
ML methods have effectively predicted specific complications such as acute kidney injury (AKI), with key predictors 
including intraoperative urine output and transfused blood units [Tseng, 2020]. Prediction of postoperative atrial fibrillation 
(POAF) using models like Random Forest and Support Vector Machine has yielded high performance, with age and aortic 
cross-clamp time among top predictors [Zhang, 2023]. For postoperative infections, ML models using RF, LASSO, and other 
classifiers have identified critical infection-related variables, enabling construction of robust predictive models for surgical 
patients [Wang, 2022]. 
 
4.3 Blood Product Requirement Prediction   
ML has proven effective in forecasting blood product requirements, especially red blood cell transfusions during cardiac 
surgery, enhancing inventory management and preoperative risk assessment [Sinha, 2023]. Hybrid models integrating 
regression and classification techniques like Gaussian Process algorithms have achieved strong accuracy for varying 
transfusion volumes (e.g., AUC = 0.826 for predicting 4+ RBC units) [Sinha, 2023]. These approaches address imbalanced 
datasets and optimize transfusion predictions for clinical decision-making. 
 
.5. MODEL PERFORMANCE AND EVALUATION 
 
Evaluating the performance of machine learning models is critical to understanding their clinical applicability and reliability 
in cardiac surgery. This section examines how ML models compare with traditional risk scores [Arafat, 2023; Mohammadi, 
2024; Dong, 2024], addresses the challenges of performance drift over time [Zeng, 2021], and highlights the importance of 
model interpretability for clinical integration [Tseng, 2020; Mauricio, 2024; Gong, 2015]. These insights emphasize the need 
for robust, adaptive, and explainable ML systems to ensure sustained value in surgical settings. 
 
 5.1 Comparison with Traditional Risk Scores: 
Machine learning (ML) models such as XGBoost and Random Forest have consistently outperformed traditional scoring 
systems like EuroSCORE II in predicting in-hospital mortality post-cardiac surgery, offering higher AUC and F1 scores 
[Arafat, 2023]. In tricuspid valve surgery, ML models like elastic net and RF also demonstrated superior performance over 
EuroSCORE in predicting operative mortality [Mohammadi, 2024]. For pediatric cardiac surgery, a systematic review 
showed that AI models provided better prediction of mortality, complications, and prolonged care outcomes compared to 
traditional systems [Dong, 2024]. 
 
5.2 Performance Drift and Temporal Validation:  
Performance of ML models can degrade over time due to dataset drift, where the data used during model training no longer 
aligns with newer clinical data [Zeng, 2021]. Despite this drift, XGBoost and Random Forest maintained relatively higher 
clinical effectiveness metrics (CEM ~0.728), while EuroSCORE II consistently underperformed [Zeng, 2021]. Monitoring 
temporal shifts in variable importance and retraining models as data evolves is essential for maintaining model relevance and 
clinical utility [Zeng, 2021]. 
 
5.3 Model Interpretability and Explainability:   
Model explainability is essential for clinical acceptance, with SHAP values helping visualize feature impact on predictions 
via summary and dependence plots [Tseng, 2020]. In pediatric heart surgery, interpretable ML models using k-means and 
SHAP helped reveal how blood pressure variability influences complication risk, aiding clinical decision-making [Mauricio, 
2024]. Combining explainability tools like LIME with simulation-based scenario planning has enabled reversal of negative 
surgical prognoses, demonstrating real-world clinical potential [Gong, 2015]. 
 
6. CHALLENGES AND LIMITATIONS 
 
Despite the growing use of machine learning in cardiac surgery, key challenges persist (See Table 3). A major limitation lies 
in the quality and availability of data, which is often limited by institutional specificity and large class imbalances in clinical 
datasets [Montisci, 2022]. Though Big Data sources such as EHRs and OMICS profiles offer vast potential, effectively 
harnessing this information for personalized risk models remains complex [Li, 2023]. 
Generalizability is another core concern, as models trained on institution-specific data may fail when applied elsewhere. 
External validation using independent datasets like MIMIC-IV is critical but not consistently performed [Leivaditis, 2025]. 
Ethical, regulatory, and workflow integration barriers further hinder broader model adoption in diverse clinical environments 
[Rellum, 2021]. 
Lastly, clinical implementation faces hurdles due to the lack of interpretability, fragmented data sources, and uncertain real-
world effectiveness. Although promising applications exist in diagnostics, intraoperative guidance, and postoperative care, 



 

Sandeep Kumar 1, Nidhi Rajak 2, Sanjeev Gour 3, Dinesh Salitra 4, Romsha Sharma 5, Swati Namdev 6     
  

pg.  6   
Journal   of   Neonatal   Surgery   |   Year:   202 5   |   Volume:   14   |   Issue 17S  

  

the translation of ML benefits to improved clinical outcomes remains limited [Ostberg, 2021; Khalsa, 2021]. Overcoming 
these limitations is vital to fully realize ML’s impact in cardiac surgery. 
 
    Table 3: Summary for challenges and limitations 
 

Challenges and 
Limitations 

Description Reference 
Number 

Data Quality and 
Availability 

ML model development is hindered by small, specific datasets 
and class imbalance; Big Data offers potential but is difficult to 
integrate effectively. 

[Montisci, 2022]; 
[Li, 2023] 

Generalizability and 
Validation 

Models often lack external validity; testing across populations 
and datasets like MIMIC-IV is essential but underutilized. 

[Leivaditis, 2025]; 
[Rellum, 2021] 

Clinical 
Implementation 

Barriers include interpretability, fragmented clinical data, ethical 
concerns, and uncertain translation to improved outcomes in 
surgical practice. 

[Ostberg, 2021]; 
[Khalsa, 2021] 

 
 
 
7. FUTURE DIRECTIONS 
 
As machine learning continues to advance, its future in cardiac surgery promises to be shaped by technological integration, 
personalized care, and collaborative innovation. This section explores emerging trends that are redefining surgical planning 
and outcome prediction. Key directions include convergence with other digital health tools, development of individualized 
predictive models, and fostering interdisciplinary partnerships. 
 
7.1 Integration with Other Technologies 
The integration of ML with technologies like telemedicine, robotic-assisted systems, and computer vision is enhancing 
precision surgery, remote monitoring, and cost-efficient care [Júnior, 2020; Rellum, 2021]. These synergies promise 
improved intraoperative guidance, automated workflows, and accurate postoperative risk predictions. 
 
7.2 Personalized Medicine Approaches 
Machine learning is driving a shift toward personalized medicine, enabling real-time, individualized risk calculators 
accessible via web or mobile applications for congenital cardiac surgery [Sulague, 2023]. While this evolution challenges 
the dominance of RCTs, its full clinical impact remains to be seen [Li, 2023]. 
 
7.3 Interdisciplinary Collaboration 
The future success of ML in cardiac surgery hinges on interdisciplinary collaboration, transparent model development, and 
robust validation frameworks [Rellum, 2021]. Though AI has improved preoperative risk assessment and postoperative 
prediction, further high-powered studies are needed to ensure clinical accuracy and safety [28]. 
 
8. CONCLUSION 
 
Machine learning has demonstrated significant potential to transform risk prediction, clinical decision-making, and outcome 
improvement in cardiac surgery. The superior performance of ML models compared to traditional risk scores has been 
consistently demonstrated across various surgical populations and procedures. Tree-based algorithms like Random Forest 
and XGBoost have emerged as particularly effective, with ensemble and hybrid approaches showing further improvements. 
Despite the promising results, several challenges remain. These include addressing the limited availability of high-quality 
data, ensuring model interpretability, validating models across diverse populations, and successfully implementing these 
tools in clinical practice. Performance drift over time presents an additional challenge that must be addressed for the long-
term utility of these approaches. 
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The future of machine learning in cardiac surgery will likely involve greater integration with other technologies, increasingly 
personalized approaches to patient care, and enhanced interdisciplinary collaboration. As the field continues to evolve, 
machine learning holds promise for improving risk stratification, optimizing patient selection, and ultimately enhancing 
outcomes in this high-risk surgical specialty. 
Despite these challenges, in the future, the practice of cardiac surgery will be greatly augmented by ML technologies, 
ultimately leading to improved surgical performance and better patient outcomes. 
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