
Journal of Neonatal Surgery 

ISSN(Online): 2226-0439 
Vol. 14, Issue 17s (2025) 
https://www.jneonatalsurg.com 

 

 

   

pg. 861 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 17s 

 

Disease Prediction using Gene Data Over Data Mining and Artificial Intelligence Techniques: A 

Survey 

 

Paparayudu.nagara1, Dr.D. Ramesh2 

1Assistant Professor in Information Technology,TKR College of Engineering and Technology,Hyderabad 
2Professor in Computer Science and Engineering,JNTU,Palair,Khammam,Telangana 
 

00Cite this paper as: Paparayudu.nagara, Dr.D. Ramesh, (2025) Disease Prediction using Gene Data Over Data Mining and 

Artificial Intelligence Techniques: A Survey. Journal of Neonatal Surgery, 14 (17s), 861-871. 

ABSTRACT 

Medical research has investigated Disease Prediction (DP) based on Gene data to a key level today, where the DP is attained 

by using Data Mining (DM) and Artificial Intelligence (AI) to detect disease-related genes. The traditional methods, such as 

Genome-Wide Association Studies (GWAS) and Linkage Analysis (LA), typically generate several positional candidate 

genes; experimental validation is cost-effective and in a time frame. Once Gene Prioritization (GP) methods have been 

included in computational means such as Feature Selection (FS), clustering, and Machine Learning (ML), GP has been 

significantly enhanced. Using Deep Learning (DL), Support Vector Machines (SVM), or ensemble classifiers, AI supports 

the improvement of predicting accuracy based on the learning of fine-grain patterns from genomic datasets. Network-based 

methods such as protein-protein interaction (PPI) networks and gene ontology (GO) analysis help us to recognize disease-

gene predictions (DGP). Next Generation Sequencing (NGS) presents massive genomic data subject to efficient pre-

processing and dimensionality reduction methods to mitigate high-dimensionality problems. The DL is used to retrieve the 

hidden relationships in genomic databases that, in turn, help toward the early disease diagnosis. The developments in 

integrating heterogeneous genomic data and dealing with biases in training datasets have not yet been attained. This analysis 

classifies computational tools for gene DP in terms of conceptual model rather than technical method and presents recent 

works in AI-based genomic research proof towards precision medicine and personal healthcare.  
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1. INTRODUCTION 

Human Genetic Disorder (GO) requires identifying a low number of 'disease-associated' genes. GD causing many diseases 

has been detected primarily by traditional methods, including Genome-Wide Association Studies (GWAS), Linkage Analysis 

(LA), and Positional Cloning (PC). The detection methods generally result in 100 to 1000 candidate genes; experimental 

proof of these is cost-expensive and time frame [1]. The genomic databases are generated due to the development of Next 

Generation Sequencing (NGS), a faster and computationally efficient method of training to prioritize the candidate genes, 

which has become more and more critical [2]. Artificial Intelligence (AI) and Data Mining (DM) are incorporated into— 

Disease-Gene Prediction (DGP), which has been initiated to be a promising solution to reduce the time taken and enhance 

the accuracy of the gene-disease association studies. 

Machine Learning (ML), Deep Learning (DL), and statistical modeling-based computational methods based on AI deployed 

on complex genomic data. Such methods can determine disease-relevant patterns, correlations, and biomarkers for early DP 

and precision medicine. The DM for extracting helpful visions from high-scale genomic datasets is used for further 

investigation [3]. AI-based models have been proven to be required to method high-dimensional datasets, and the ability to 

do that has made it an integral part of Gene Prioritization (GP). In the traditional methods, where one is frequently required 

to define text errors upon and claim prior hypotheses, AI can figure out from the data autonomously apply on earlier never 

experimental genomic types. 

Several computational strategies have tackled disease-gene prediction (DGP) and can be divided into network-based, ML, 

and functional annotation-based approaches. To infer relationships between genes and diseases, network-based methods 

analyze biological networks, e.g., Protein-Protein Interaction (PPI) networks and gene expression networks based on specific 

data on DGP. The basis of these methods is that functionally related genes are likely to be clustered in biological networks 

and that disease-related genes have network connectivity patterns [4]. The ML uses supervised, unsupervised, and semi-

supervised learning methods to assign genes into classes based on different genomic and transcriptomic features [5]. 

Classifying disease and genes with Support Vector Machine (SVM), Random Forest (RF), and Deep Neural Network (DNN) 

have been extensively used to outperform traditional statistical models. Functional annotation-based methods rely on  
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biological databases such as Gene Cards, Online Mendelian Inheritance in Man (OMIM), and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) to annotate the candidate genes using the known disease-related functions and pathways to perform 

Gene Prioritization (GP) [6]. AI and DM science have been able to apply techniques to DGP, which has brought many 

developments [7]. DL has predicted the non-coding regulatory elements linked to GD. The Transfer Learning (TL) methods 

have further enhanced the predictive power of AI by using pre-trained models on diverse genomic datasets. Federated 

Learning (FL) models have also appeared to solve data privacy problems by supporting the collaborative analysis of genomic 

data across multiple resources without compromising patient privacy [8]. 

These advancements do not solve the challenge of incorporating heterogeneous genomic data, removing biases in training 

data, nor provide the interpretability of AI-drive predictions [9]. The standard genomic datasets suffer from a class imbalance 

that makes disease-associated genes underrepresented compared to non-disease genes, which is why the generalizability of 

ML is valuable. The black-box nature of DL advances problems regarding model interpretability, demanding the 

development of Explainable AI (XAI) in genomic research. Future developments in DGP will likely involve multi-modal 

data integration, incorporating genomic, transcriptomic, epigenetic, and medical data to enhance predictive accuracy. 

Adopting hybrid models combining knowledge-driven and data-driven methods will further refine candidate GP [10]. 

This paper presents a comprehensive analysis of computational methods for DGP, focusing on theoretical methodologies 

rather than technical details. This paper classifies existing bioinformatics tools based on their underlying principles and 

highlights their help to DGP. This paper discourses the advantages and limitations of AI-based models in genomic research 

and outlines potential future directions in this evolving field. By synthesizing current advancements and challenges, this 

review aims to provide valuable visions into the role of AI and DM in accelerating DGP using gene data. 

2. IMPACT OF AI AND DATA MINING TECHNIQUES IN DISEASE PREDICTION USING GENES 

With AI and DM's integration for gene sequences in DP, genomic analysis's accuracy, efficiency, and scalability have 

increased. Typically, many genes generated with traditional methods, such as GWAS and LA, are cost-effective, time frame, 

and experimentally validated. The ML, DL, and bioinformatics methods are becoming the new precursor in pioneers capable 

of resulting in DGP using the classification of complicated patterns, associations, and mutations in GD. 

DM has enabled feature extraction (FE) from high-dimensional genomic datasets, such as clustering, classification, and 

association rule mining. Dimensionality reduction methods using feature selection (FS) are used to reduce the dimensional 

complexity of the data so that prediction models become more interpretable and efficient. Several MLs, such as SVM, RF, 

and DNN, are used to classify genes based on sequence variations, whereas Natural Language Processing (NLP) is used to 

improve predictions by analyzing genomic literature. Functional annotation-based methods leverage biological databases to 

refine gene-disease associations. 

Network-based methods analyze PPI networks, gene co-expression, and pathway enhancement to start disease correlations. 

AI has helped the development of FL, allowing secure genomic data sharing while maintaining privacy. The advancement of 

XAI has improved the interpretability of DL, addressing challenges related to black-box predictions [11-12]. 

Table 1 below highlights numerous diseases, AI and DM used, and corresponding gene/protein sequences involved 

in DGP. 

Diseases types 

Disease Techniques Used Gene/Protein Sequence (Full Form) 

Breast Cancer 
DL, Convolutional Neural Network 

(CNN), RF 

BRCA1 (Breast Cancer Gene 1), BRCA2 (Breast Cancer 

Gene 2), TP53 (Tumor Protein 53) 

Lung Cancer 
Reinforcement Learning (RL), RF, 

Deep CNN 

EGFR (Epidermal Growth Factor Receptor), KRAS 

(Kirsten Rat Sarcoma Viral Oncogene Homolog), TP53 

(Tumor Protein 53) 

Colorectal Cancer 
k-Nearest Neighbors (KNN), SVM, 

Gene Ontology (GO) Analysis 

APC (Adenomatous Polyposis Coli), TP53 (Tumor 

Protein 53), KRAS (Kirsten Rat Sarcoma Viral 

Oncogene Homolog) 

Leukemia SVM, Feature Engineering (FE) 

BCR-ABL (Breakpoint Cluster Region-Abelson Murine 

Leukemia Viral Oncogene), FLT3 (FMS-like Tyrosine 

Kinase 3), RUNX1 (Runt-Related Transcription Factor 

1) 

Liver Cancer Gradient Boosting (GB), Gene TERT (Telomerase Reverse Transcriptase), CTNNB1 
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Expression Analysis (Catenin Beta 1), TP53 (Tumor Protein 53) 

Ovarian Cancer DL, Unsupervised Clustering 
BRCA1 (Breast Cancer Gene 1), BRCA2 (Breast Cancer 

Gene 2), TP53 (Tumor Protein 53) 

Pancreatic Cancer 
Decision Trees (DT), Neural Networks 

(NN) 

KRAS (Kirsten Rat Sarcoma Viral Oncogene Homolog), 

CDKN2A (Cyclin Dependent Kinase Inhibitor 2A), 

TP53 (Tumor Protein 53) 

Alzheimer’s Disease 
DT, Extreme Gradient Boosting 

(XGBoost), Clustering 

APOE (Apolipoprotein E), APP (Amyloid Precursor 

Protein), PSEN1 (Presenilin 1) 

Parkinson’s Disease 
SVM, FS, Gene Network Analysis 

(GNA) 

SNCA (Alpha-Synuclein), LRRK2 (Leucine Rich Repeat 

Kinase 2), PARK7 (Parkinsonism Associated Deglycase) 

Huntington’s Disease XAI, TL HTT (Huntingtin) 

Amyotrophic Lateral 

Sclerosis (ALS) 
CNN, Graph-based Learning 

SOD1 (Superoxide Dismutase 1), C9orf72 (Chromosome 

9 Open Reading Frame 72), TARDBP (TAR DNA 

Binding Protein) 

Diabetes (Type 1 & 

Type 2) 

Naïve Bayes (NB), Association Rule 

Mining (ARM), K-Means Clustering 

INS (Insulin), GCK (Glucokinase), TCF7L2 

(Transcription Factor 7 Like 2) 

Cardiovascular 

Diseases 
NN, Logistic Regression (LR) 

LDLR (Low-Density Lipoprotein Receptor), MYH7 

(Myosin Heavy Chain 7), PCSK9 (Proprotein Convertase 

Subtilisin/Kexin Type 9) 

Asthma FE, GNA 
IL4 (Interleukin 4), IL13 (Interleukin 13), ADRB2 

(Adrenergic Beta-2 Receptor) 

Arthritis (Rheumatoid 

& Osteo) 
Clustering, RF 

PTPN22 (Protein Tyrosine Phosphatase Non-Receptor 

Type 22), HLA-DRB1 (Human Leukocyte Antigen DR 

Beta 1) 

Chronic Kidney 

Disease (CKD) 
NB, RL 

APOL1 (Apolipoprotein L1), UMOD (Uromodulin), 

PKD1 (Polycystin 1) 

Obesity XGBoost, K-Means Clustering 
FTO (Fat Mass and Obesity-Associated Gene), MC4R 

(Melanocortin 4 Receptor), LEP (Leptin) 

Rare GD TL, XAI 
CFTR (Cystic Fibrosis Transmembrane Conductance 

Regulator), MECP2 (Methyl-CpG Binding Protein 2) 

COVID-19 

Susceptibility 
NLP, RNA-seq Data, DL 

ACE2 (Angiotensin-Converting Enzyme 2), TMPRSS2 

(Transmembrane Serine Protease 2), IL6 (Interleukin 6) 

Autoimmune 

Diseases (Lupus, 

Multiple Sclerosis) 

Bayesian Networks (BN), Hybrid AI 

HLA-DRB1 (Human Leukocyte Antigen DR Beta 1), 

PTPN22 (Protein Tyrosine Phosphatase Non-Receptor 

Type 22), STAT4 (Signal Transducer and Activator of 

Transcription 4) 

Schizophrenia 
NN, Principal Component Analysis 

(PCA), GWAS-based ML 

DISC1 (Disrupted in Schizophrenia 1), NRG1 

(Neuregulin 1), DTNBP1 (Dystrobrevin Binding Protein 

1) 

Bipolar Disorder CNN, Deep RL 

CACNA1C (Calcium Voltage-Gated Channel Subunit 

Alpha1C), ANK3 (Ankyrin 3), BDNF (Brain-Derived 

Neurotrophic Factor) 

Depression SVM, Sentiment Analysis 
SLC6A4 (Serotonin Transporter), BDNF (Brain-Derived 

Neurotrophic Factor), FKBP5 (FK506 Binding Protein 5) 

 

The impact of AI and DM in DGP is profound, improving early diagnosis, personalized medicine, and treatment strategies. 
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The challenges remain in integrating multi-omics data, ensuring model interpretability, and handling imbalanced datasets. 

Future research will focus on hybrid AI combining biological knowledge and computational power to refine DGP using gene 

sequences. 

Comprehensive Analysis of Disease Prediction Using Gene Data 

The literature review on DGP data explores integrating genomic data with computational models to enhance early diagnosis 

and risk measurement. Improvements in high-throughput sequencing, GWAS, and microarrays enabled researchers to extract 

informative patterns from sizeable genetic data sets. ML and DL, like SVM, CNN, and ensemble models, have pervasively 

been applied to DP, susceptibility inference, and investigation of GD. FS, from hybrid optimization algorithms to statistical 

methods, play critical roles in selecting correct biomarkers that improve model performance. Ethical concerns about genomic 

data privacy also mandate severe security protocols. Meta-analysis of peer-reviewed journal articles illuminates model 

performance, limitations, and predictions of accuracy medicine. 

Comprehensive Analysis of DGP Using Gene Data 

Ref. 

Scope of 

Applicatio

n 

Type of 

Prediction 

Type of 

Evidence 
Inference Outcome Drawback 

[13] 

Melanoma 

skin cancer 

DNA 

damage 

detection 

Binary 

classification 

Genomic 

sequencing 

The CNN-

based model 

outperforms 

LR 

96% 

accuracy in 

DNA 

damage 

prediction 

Limited to the 

melanoma 

dataset 

[14] 

Degenerati

ve disease 

diagnosis 

Multi-modal 

disease 

classification 

Imaging, 

genetic, and 

clinical 

Graph-based 

fusion 

improves 

disease 

diagnosis 

Outperforms 

state-of-the-

art graph 

models 

Computational

ly intensive 

[15] 

Alzheimer'

s disease 

classificati

on 

Disease 

classification 
GWAS 

Deep transfer 

learning 

improves 

SNP-based 

classification 

89% 

accuracy 

Dependence 

on GWAS 

dataset 

availability 

[16] 

Genomic 

machine 

learning 

model 

evaluation 

Meta-

analysis of 

model 

performance 

Multiple 

genomic ML 

Hyperparame

ter tuning and 

data leakage 

affect 

performance 

Identifies 

common 

biases in 

genomic ML 

Risk of 

overfitting in 

M 

[17] 

lncRNA-

miRNA 

interaction 

prediction 

Computation

al interaction 

prediction 

Public 

databases and 

computational 

models 

Review of 

network and 

sequence-

based 

methods 

Comprehensi

ve survey 

with 

database 

updates 

No new 

predictive 

model 

[18] 

Cancer 

classificati

on using 

gene 

expression 

data 

Multi-class 

classification 

Gene 

expression 

Fuzzy 

classifier 

improves FS 

Enhanced 

accuracy and 

generalizatio

n 

High-

dimensional 

data 

complexity 

[19] 

Prostate 

cancer 

classificati

on 

Disease 

classification 

Microarray 

gene 

expression 

LSTM-DBN 

with 

optimization 

improves 

accuracy 

Optimized 

PRC 

classification 

Hyperparamet

er tuning 

complexity 
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[20] 

Heart 

disease 

prediction 

Multi-model 

classification 
HD (public) 

Hybrid DL 

outperforms 

traditional 

methods 

98.86% 

accuracy in 

HD 

prediction 

Requires large 

datasets for 

training 

[21] 

Microarray 

gene 

expression 

classificati

on 

Cancer 

classification 

Microarray 

gene 

expression 

Wilcoxon 

Sign Rank 

Sum and 

Grey Wolf 

optimized 

ensemble 

learning 

improve 

classification 

100% 

accuracy 

using 

optimized 

XGBoost 

and 

CatBoost 

Risk of 

overfitting on 

small datasets 

[22] 

Alzheimer'

s detection 

using 

genetic 

data 

Binary 

classification 

(Disease/No 

Disease) 

GWAS, 

SHAP 

explainability 

SVM with 

SHAP 

enhances 

interpretabilit

y 

89% 

accuracy 

(SVM) 

Limited 

generalizabilit

y due to 

dataset bias 

[23] 

Leukemia 

prediction 

from gene 

expression 

Binary 

classification 

(Leukemia/

No 

Leukemia) 

Microarray 

gene 

expression 

Hybrid ALO 

+ PSO 

improves FS 

87.88% 

accuracy 

(SVM) 

High 

computational 

cost 

[24] 

Breast 

cancer 

survival 

prediction 

Multi-class 

survival 

prediction 

Multi-omic 

integration 

(gene, 

protein, 

clinical) 

Genomic data 

enhances 

survival 

prediction 

Not 

mentioned 

Complexity in 

feature fusion 

[25] 

Diabetic 

Retinopath

y 

Progression 

Analysis 

Multi-class 

severity 

prediction 

Fundus 

images and 

OCT scans 

Vision 

transformers 

outperform 

CNNs 

90.1% 

accuracy 

(ViT) 

High 

computational 

demand 

[26] 

Gene 

expression 

classificati

on 

Multi-class 

classification 

Gene 

expression 

(Cancer) 

GRU-RNN 

models 

outperform 

CNN, LSTM, 

and hybrid 

models 

85.7% 

accuracy 

Limited to 

cancer datasets 

[27] 
Depression 

prediction 

Binary 

classification 

(Depressed/

Non-

Depressed) 

Microarray 

gene 

expression 

DP-BERT 

pre-trained 

model 

improves 

depression 

classification 

91.2% 

accuracy 

Generalizabilit

y concerns due 

to batch 

effects 

[28] 

Cancer 

classificati

on 

Multi-class 

classification 

Gene 

expression 

data 

DSCNN with 

Enhanced 

Chimp 

Optimization 

(ECO) 

improves 

feature 

selection 

86.5% 

accuracy 

Computational

ly intensive 
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[29] 

Gene 

constraint 

estimation 

Gene 

prioritization 

Population 

genetics, ML 

on gene 

features 

GeneBayes 

models 

enhance gene 

constraint 

estimation 

87.9% 

accuracy 

Limited to 

evolutionary 

analysis 

[30] 

Rare 

genetic 

disease 

diagnosis 

Gene 

prioritization 

LLM-based 

phenotype-

gene mapping 

GPT-4 attains 

the highest 

accuracy but 

underperform

s traditional 

methods 

88.2% AUC 

LLMs require 

further 

optimization 

[31] 

Parkinson’s 

disease 

biomarker 

prediction 

Biomarker 

identificatio

n 

Transcriptom

e and 

metabolic 

modeling 

TAMBOOR 

improves 

metabolic 

biomarker 

detection 

Enhanced 

biomarker 

prediction 

for PD 

Limited to 

metabolic 

pathway 

analysis 

[32] 

Disease 

Symptoms 

prediction 

Genomic 

Expression 

Classificatio

n-Based 

Phenotype 

Prediction 

Topological 

Data Analysis 

TDA-GCN-

SVM model 

95% 

Accuracy 

Limited to 

Topological 

Data 

3. IMPLEMENTATION OF AI FOR DGP 

The genes involved in the GD of humans are identified using mutation analysis and linkage analysis, and the gene analysis is 

tested on the candidate gene.  The data collected for biomedicine is ever-increasing, and a proficient method is needed to 

process it. AI, vital for DL, has dramatically succeeded in computational biology. The clinical trial, generation of a candidate 

gene, diagnosis, identification, and basic research are attained with the assistance of AI-based DL. Most GD are rare diseases 

primarily underrepresented in clinical and basic research, mainly benefiting from AI technologies. 

AI is used when machines can do tasks that generally need human intelligence. It comprises ML, where machines can learn 

by knowledge and gain skills without the involvement of humans. DL is a subdivision of ML in which artificial neural networks 

(ANN) are involved in data analysis. The pattern of human behavior inspires ANN, which learns skills from massive genomic 

data. Gene ontology mainly focuses on the products and function of the gene, whereas terminology motivates products and 

genes. The unification of gene and product features across the species is attained by gene ontology. The ANN is applied from 

the generated gene ontology to analyze, annotate, and investigate the biomedical data. 

Disease caused by GD is due to the alteration in the part or whole portion of the DNA sequence. The mutation process instigates 

GD in one gene, mutation in several genes, factors of the environment that destroy chromosomes, and mutation in a 

combination of the genes. These are all the main factors that modify the gene, and it cause GD in humans. The DGP and GD 

from the ever-growing genomic data is a tedious method. The traditional method of DGP from the gene is complicated and 

time-consuming. To overcome the problems, several algorithms were developed for methods for DGP and GD-causing genes.  

The GD is identified by generating ontology from the gene and applying AI-based algorithms. Currently, ontology content 

curation is mainly implemented in research activities related to biomedical data, and it is used in two major processes.  

Ontologies signify the relations and entities of diverse domains of biomedicine. The biomedical experimentalist uses ontology 

to interpret the data, and the data is integrated with data from other researchers, which permits the data analysis of cross-

species. Both content curation and annotation are essential challenges in gene analysis. To resolve this, an AI is used.  

AI is a combination of computing models, theories, and algorithms that help several things that require human intelligence, 

such as the perception of visuals, recognition of speech, reasoning, understanding of language, and decision-making. AI 

encompasses several methods: Computer Vision (CV), ML, NLP, rule-based logic, and DL. AI-based methods can speed up 

the analysis of massive amounts of data, leveraging patterns and giving quick results that can be used in further decision-

making. Sophisticated analytical models are generated using algorithms that uncover the patterns and predict the outcomes. 

The arrival of big data and the increasing data demands computing power, storage, and practical data analysis. The result of 

the data analysis provides actionable and valuable visions.  

A gene ontology is prepared with the genomic data, and AI is employed in DGP. A backpropagation NN is incorporated to 

design a model where the prospective collaboration among genes is achieved. The weight prediction and direction of the signal 
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are employed to generate a model, and its strengths are the interaction of directions and signals of the interaction link among 

genes. The proposed ANN is validated with Monte Carlo cross-validation to optimize generalization ability and reduce the 

risk of overfitting the model. The network interface and investigation of discovered genes within the scenario of the DGP 

highlight the extensive influence of definite genes in the genomic data with the disease. The research methodology in the 

literature is given below based on the diversified research. The overall mechanism of training and identifying the data from 

the literature is illustrated in Figure 1. 

 

Overall Framework - AI-based Disease Prediction 

4. DISCUSSION 

Visualization of Similarities (VoS) Viewer 1.6.20 is a visual and analytical citation, co-citation, co-authorship, and keyword 

co-occurrence bibliometric network software. VoS enables the development of graphical models of the relationship between 

authors, papers, and keywords through clustering and network visualization. VoS is fast on standard personal computers with 

a multi-core processor, 16 GB RAM, and at least 100 GB storage capacity. It is compatible with MacOS 15 Sequoia. 

Alternatively, Python is a high-level programming language widely used for data manipulation, statistical analysis, and ML 

with packages like pandas, matplotlib, seaborn, and networks, further boosting its application in literature analysis. Python is 

adaptable to handle big data and accommodate complex algorithms, can be run on computers with a minimum of 16 GB RAM 

and multi-core processors, and is compatible with macOS 15  

Sequoia. VoS and Python are key software in comprehensive literature analysis since they enable researchers to graphically 

display bibliometric data, identify trends, perform comprehensive statistical network analysis, and generate sensitive data on 

scientific fields and research networks. 

The aim here is to visually display the correlation of genes with their diseases in a bipartite network in Figure 2. A disease is 

color-coded, and the relevant genes are color-coded in the same color to identify GD quickly. The network considers the GD 

of different diseases by visualizing common genes, such as tumor protein p53 (TP53), that are linked to different cancers. The 

dense layout presents a more compact visualization to make it perfect for scientists investigating GD, comorbidities, and 

probable therapy targets. The method improves the interpretability in genomics and bioinformatics studies. 
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Bipartite Gene-Disease Network: Mapping Genetic Associations Across Disorders 

The reviewed studies focus on disease classification and risk prediction across several medical conditions using genomic, 

imaging, and clinical data. The highest reported accuracy is 100% for cancer classification using microarray gene expression 

data with optimized XGBoost and CatBoost, but the study raises concerns about overfitting due to small datasets. Heart disease 

prediction achieved 98.86% accuracy using a hybrid DL, emphasizing the advantage of multi-models but requiring big 

datasets. Prostate cancer classification with Deep Belief Network - Long Short-Term Memory (DBN-LSTM)  optimization 

yielded significant improvement, though hyperparameter tuning complexity was noted. Similarly, Alzheimer's classification 

with Deep Transfer Learning (DTL) reached 89% accuracy, limited by GWAS dataset availability. 

CNN, such as those in melanoma DNA damage detection and Parkinson’s detection, reported 96% and 92.3% accuracy, 

respectively, outperforming traditional models. Graph-based fusion demonstrated superior performance in multi-modal 

disease diagnosis, though computational costs remain problematic. Vision transformers surpassed CNNs in diabetic 

retinopathy severity prediction with 90.1% accuracy but demanded high computational resources. Explainability-enhanced 

models like SVM-model-agnostic Shapley additive explanations (SHAP) for Alzheimer’s detection achieved 89% accuracy 

but were constrained by dataset bias, which is illustrated in Figure 3. 

 

Fig. 3. Comparison of Performance 

Hybrid models integrating DL and FS reliably outperformed baseline models, highlighting the importance of optimized 

models. However, challenges such as dataset bias, overfitting risks, and computational costs require further research to enhance 
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generalizability and scalability. The performance of ML, particularly classification, is primarily determined in terms of 

accuracy measures. The accuracy levels of several research articles reflect the performance of their respective models. The 

variability in the accuracies seen, with the best accuracy levels of 100% being attained by specific models, reflects the potential 

of well-optimized algorithms for specific tasks. However, the variability in accuracy, such as the rate of values less than 90%, 

reflects the inability to achieve robustness over many datasets and problem spaces. These differences can arise from the dataset 

quality, feature engineering, or choice of model and training parameters. However impressive, models with 100% accuracy 

need not always reflect the generalization potential since overfitting is possible. Accuracy must be followed by precision, 

recall, and F1-score to approximate such models' true performance and applicability. 

5. CONCLUSION AND FUTURE WORK 

The use of AI and DM for DGP has revolutionized the precision and efficacy of detecting disease-causing GD. Researchers 

can find complex gene-disease relationships using ML, DL, and network-based analysis tools, resulting in early diagnosis and 

tailor-made treatment. The challenges include integrating heterogeneous genomic data, class imbalance, and model 

interpretability. These challenges will be overcome through hybrid AI that combines computational capability with biological 

data. Integration of multi-modal data, including genomic, transcriptomic, and clinical data, will further improve the accuracy 

of the predictions. In addition, the creation of explainable AI and FL will provide privacy and transparency, resulting in AI-

based genomic studies that are open and reliable. As the models improve, they will be a prime driver of precision medicine, 

giving personalized therapeutic methods to diseases. 

Future research can explore hybrid AI, integrating genomic, transcriptomic, and clinical data to increase the accuracy of DGP. 

Emphasis on explainable AI, FL, and data bias correction will enhance the interpretability of the models and preserve privacy, 

thus making them clinically applicable in precision health and personalized medicine 
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