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ABSTRACT 

Liver cirrhosis is an insidious condition involving the substitution of normal liver tissue with fibrous scar tissue and causing 

major health complications. The conventional method of diagnosis using liver biopsy is invasive and, therefore, inconvenient 

for use in regular screening. In this paper,we present a hybrid model that combines machine learning techniques with clinical 

data and ultrasound scans to improve liver fibrosis and cirrhosis detection accuracy is presented. The model integrates fixed 

blood test probabilities with deep learning model predictions (DenseNet-201) for ultrasonic images. The combined hybrid 

model achieved an accuracy of 92.5%. The findings establish the viability of the combined model in enhancing diagnosis 

accuracy and supporting early intervention in liver disease care. 
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1. INTRODUCTION 

Liver cirrhosis is a chronic and progressive disease whereby the healthy tissues of the liver are gradually replaced by fibrous 

scar tissue; hence, liver function is reduced significantly. Such conditions are also believed to have multifactorial causes, 

mainly including autoimmune conditions, NAFLD, alcoholic liver disease with heavy alcoholism, and hepatitis B and C 

infections. The complications of progressing cirrhosis vary from liver failure, ascites, portal hypertension, and hepatic 

encephalopathy to hepatocellular carcinoma, which are all considered a set of severe complications with high mortality rates 

[1]. Liver cirrhosis not only impacts the individual but also brings an immense burden on healthcare systems around the 

globe. 

The correct management and treatment of the patient depend entirely on early detection and proper diagnosis of liver 

cirrhosis. Early intervention might thereby limit undesirable consequences of the disease and enhance quality of life in 

affected patients [2]. Diagnosing liver cirrhosis traditionally requires invasive methods, including biopsy of the liver, which 

is dangerous with a risk of bleeding and infection, as well as being resource-intensive. These limitations make routine 

screening infeasible, especially in resource-limited settings. Many patients are diagnosed only at an advanced stage of liver 

disease; poor health outcomes and limited treatment options result. 

Non-invasive alternatives include ultrasound imaging and transient elastography as a potential diagnostic tool. The 

widespread acceptance of ultrasound imaging arises because it is non-invasive; however, at the same time, cost-effective, 

and can give real-time information about the structure of the liver and blood flow. However, its diagnostic accuracy can be 

limited, especially in early stages of the disease, where minor changes in the architecture of the liver cannot easily be 

identified. Transient elastography, which is a method to measure liver stiffness as an indicator of fibrosis, has some promise 

but has very significant limitations in terms of sensitivity and specificity, especially to differentiate the earliest stage of liver 

damage from cirrhosis [3]. 

Despite such promising advancements of ML, however, the existing landscape of diagnosis of liver cirrhosis has several  
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challenges. Most of the existing ML models are designed to target either imaging data or clinical datasets independently, 

which prevents them from identifying complex patterns and relationships that are critical for making accurate diagnoses. 

While some models can predict excellently in controlled environments, it ultimately fails to generalize well and determine 

accurate predictions in real clinical settings, where variability is ubiquitous. This gap spells out the need to have a unified 

framework which harmonizes clinical data, laboratory results, and imaging modalities for improving diagnostic accuracy 

and access. 

A hybrid model that explicitly leverages the sophistication of machine learning algorithms with multimodal data sources 

shall complete the gaps for the proposed research. This will develop a consensus diagnostic framework, which shall benefit 

the non-invasive diagnosis and management of liver cirrhosis in accuracy, reliability, scalability, and adaptability in different 

clinical settings. The grounds for this research are oriented along the incessant rise in the number of people afflicted with 

cirrhosis of the liver and its serious health impacts. The silent progress of liver cirrhosis to late stages prior to diagnosis, 

where only limited options for treatment are viable and complications can subsequently delay recovery, means that their 

early detection and diagnosis require check-ups. However, the traditional methods like a biopsy are invasive, costly, and 

entail risks that make them impossible for routine screenings. 

Safer alternatives, including blood tests, ultrasound, and other imaging methods have been developed; however, they often 

fail to distinguish between early liver damage and cirrhosis, at least in diverse clinical environments. Variability in skill of 

the operator, body composition of the patients, and machine differences often render variable outcomes so that uniform 

results across several clinics are challenging to achieve. 

It appears that the integration of machine learning and artificial intelligence into the diagnostic process may be a promising 

avenue in overcoming such challenges. Recent studies point out the potential application of ML techniques toward the aim 

of improving accuracy in detection of liver cirrhosis. For example, algorithms such as SVM and Random Forest have shown 

powerful performances in classifying the stages of liver disease. The latter produces very high precision and sensitivity and 

thus is valuable for clinical works [4]. Logistic Regression also performs with good efficacy. It is claimed to achieve over 

85% accuracy for different applications in many areas [5]. 

Advanced models, such as CNNs, also have been employed to further evolve the detection of liver cirrhosis. Given that 

CNNs are quite successful in image data processing, extraction of subtle features that may hint at liver pathology becomes 

feasible. Integration of imaging data with clinical and laboratory results provides a deeper understanding of liver health, 

increasing the accuracy of diagnosis. 

The proposed hybrid model aims at improving the deficiency of traditional diagnosis techniques by taking advantage of data 

sources and making use of highly complex machine learning algorithms. Such a method would improve the precision in the 

diagnosis of liver cirrhosis besides increasing scalability and adaptability and being suitable for clinical settings in different 

ways. By minimizing the requirements for invasive procedures, this model will align with the principles of personalized 

medicine by providing earlier interventions and reducing the burden of liver cirrhosis on healthcare systems. 

2. LITERATURE REVIEW 

The integration of ML and DL techniques has provided improved detection features of liver fibrosis and cirrhosis to diagnose 

with precise accuracy by ultrasonic imaging with the analysis of blood tests. Artificial Neural Network (ANN)-based 

approaches have recently been in high demand, where evidence has emerged that these models may be better than the 

traditional diagnostic techniques, exploiting complex patterns that are not identified by conventional methods, hence 

increasing the diagnostic accuracy [6]. The inclusion of methodologies and techniques such as fuzzy c-means in the clustering 

techniques have improved feature extraction from imaging data, thus resulting in improved performance metrics across 

several studies [7]. Transient elastography has also gained significance, allowing clinicians to integrate imaging results with 

clinical judgment for a holistic evaluation of liver health [8]. 

High quality results for ML models have been achieved using diverse datasets, including clinical characteristics, laboratory 

test results, and imaging data; an example study based on the Kaggle standard dataset reported accuracy rates that range from 

76% to over 99% with differing ML algorithms, which strongly suggests that such modeling is quite effective for detecting 

liver disease [9]. Other feature extraction methods, such as PCA, have been added to modeling, which has increased the 

predictability models so that they can classify a stage of liver disease [10]. The metrics of accuracy, precision, recall, and F1 

score showed good predictability, which indicates their clinical applicability [11]. 

Interdisciplinary approaches have also been made to know how to handle liver disease in an efficient manner. Wei et al. 

(2024) introduced LivMarX, a model that simulates liver cirrhosis using biomarkers instead of imaging, employing advanced 

ML algorithms. This model achieved an accuracy of 84.33% prior to optimization and 86% afterward [12]. This is a big 

development in early detection and management of liver cirrhosis as ML techniques merge with clinical data and imaging 

modalities, yielding promising results to the promise that ML can make in the diagnosis of liver disease for better care of 

patients [13]. Liver cirrhosis is an end-stage manifestation of chronic liver disease and creates serious global health concerns 

because of complications such as portal hypertension, variceal bleeding, and hepatocellular carcinoma. 
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While liver biopsy still represents the standard of reference, imaging is widely used in cirrhosis diagnosis and its 

complications. Traditional morphological criteria employed by imaging have a subjective character and, hence, interobserver 

variability and diagnostic performance are quite limited. It is with these quantitative imaging methods, which involve 

artificial intelligence (AI), that better objectivity and diagnostic performance are achieved. Deep learning, especially 

convolutional neural networks, has revolutionized image analysis across various domains. However, CNNs require huge 

annotated datasets to train them from scratch, which are scarce in medical contexts. Transfer learning is effective in adapting 

a pre-trained CNN to the new task at hand. Nowak et al. (2021) explored how well deep transfer learning can diagnose liver 

cirrhosis using standard T2-weighted MRI, comparing its performance to that of radiologists with varying levels of 

experience. The study analyzed data from 713 patients retrospectively, achieving high Dice coefficients for liver 

segmentation and demonstrating greater accuracy in cirrhosis detection than the radiologists [14]. Furthermore, Endah et al. 

(2023) improved detection of cirrhosis by incorporating deep learning by using CNN models. It may be used as a potential 

for the improvement in diagnostic accuracy in cirrhosis [15]. Zhao et al. (2023) experimented with alto-frequency ultra-

sound images that combined deep learning techniques. Thus, CNN could extract high dimensional features with the 

enhancement in diagnostic accuracy in cirrhosis [16]. Jabbar et al. (2023) proposed a hybrid ML-based approach that makes 

use of the ultra-sound images of liver fibrosis, achieving a classification accuracy of 98.59% on CNN and SVM classifiers 

in an ensemble form; indeed, hybrid models improve diagnostic 

performances[17]. 

Aggarwal et al. made efficient usage of the Gray Level Co-occurrence Matrix to extract textural features in ultrasound 

images. They reported that combining different classifiers and features obtained through the use of the GLCM helped attain 

a certain level of 89.28% accuracy [18]. In addition, PCA integration for feature extraction has been demonstrated to improve 

the predictability of models in the classification of stages of liver disease [19]. Recently, efforts have been made to develop 

automated systems that support clinicians in the diagnosis of liver cirrhosis. For example, research suggested the diagnosis 

of liver cirrhosis based on altofrequency ultrasound images by using a deep learning-based neural network; the technique 

enhances the accuracy of diagnosis by extracting high-dimensional features and developing an auxiliary diagnosis system 

for clinicians [20]. 

Combining the power of machine learning with clinical data and imaging modalities is a huge step forward in the early 

detection and management of liver cirrhosis. Promising results from several studies suggest that machine learning is 

revolutionizing liver disease diagnostics, which should lead to better patient care and outcomes. Future research should target 

refinement of the already established models, continue hybrid approaches, and try to resolve clinical challenges to make 

these diagnostic tools better. 

3. DATA COLLECTION AND PREPROCESSING 

Clinical Dataset and Preprocessing 

This study uses a clinical data set obtained from a Mayo Clinic investigation of primary biliary cirrhosis (PBC) [21]. The 

data set consists of 418 individual cases of patients with liver cirrhosis. Each case is characterized in terms of 17 clinical 

features, including demographic information, laboratory test results, and clinical observations. Such features include 

dimensions such as age, sex, ascites present, enlarged liver (hepatomegaly), and other biochemical parameters such as 

bilirubin, albumin levels, and prothrombin time. The ”Status” variable indicates the status of the survival of the patient as 

deceased (D), censored (C), or censored because of liver transplantation (CL). 

The clinical dataset was subjected to a number of preprocessing operations to make it ready for analysis. Rows with missing 

values in the ”Drug” column were deleted. For other features with missing values, imputation was done using the mean of 

the corresponding feature. One-hot encoding was done for all categorical attributes to transform them into a numerical format 

that can be used by machine learning algorithms. 

Ultrasound Imaging Dataset and Preprocessing 

The ultrasound image dataset is acquired from the research paper in IEEE Access, where the focus was on the liver fibrosis 

classification from heterogeneous ultrasound images [22]. This dataset consists of images obtained from two South Korean 

tertiary university hospitals. The total dataset has 6323 images classified into three phases of liver fibrosis, namely No 

Fibrosis,Fibrosis, and Cirrhosis. They are in JPG format and are used for training and validation of machine learning models 

intended to classify the level of liver fibrosis. 

The ultrasound images were preprocessed to improve their quality and make them ready for analysis. The images were 

normalized so that brightness and contrast levels remained uniform across the dataset. The images were all resized to the 

same dimension in order to process them in batches while training the model. Rotation, flipping, and zooming were applied 

to augment diversity of the training set and model robustness. 

4. METHODOLOGY 

file:///C:/Users/Vikash/Downloads/20250424050500911_M-362_Vol.%2014%20No.%2017S%20(2025)_Journal%20of%20Neonatal%20Surgery%20(1)%5b1%5d%20(1).docx%23_uyabw65y9mzs
file:///C:/Users/Vikash/Downloads/20250424050500911_M-362_Vol.%2014%20No.%2017S%20(2025)_Journal%20of%20Neonatal%20Surgery%20(1)%5b1%5d%20(1).docx%23_nxq0pban8if0
file:///C:/Users/Vikash/Downloads/20250424050500911_M-362_Vol.%2014%20No.%2017S%20(2025)_Journal%20of%20Neonatal%20Surgery%20(1)%5b1%5d%20(1).docx%23_pr8mycrwyrp
file:///C:/Users/Vikash/Downloads/20250424050500911_M-362_Vol.%2014%20No.%2017S%20(2025)_Journal%20of%20Neonatal%20Surgery%20(1)%5b1%5d%20(1).docx%23_irkxdet3yv1g
file:///C:/Users/Vikash/Downloads/20250424050500911_M-362_Vol.%2014%20No.%2017S%20(2025)_Journal%20of%20Neonatal%20Surgery%20(1)%5b1%5d%20(1).docx%23_kz3zwfohacso
file:///C:/Users/Vikash/Downloads/20250424050500911_M-362_Vol.%2014%20No.%2017S%20(2025)_Journal%20of%20Neonatal%20Surgery%20(1)%5b1%5d%20(1).docx%23_gy4iopluz89e
file:///C:/Users/Vikash/Downloads/20250424050500911_M-362_Vol.%2014%20No.%2017S%20(2025)_Journal%20of%20Neonatal%20Surgery%20(1)%5b1%5d%20(1).docx%23_2s0xfoh3foch
file:///C:/Users/Vikash/Downloads/20250424050500911_M-362_Vol.%2014%20No.%2017S%20(2025)_Journal%20of%20Neonatal%20Surgery%20(1)%5b1%5d%20(1).docx%23_31ttd1luhfhc
file:///C:/Users/Vikash/Downloads/20250424050500911_M-362_Vol.%2014%20No.%2017S%20(2025)_Journal%20of%20Neonatal%20Surgery%20(1)%5b1%5d%20(1).docx%23_cp9xejpci2xh


Sean Fargose, Kapil Kashyap, Chrisil Dabre, Fatema Dolaria, Nilesh Patil, Aniket Kore 
 

pg. 906 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 17s 

 

Clinical Data Analysis 

We used different machine learning algorithms in this study to identify the most optimal model for classifying clinical data 

related to liver disease, with a focus on fibrosis and cirrhosis presence. The performance of each model was assessed based 

on accuracy, precision, recall, and F1-score, with separate evaluations conducted for each of the three classes: No Fibrosis 

(0), Fibrosis (1), and Cirrhosis (2). 

LightGBM achieved an accuracy of 0.9533 and was chosen primarily due to its efficient computational efficiency. Its 

histogram-based methodology reduces memory consumption and increases training time, making it ideal for handling large 

datasets. The model also showed good precision and recall measures, confirming its overall robust performance. 

 

Fig. 1 XGBoost Architecture Diagram 

Above figure depicts the step-by-step workflow of the XGBoost algorithm, including data input, boosting process, and final 

model output. It illustrates how the algorithm enhances prediction accuracy through iterative training and optimization. 

XGBoost yielded the top accuracy score of 0.9580, indicating exceptional performance across all three classes. Specifically, 

it achieved precision scores of 0.96 for No Fibrosis, 0.94 for Fibrosis, and 0.97 for Cirrhosis. Its recall scores were 0.95, 

0.96, and 0.96 for the same respective classes, resulting in a consistent F1-score of 0.96 for each. This model’s selection was 

driven by its capacity to efficiently process large datasets, its optimized loss function, and its regularization features designed 

to mitigate overfitting. 

CatBoost reached an accuracy level of 0.9527 and was chosen for its ability to directly manage categorical variables, thereby 

minimizing the need for extensive preliminary data preparation. The model’s precision scores were 0.96 for No Fibrosis, 

0.94 for Fibrosis, and 0.97 for Cirrhosis. Similarly, it achieved recall scores of 0.94, 0.96, and 

0.96 for the same classes, resulting in uniform F1-scores of 0.95 across all categories. Random Forest achieved an accuracy 

of 0.9497 and was employed to mitigate overfitting while providing feature importance insights. This ensemble method con- 

structs multiple decision trees and aggregates their predictions, demonstrating reliable 

performance through balanced precision and recall metrics. 

Gradient Boosting served as a baseline model with 0.8471 accuracy. This stage-wise error-correction approach effectively 

captured complex data relationships, though it showed higher susceptibility to overfitting compared to modern boosting 

implementations. 

The Gated Recurrent Unit (GRU) achieved 0.9185 accuracy and was investigated for sequential pattern recognition in clinical 

data. While primarily designed for time-series analysis, its application to potentially sequential clinical data yielded moderate 

performance below tree-based models. 

TabNet attained 0.8981 accuracy using its attention mechanism for interpretable tabular data analysis. This hybrid 

architecture combines decision tree concepts with deep learning, focusing on clinically relevant features while maintaining 

model transparency. 

Overall, XGBoost emerged as the optimal classifier (accuracy: 0.9580), emphasizing the criticality of model selection for 

complex clinical data tasks. The superior performance of gradient-boosted tree architectures highlights their effectiveness in 

liver disease classification. 

Ultrasound Imaging Analysis 

We used a number of deep learning methods to classify ultrasonic image data with the aim of identifying important features 

for precise diagnosis. The models tested are AlexNet, DenseNet, ResNet50V2, and a typical Convolutional Neural Network 

(CNN). AlexNet had an accuracy of 0.7928. This groundbreaking convolutional neural network has five convolutional layers 
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with max-pooling layers and uses ReLU activation functions to provide non-linearity. AlexNet is capable of dealing with 

large sets of images and employs dropout and data augmentation techniques to prevent overfitting. Although its performance 

on ultrasonic images is satisfactory, it may be limited compared to recent architectures. 

ResNet50V2 had an accuracy of 0.7895. The model uses residual connections that make it easier to train deeper networks 

and overcome the vanishing gradient issue. ResNet50V2 facilitates the construction of networks of hundreds of layers with 

high accuracy. In ultrasonic imaging, ResNet50V2 can identify complex features and patterns but at lower accuracy than 

DenseNet. 

CNN (Convolutional Neural Network) performed with an accuracy of 0.8213. A standard CNN consists of many 

convolutional layers and pooling layers which are designed to learn spatial hierarchies of features automatically from images. 

CNNs are very versatile and can be configured for particular tasks, making them very popular for image classification. For 

ultrasound images, CNNs can be trained to prioritize significant features, achieving similar accuracy. 

 

Fig. 2 DenseNet Architecture Diagram 

Above figure shows a multi-path convolutional neural network structure that is optimized to process liver ultrasound images. 

The network starts with the input of the ultrasound image data, denoted as (input x). All branches of the network have batch 

normalization applied to them followed by a ReLU activation function.The paths consist of two sequential convolutional 

layers in order to allow the network to extract various features from the images. 

After each sequence of convolutional layers, the results are concatenated with the initial input (input x), providing a richer 

feature representation.This concatenation happens twice throughout the architecture, showing the capability of the network 

to concatenate low-level features with higher-level abstraction well.Once completed, each branch is finished by an output, 

allowing extra processing or classification procedure. In total, this structure focuses on depth and feature combination, 

important for precise image analysis in medical practice. 

DenseNet achieved a maximum accuracy of 0.91 among the models considered. DenseNet, or Densely Connected 

Convolutional Networks, favors feature propagation and reuse by making each layer connected with all the other layers in a 

feed-forward fashion. The design minimizes the number of parameters but maximizes accuracy and efficiency. DenseNet’s 

capacity to learn from numerous features is especially efficient in complex image classification problems, such as ultrasonic 

image data. 

Overall, DenseNet was the top-performing model for ultrasonic image data classification in this study, illustrating the 

importance of selecting appropriate deep learning architectures for complex image classification tasks in medical imaging. 

The differences in model performance highlight the critical role of careful architectural selection in maximizing diagnostic 

accuracy. 

Hybrid Predictions using Voting Classifiers 

This work proposes a hybrid diagnostic classifier system that uses predictions from the analysis of blood tests and ultrasound 

images and fuses them using voting classifiers. It enhances the reliability and accuracy of the detection of liver fibrosis and 
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cirrhosis by leveraging the respective strengths of the two diagnostic modalities. It dynamically weighs each modality based 

on their respective classification accuracies and produces a well-calibrated decision process. The method uses a soft voting 

classifier, which averages out probabilistic output of multiple classifiers and returns the final diagnosis by selecting the class 

with highest cumulative probability, thereby allowing more precise predictions to make stronger influence on the outcome. 

 

Fig. 3 Architecture of a Soft Voting Classifier 

The above figure shows the architecture of a soft voting classifier for binary classification in two classes L1, L2 using n 

individual classifiers (C1, C2, . . . , Cn), where there are several classifiers C1, C2, . . . , Cn trained from the data and each 

classifier generates individual probability distributions P1, P2, . . . , Pn for every class. The final classification is attained by 

computing the average probabilities across all the classifiers, giving the validation data to the most cumulative likely class 

enhancing the robustness and reliability of the decision-making process. 

 

 

Fig. 4 Workflow diagram for Soft Voting Classifier 

The process of the hybrid diagnostic model for detection of liver fibrosis and cirrhosis to be proposed is illustrated in the 

diagram. The process starts with drawing blood test data and ultrasound images. On success, the blood test data is 

preprocessed and tested through an XGBoost model, whereas ultrasound images are processed and classified in a DenseNet 

model. The probability scores from both modalities are then weighted according to their classification accuracy and 

aggregated with a soft voting classifier to arrive at the final predicted class (No Fibrosis, Fibrosis, or Cirrhosis). If data 

extraction is unsuccessful, the process stops. The weighting factor for the blood test data, wb, is determined using the 

equation: 
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Similarly, the weighting factor for image-based analysis wi is given by: 

where,  

 

• wb = Weighing factor for the blood test model 

• wi = Weighing factor for the blood test model 

• Ab = Accuracy of the proposed model for blood test data 

• Ai = Accuracy of the proposed model for image analysis model 

These weights are then multiplied against the corresponding class probabilities of the individual models. The final class 

probability in the hybrid model is calculated as the weighted sum of the probabilities from the individual models. This 

provides more important contributions in the classification decision in the final step by the models having a higher level of 

accuracy. 

Equation for Hybrid Probability Calculation 

The final hybrid probability for class c can be computed as: 

Phybrid,c = wb · Pb,c + wi · Pi,c (3) 

 

where, 

• Pb,c = Predicted probability of class c from the blood test model 

• Pi,c = Predicted probability of class c from the image analysis model 

• Phybrid,c = predicted probability of hybrid model for class c 

This method sets up an equitable and strong prediction system, which guarantees that both structured (clinical) and 

unstructured (image) data significantly contribute to the final diagnosis. The weighted voting process overcomes individual 

model weaknesses to allow for better and more complete evaluation of liver fibrosis and cirrhosis. 

5. RESULTS 

Several machine learning models were evaluated in this study for their ability to classify clinical data pertaining to liver 

conditions. Model performance was gauged using accuracy, precision, recall, and F1-score, with individual evaluations 

conducted for each of the following three classes: No Fibrosis (0), Fibrosis (1), and Cirrhosis (2). The results are summarized 

in Tables 1 and 2. 

Table 1 Accuracy and Precision for Clinical Data Analysis 

Model Accuracy Precision (0) Precision (1) Precision (2) 

XGBoost 0.9580 0.96 0.94 0.97 

LightGBM 0.9533 0.95 0.94 0.97 

CatBoost 0.9527 0.96 0.94 0.97 

Random Forest 0.9497 0.95 0.93 0.97 

Gradient 

Boosting 

0.8471 0.85 0.94 0.97 

GRU 0.9185 0.93 0.89 0.94 

TabNet 0.8981 0.90 0.87 0.91 
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Table 2: Evaluation matrix for clinical data 

Model Recall (0) Recall (1) Recall (2) F1 (0) F1 (1) F1 (2) 

XGBoost 0.95 0.96 0.96 0.96 0.95 0.97 

LightGBM 0.95 0.95 0.96 0.95 0.95 0.97 

CatBoost 0.94 0.96 0.96 0.95 0.95 0.96 

Random Forest 0.94 0.95 0.96 0.94 0.94 0.97 

Gradient 

Boosting 

0.83 0.96 0.96 0.84 0.95 0.97 

GRU 0.91 0.92 0.93 0.92 0.90 0.93 

TabNet 0.90 0.89 0.91 0.90 0.88 0.91 

 

The results show that XGBoost achieved the best accuracy (0.9580), supported by high precision, recall, and F1-scores for 

all classes. LightGBM and CatBoost also performed well, with Gradient Boosting performing relatively lower accuracy and 

F1- scores. The results reflect the effectiveness of the models being tested in classifying clinical data for liver disease, and 

how model choice contributes to achieving best performance results. 

 

 

Fig. 5 Graphical Representation of Clinical Data Results 

Table 3 Accuracy for Ultrasonic Image Dataset 

Model Accuracy 

AlexNet 0.7928 

DenseNet 0.9071 

ResNet50V

2 

0.7895 

CNN 0.8213 

 

The accuracy results of the deep learning models, as evaluated on the ultrasonic image dataset, are presented and summarized 

in Table 3. 

These results demonstrate the effectiveness of the deep learning models assessed in classifying ultrasonic image data. 

The hybrid model, integrating clinical and image data, was evaluated on a cohort of 40 patients. This model incorporated 
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blood test probabilities in conjunction with predictions generated by a DenseNet-201 model analyzing ultrasonic images. 

The hybrid model accurately predicted the conditions for liver diseases yielding an accuracy of 92.5% demonstrating the 

effectiveness of integrating clinical and image data to enhance diagnostic accuracy. 

6. FUTURE SCOPE 

Future work can then continue to evolve the hybrid model to take in larger multimodal input data, for example, genomic 

data, lifestyle data, and demographic data, to enable more accurate diagnostics and personalization. The application of 

sophisticated feature selection methods will also enable the determination of the most discriminative predictors of liver 

disease. Furthermore, increasing the dataset size even larger and from a more heterogeneous population can offer the model 

more generalizability and robustness across various clinical practices. In addition, real-time application of the model in 

practice may give timely decision-making and enhance patient outcomes in the management of liver disease. 

7. CONCLUSION 

Blending the clinical data and the ultrasound pictures through a hybrid machine learning technique is an impressive advance 

in the non-invasive diagnosis of cirrhosis and liver fibrosis. By merging the advantage of blood test analysis and deep learning 

techniques, the model acquired a high accuracy rate of 92.5%, which demonstrates its capability in real-world applications. 

It not only improves the accuracy of diagnosis but also follows the personalized medicine approach by facilitating the 

treatments at an earlier stage. Subsequent research would be tuning the model to its optimal level and testing its performance 

across different clinical settings in order to render it generalizable and effective in practice. The findings indicate the 

importance of creating hybrid models in the war against liver disease, resulting in improved patient outcomes and reduced 

healthcare expenses. 
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