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ABSTRACT 

In this study, we propose an SEI1I2QRV Smodel for epidemic infec- tious diseases, which simulates the process of virus 

transmission. The model demonstrates how the virus impacts individuals who are infected. It is a well-established fact that 

the spread of infectious diseases can contribute to the proliferation of the virus within a susceptible population. One method 

of managing infectious diseases is to raise the virus-related fatality rate. In order to explain the virus’s growth and decline 

rates in the susceptible pop- ulation, the suggested model will be examined. We investigate the dynamic behaviour inside 

the model’s framework. It is shown that the model has two equilibrium points: a disease-free equilibrium (DFE) and an 

endemic equi- librium (EE). According to our results, the basic reproduction number, or 

R0, has a major impact on the model’s dynamics. When R0 < 1, the DFE is asymptotically stable both globally and locally 

under specific conditions. 

On the other hand, if R0 > 1, the internal equilibrium is asymptotically stable both globally and locally. Finally, we evaluate 

our analytical results by numerical simulations utilizing biologically relevant parameter values.  
 

Keywords: Two phases of infection, Epidemic model, Quarantine, Basic reproduction number, Virus Class, Global 

stability, Local stability 

1. INTRODUCTION 

Mathematical modeling has emerged as an invaluable tool in the fight against infectious diseases, offering profound insights 

into their spread and effective management. These models aid in forecasting the course of an illness over time and emphasise 

the critical factors that influence disease transmis- sion and recovery rates [1, 31, 32]. Assessing stable states and their 

stability is one of the primary difficulties in examining the behaviour of epidemic models [2, 26, 32].It is believed that no 

late interventions are taken into consideration when the population in each compartment shows no structure, such as age or 

geographic location [32]. In a conventional SIR (Suscepti- ble, Infectious, Recovered) model, the time evolution is defined 

by ordinary differential equations (ODEs) [3, 26, 33]. The disease incubation period is frequently assumed to be insignificant 

in the literature currently under pub- lication. In this case, each vulnerable person becomes infectious right away after 

contracting the infection and gradually recovers, gaining temporary im- munity [32]. These presumptions form the basis of 

the SIR model. But in the natural world, several illnesses (including measles, influenza, and tuber- culosis) need a susceptible 

individual to come into intimate contact with an infected people in order for them to become exposed and sick but not yet 

contagious. Before becoming contagious, this individual stays in the exposed group for a predetermined amount of time [33]. 

It can be remarkably short for an organism to go from a latent condition to infectious status [4, 5, 6, 7, 8, 9, 10]. 

Public health organisations are quite concerned about emerging trans- 

missible illnesses because they have a huge financial impact on communities and have a devastating effect on public health 

[31]. Therefore, it is crucial to assess possible strategies for managing these illnesses [11, 12, 13]. The foot-and-mouth 

disease, 2009 swine influenza pandemic, and severe acute respiratory syndrome (SARS) are only some of the examples of 

the develop- ing and reemerging illnesses that isolation and quarantine have recently been successfully implemented to 

prevent the spread of in humans and animals [10, 11, 12, 21]. The SARS out- breaks 2003 serve as an important exam- ple 

of how quarantine and isolation can effectively control a novel disease [10, 11, 12, 21]. However, implement- ing these 

measures can lead to signif- icant psychological costs and socio-economic[31]. Removing people from the general  
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community who are suspected of being infected but do not exhibit any clinical signs is known as quarantine [31]. Such 

individuals can have 

a viral infection without any symptoms or infected asymptomatically. In contrast, isolation refers to separating infected 

individuals who exhibit clin- ical symptoms of the disease. Infected people are placed in isolation to stop them from 

interacting with others and spreading the infection [10, 11, 14, 15, 16]. This strategy is mostly used to suppress abrupt illness 

outbreaks. A successful case of isolation was the manage- ment of SARS during 2003-2004. Nonetheless, this strategy has 

drawbacks, including the challenges in detect- ing infected individuals and the costs asso- ciated with isolation. Generally, 

achieving perfect isolation on a large scale is difficult, leading to incomplete isolation and the risk of nosocomial infections 

[17, 18, 19, 20, 22]. 

In this model, we have taken two infectious stages: the first infectious stage I1 and the second infection stage I2. In the first 

infectious stage, indi- viduals are actively affected with the pathogen and can transmit it to suscep- tible persons. They may 

exhibit symptoms or remain asymptomatic with varying degrees of infectiousness. Transmission dynamics, such as contact 

rates and the efficacy of preventative measures, significantly impact the in- fection’s spread, within the stage. In the second 

infectious stage, individuals have recovered and developed immunity but may still carry the pathogen and transmit it to 

susceptible individuals. While their infectiousness is typically lower than that of those in the first infectious stage, they can 

still contribute to transmitting the disease. The duration of immunity and the potential for reinfection or waning immunity 

impact the dynamics of this stage [23, 24]. 

The virus class V in this model represents the presence and dynamics of the virus within the population and the environment. 

The virus class encompasses all instances of the virus within the population, including vi- ral particles shed by infected 

individuals and viral particles present in the environment. This class accounts for the infectiousness of the virus and its 

potential to cause new infections. Infected individuals shed viral particles into their surroundings through various means, 

such as bodily fluids, res- piratory droplets, or contaminated surfaces. The virus class captures the replication and shedding 

dynamics of the virus, contributing to the infection transmission within the population. Public health initiatives like immuni- 

sation drives, personal hygiene routines, and isolation protocols, can affect the dynamics of the virus class, and these 

interventions aim to reduce the transmission potential of the virus and lessen its influence on public health [25]. 

This paper introduces an intricate and comprehensive mathematical model 

that captures the complexities of multiple infection stages and diverse virus 

class. The primary objective of this research is to investigate the significant influence that an infectious disease’s virus class 

can have on an entire neigh- bourhood. The following is an elegant arrangement of the paper’s structure: The proposed 

model’s formulation is explained in Section 2. We examine the presence and dynamic behaviours of endemic and disease-

free equilibria on a local and global scale in Section 3. The insightful numerical simula- tions in Section 4 improve our model 

understanding. Finally, the concluding section engages in a thoughtful discussion of the results, illuminating their 

significance. 

 

2. Model Formulation 

Assumptions and Model description are the two subsections that further subdivide this section. 

2.1. Assumptions 

The following presumptions must be made in light of our biological back- ground: 

1. The population is categorized into several mutually exclusive compart- ments, such as Susceptible(S), Exposed(E), 

First Infected Individuals(I1) and Second Infected Individuals(I2), Quarantine(Q), Virus(V), and Re- covered(R). 

2. In each compartment population is devoid of any structure be it spatial age or location and does not take into account 

any delayed processes. 

3. Population increases at a constant recruitment rate σ and experiences natural death at a rate µ1. 

4. The population is engaging and blending seamlessly with one another, creating a vibrant and harmonious 

community. 

5. Disease transmission occurs horizontally rather than vertically, and there is no population migration. 

6. Recovered individuals develop disease temporary immunity acquired from the infection. 

2.2. Model Description 

A compelling epidemic model inspired by the saturation incidence of the virus is proposed in this section. Numerous 

researchers are fascinated by viruses’ complex involvement in infectious illness transmission.  We define 
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ρ(V 
) 

 

the non-linearity of the incidence as αS(t)V (t), where ρ(0) = 1 and ρ˙(V ) ≥ 0. Effectively controlling infectious diseases 

requires that the growth rate of the virus is intricately linked to the levels of infection and exposure. 

We present a sophisticated mathematical epidemic model, aptly named SEI1I2QRV S and the accompanying 

schematic diagram of this model, ap- propriate for a homogeneous population, is illustrated in Figure 1, and nonlin- ear 

ordinary differential equations govern this dynamic system that capture the complexities of disease transmission and 

progression. 

 

Table 1: Parameter description for the system 1 

Parameter Description (Unit) 

σ Recruitment rate of Susceptible (days) 

α Transmission coefficient of individuals exposed (days) 

µ Rate of natural death (days) 
1 Half-saturation Constant of infected persons (days) 
a 

 

γ Transition rate of exposed to quarantine individuals (days) 

η Transition rate of individuals exposed to first infection stage (days) 

θ Recovery rate of individuals exposed (days) 

ξ1 Infected class transition rate from first to second stage (days) 

δ Disease induced death rate (days) 

ξ2 Recovery rate from second infection stage (days) 

Λ Recovery rate of quarantine people (days) 

β Rate of transfer from recovered to vulnerable people (days) 

r1 Rate of virus birth from infected people (days) 

r2 Rate of virus birth from exposed people (days) 

 
 

 

 
 

Figure 1: The suggested SEI1I2QRV S model system’s schematic diagram 
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3. Model Analysis 

 

3.1. Basic Reproduction Number 

The basic reproduction number, or R0, is the projected number of sec- ondary cases that a single typical infection would 

create in a population that is entirely susceptible [26, 28]. One of the most crucial threshold criteria for statistically describing 

the transmission of infectious diseases is this figure 1, which is also represented as the basic reproductive rate or ratio. 

Because it aids in predicting whether an infectious disease will spread throughout a population, R0 is very helpful. Similar 

to the method outlined in [26, 28]. We compute the R0 

 

3.2. Existence of Endemic Equilibrium 

Furthermore, system 1 contains an internal equilibrium known as endemic equilibrium (EE), which is provided by 

 

µ dt 

In this section, we embark on a fascinating exploration of the dynamical behavior of the 
system outlined in equation 1. Here, we will evaluate all feasible steady states also 
determining the R0 for this intriguing system. 

1.  Notably, the total population size N follows the compelling equation 

dN = σ − µN , where µ = min(µ1, µ2, µ3) and thus N (t) → σ as, t → 

∞. Consequently, the biologically feasible region is not just preserved but 

positively invariant for the system 1. Therefore, we focus exclusively on 
solutions with initial conditions that lie within the captivating boundaries of the region Ω. 

σ 
Ω = {(S, E, I1, I2, Q, V, R) : 0 ≤ S, E, I1, I2, Q, R, N ≤ 

µ 
} (2) 
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3.3. Local Stability of disease-free and endemic equilibrium 
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3.4. Global Stability of DFE and EE 
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Table 2: Simulation parameters system 1 

Parameter Value 

σ 0.4 

α 0.008 

γ 0.1 

η 0.1 

Λ 0.04 

ξ1 0.03 - 0.1 (variable) 

ξ2 0.03 

θ 0.001 

β 0.01 

µ1 0.005 

µ2 0.008 

µ3 0.8 

δ1 0.01 

δ2 0.01 

δ3 0.01 

r1 0.3 

r2 0.001 - 0.1 (variable) 

a 0.1 

 

time units in days, as indicated in Table 2. Most parameter values are taken from the literature [12, 30] but 
the remaining values for parameters are taken into consideration for numerical computation. To validate the 
analytical conclusions of the preceding sections, numerical simulations are carried out using Matlab ODE 
solver. Here, Figure 2 - Figure 3 show how the system responds for various virus growth rate values. 
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5. Results and Discussion 

This paper proposes and evaluates a mathematical model for the spread of contagious diseases that includes multiple 

infection stages and virus clas- sifications. For the sake of mathematical simplicity, let us consider the popu- lation exists in a 

homogeneous environment, meaning that individuals do not have any specific structure (including age, location, etc.) and can 

shift instantly between different compartments. The time evolution of these com- partments is described by a system of 

ordinary differential equations. We consider that acquired immunity is temporary, allowing individuals who re- cover from 

an infection to become susceptible again over time. This model focuses on nonlinear mathematical principles. We 

specifically analyze the transmission dynamics of contagious diseases with two infection stages and virus classes, using 

COVID-19 as an example. According to our analytical analysis, this model experiences a transcritical bifurcation at R0 = 1, 

sug- gesting that EE is reached when R0 is greater than 1. This highlights the necessity of lowering infection levels over time 

in order to mitigate the illness burden, even while it has no effect on the model’s qualitative behaviour. Al- though previous 

research has explored the dynamics of infectious diseases, they generally do not account for multiple infection stages with 

varying virus classes. The primary mathematical finding of this research is the significant impact of virus classification on the 

spread of infectious diseases within a population that experiences multiple infection stages. 
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