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ABSTRACT 

Early detection of left ventricular dysfunction (LVD), especially in asymptomatic individuals, is critical for timely 

intervention and improved cardiovascular outcomes. However, widespread access to echocardiography remains limited, 

particularly in low-resource settings. In this study, we developed and externally validated a deep learning (DL) model that 

predicts left ventricular ejection fraction (LVEF) from 12-lead ECG trace images, eliminating the need for raw signal 

data. A total of 1,19,281 ECG-echocardiogram pairs from 1,04,697 patients formed the training and test datasets, while 

24,319 pairs from a distinct cohort were used for external validation. The ECG trace plots were processed via multi-otsu 

thresholding to extract the region of interest and standardized using Z-score normalization. The model architecture was 

based on DenseNet121, trained with class-weighted focal binary cross-entropy loss to address data imbalance. On internal 

test data, the model achieved a receiver operating characteristic area under curve (ROCAUC) of 0.92 and precision-recall 

AUC (PRAUC) of 0.78 in identifying LVEF < 50%. External validation yielded comparable performance with ROCAUC 

and PRAUC of 0.88 and 0.74, respectively. Notably, the algorithm demonstrated 97% sensitivity in detecting severe LVD 

(EF ≤ 35%) and maintained robust performance across age, sex, and paced ECG subgroups. With a diagnostic odds ratio 

of 31.7 on test data and a high negative predictive value (NPV ~0.94), the model ensures low false negative rates—critical 

for triaging in high-volume clinical settings. This study highlights the feasibility of using ECG image-based DL models 

for LVD screening, especially in resource-constrained environments. The ability to extract LVEF-related features from 

trace images offers practical scalability in primary and tertiary healthcare centers and introduces a new paradigm in 

accessible, AI-powered cardiac diagnostics. 
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1. INTRODUCTION 

Usually going unreported, left ventricular dysfunction (LVD) might be silent or asymptomatic [1]. An improved result 

depends on the diagnosis of asymptomatic heart failure with a lower ejection fraction or those whose LV function is 

compromised due to undetected ischemia episodes. It is also known that asymptomatic coronary disease and LVD are 

related. 

Fig. 1 and showed the Electro Cardio Graphs and region of ineterest to detect the hear6t related abnormal symptoms. A 

considerable number of patients with LVD would be identified with the use of echocardiography for routine screening for 

decreased LV function. However, there are limitations in terms of cost, availability, and skill when it comes to 

echocardiography [2, 3]. In most rural areas, the only way to screen for heart disease is through ECG monitoring. ECG is 

utilized for screening, and echocardiographic evaluation is not common, even in urban areas. However, ECGs appear 

normal to the human eye when there are no ischemia symptoms present. 

Due to the limited sensitivity and negative predictive values, prior attempts to measure EF using ECG and 

electrocardiographic data such as voltage ratios or QRS duration have mostly failed. Additionally, attempts have been 

made to measure EF utilizing wearable technology, digital stethoscopes, hemodynamic parameters, and pulse wave 
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morphology. 6. However, because of their higher cost and evaluation complexity, these models have serious drawbacks 

[4-7]. The potential of AI algorithms using raw ECG data—numerical values of several ECG parameters—for LVD 

screening has also been highlighted in recent papers. Acquiring stored ECG signal data is the main drawback, particularly 

in healthcare systems with limited resources where EMR use is relatively minimal [8-10]. Photographing an ECG is an 

easy task, and it would be economical and take little technical expertise to predict the left ventricular ejection fraction 

(LVEF) from an image. To address these issues and raise the precision and usability of LVEF estimate, we thus suggest 

creating and testing an AI program that uses ECG pictures to identify LVD [11-14]. 

 

2. METHODOLOGY 

The study aims to examine the potential of ECG images using neural networks in predicting left ventricular dysfunction. 

To determine if a patient has EF ≥ 50% or <50%, a deep learning model was trained using the ECG trace images as input.  

 

 
Fig. 1. Sample Greyscale image of ECG 

 

 
Fig. 2. Cropped region of interest (ROI) selecting the ECG trace plot 

 

Certified echocardiography reports completed that same day provided information on the patient's EF. An external 

validation dataset and an internal test dataset were used to evaluate the model's performance after training. 

 

Table 1 Data acquisition and compute specifications 

Baseline Feature 
Mean 

(+1 Standard Deviation) 

Frequency 

N (%) 

Missing Values  

N (%) 

Hypertension - 31,601 (30) 0 (0) 

Diabetes mellitus - 25,313 (25) 0 (0) 

Total Cholesterol 172.21 (48.1) - 43,725 (41.8) 

Serum Creatinine 0.94 (0.56) - 17,939 (17.1) 

BMI 26 (4.76) - 66,477 (64%) 

Gender - 
Male - 75,099 (72)  

Female - 29,596 (28) 
2 (~0) 

Age 51.9 (13.5) - 0 (0) 

Age Groups, n (%) <40 - 19,314 (18.4) - 

40-49 - 23,360 (22.3) - 

50-59 - 28,985 (27.7) 0 (0) 

60-69 - 23,939 (22.9) - 

70-79 - 8179 (7.8) - 

≥80 - 920 (0.9) - 
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All patients who visited the hospital between December 2022 and March 2023 and had both their echocardiogram and 

ECG done on the same day were included in the data. The patients came from two centers' outpatient departments for 

cardiac sciences. Our cohort's ECG acquisition specifications included a 1000 Hz sample frequency, a paper speed of 25 

mm/s, and an amplitude of 10 mm/mV. Patients with bundle branch block, atrial fibrillation, premature ventricular 

contractions, and early atrial contractions were among the ECG abnormalities we included. The BENEHEART R12 

devices from Shenzhen Mindray Bio-medical Electronics were used to record ECG data. The information was then saved 

on the internal Picture Archiving and Communication Systems (PACS) servers as Digital Imaging and Communications 

in Medicine (DICOM) images. Our study's objective was to create a model that can forecast a patient's left ventricular 

performance regardless of any underlying cardiac conditions, including the frequently observed anomalies in the ECG. 

The results of patients who had echocardiograms were entered into the Electronic Medical Record system. Based on the 

modified Simpson's criteria, the biplane approach of disk summation was employed to compute the LV function. For the 

purposes of this investigation, the ejection fraction was used to quantify the LV function. 

We identified and linked the ejection fractions of 1,30,464 archived 12-channel ECG DICOM pictures with estimates 

from 2D/color Doppler echocardiograms. The final cohort size was 1,19,281 ECG-echo pairs from 1,04,697 distinct 

patients after 11,183 ECG-echo pairs were eliminated due to faults and corruptions in the ECG picture data. Python 3.8, 

scikit-learn 1.2.0, Tensorflow 2.11.0, and scikit-image 0.20.0 were used for all data pre-processing and model 

construction. To train the model, one NVIDIA Tesla M60 GPU was used. 

 

3. DATA PRE-PROCESSING 

 ECGs had a "YBR_FULL_422" photometric interpretation and were saved as "Secondary Capture Image" DICOMs. The 

images have three channels (YBR) and measured 2550 × 3299 pixels. The first channel was selected for additional 

examination. A sample ECG that is used for analysis is shown in Fig. 1. To isolate the portion of the image that only 

contains the ECG graph plot, multi-otsu thresholding was used to separate the several ECG regions. The region of interest 

was obtained by cropping the image (Fig. 2). The ECG trace plots were either 3 × 4 or 6 × 2 (with or without a rhythm 

strip). In order to preserve the aspect ratio and improve the input shape for effective model training, the cropped image 

was scaled to a tensor of shape (1,300,540,1). After testing a range of resolutions, these dimensions provided the optimal 

balance between model performance, training time, and processing cost. To normalize the input, Z-score scaling was used 

for each image and batch. Batch normalization was then used for training. After that, the LVEF was binarized, with class 

0 being given to > 50% and class 1 to < 50%. 

 

4. MODEL IMPLEMENTATION AND PERFORMANCE 

The DenseNet121 architecture was used to construct the model. 300 × 540 x 1 (1 channel) input dimensions were used, 

and the weights were initialized at random (He normal distribution). A global average pooling was carried out following 

the last convolutional layer, producing a single output neuron with a sigmoid activation function. As a result, the model 

generates a probability between 0 and 1 after sampling image inputs. A focal sigmoid class-weighted binary cross-entropy 

loss (α = 0.795; γ = 0.2)12 with an Adam optimizer was used to train the neural network. Given the lower frequency of 

patients with EF < 50%, the custom loss function was employed to reduce the impacts of class imbalance in the data. For 

the duration of the training, the minibatch size was 16. When the validation area under the precision-recall curve (PRAUC) 

did not improve for more than three consecutive epochs, the training was terminated. 

 

4.1. External validation 

An attempt was made to validate the model in a different healthcare facility situated 1800 kilometers away from the 

original model development site in order to determine the model's generalizability. The pre-processing processes for the 

ECG images and all other inclusion criteria were identical to those in the internal dataset. 

 

4.2. Model performance and statistical analysis 

The test data and external validation data were used to assess the model's performance. At the threshold maximizing You-

den's Index, performance measures included the receiver-operating characteristic (ROCAUC), precision-recall curve, 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and confusion matrices. 1000 

iterations of bootstrapping were used to establish 95% confidence intervals. The performance of the model was also 

examined in subgroups according to pacemaker presence, gender, and age. 

 

5. RESULTS AND DISCUSSION 

The entire dataset has an average age of 52.27 ± 13.46 years. Seven.3% of the cohort's total population had an LVEF of 

less than 35%, and 20.3% had an LVEF of less than 50%. The ratio of males to females was 2.6. Table 1 has more 

information on the baseline characteristics. Using stratified sampling, the ECGs and associated ground truths were divided 

into three datasets: training (n = 1,07,147), validation (n = 2020), and test (n = 10,114). The train and validation sets were 

used to build the model, and the test data was used to evaluate its performance. 
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Fig. 3. Using the model's probability outputs, the receiver operating characteristic curve and precision-recall 

curve on internal and external validation data 

 

 
Fig. 4. Confusion matrices of internal and external data 

 

For the test data, the model's ROCAUC and PRAUC to identify LVEF <50% were 0.92 and 0.78, respectively (fig. 3). 

You-den's score was determined to be at its highest using the ROCAUC at 0.18; if it was higher, the probability output 

was categorized as having an LVEF <50%. This threshold was used to create the confusion matrices for the internal and 

external validation data (fig. 4). For the test data, we found that an ECG showing LV systolic dysfunction was linked to a 

greater than 31-fold increase in the likelihood of having LV systolic dysfunction (diagnostic odds ratio: 31.7, 95% CI: 

27.46–36.38). Furthermore, when the EF was less than 35%, the model accurately identified 97% of the samples. The 

model's performance was similar for all sexes and ages. It was found that the mean LVEF decreased and the fraction of 

LVD increased for each decile when the estimated probabilities on the test data. Table 2 presents the model's performance 

on the external validation data. 

 

Table 2 External data validation and the performance of model 

SUBSET 

No. of  

Samples 

(n) 

SENSITIVITY SPECIFICITY PPV NPV ROCAUC PRAUC DOR# 

All 24319 0.85 0.75 0.53 0.94 0.88 0.74 16.44 

Male 17185 0.84 0.75 0.59 0.92 0.88 0.78 16.12 

Female 7131 0.88 0.74 0.33 0.98 0.89 0.56 20.59 

≥65 Y 6861 0.88 0.6 0.5 0.92 0.84 0.73 11.49 

<65 Y 17457 0.83 0.8 0.55 0.94 0.9 0.76 19.04 

Paced ECGs 2202 0.88 0.52 0.45 0.91 0.78 0.61 7.81 

No Paced ECGS 22117 0.84 0.77 0.54 0.94 0.89 0.76 17.96 
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External validation revealed that the model performed robustly and comparably. A total of 24,323 ECG-echo pairs were 

chosen from a different population between January 2022 and March 2024. About 25% of people had LVD (below than 

50% EF), while 7.5% of them had severe LVD (EF ≤ 35%). This sample also demonstrated a better PRAUC (0.76) when 

compared to the held-out test data, where the prevalence of patients with pacemakers was 0.6%. The algorithm properly 

recognized 96% of samples with ≤35% EF, regardless of whether paced ECGs were included or not. 

We have created and externally verified a deep learning algorithm that may be applied to ECG image screening for LVD. 

Both the external validation dataset and the internal test data show reliable and consistent performance from our model. 

Furthermore, our model showed similar accuracy across several demographic groups and performed well regardless of 

age and gender. 

Although it has been reported, the correlation between EF and ECG using various ML (Machine Learning) techniques has 

not been investigated in the Indian context. Our model has the added benefit of having been evaluated against external 

data, and it produces findings that are equivalent to those of other models. The model exhibits resilient and constant high 

sensitivity and NPV despite the variable prevalence of dysfunction (between the external validation data and the internal 

test data). Both age and sex showed similar performance in the test data.  

To collect and input into the model, complex data pipelines are needed for the numerical computation of raw numerical 

measures derived from ECG tracings. Obtaining ECG images is far easier than obtaining ECG signal data, particularly in 

the Indian population. Since ECG trace images are readily available at the primary, secondary, and tertiary care levels, 

they were utilized as the model's input.  

Although it has been reported, the correlation between EF and ECG using various ML (Machine Learning) techniques has 

not been investigated in the Indian context. Our model has the further benefit of having been evaluated against external 

data, and it produces findings that are comparable to those of previous models. The model exhibits strong and constant 

high sensitivity and NPV despite the variable prevalence of dysfunction (between the internal test data and external 

validation data). Both age and sex showed similar performance in the test data. To collect and input into the model, 

complex data pipelines are needed for the numerical computation of raw numerical measures derived from ECG tracings. 

Obtaining ECG images is far easier than obtaining ECG signal data, particularly in the Indian population. Since ECG trace 

images are readily available at the primary, secondary, and tertiary care levels, they were utilized as the model's input. It 

is essential to diagnose LVD with ECG, especially in situations with limited resources when ECG is very accessible and 

reasonably priced. ECG is frequently the only assessment method available to patients in urban areas undergoing non-

cardiac procedures. Nevertheless, ECG has a limited sensitivity for LVD detection, which frequently results in 

postoperative cardiac problems. By identifying patients who are more likely to experience perioperative cardiac problems, 

the use of ML-ECG models to diagnose LVD improves patient safety. Preventive management is made easier, anesthesia 

planning is optimized, and patient risk classification and prognostication are demonstrated. 

In this study, we tried to maintain a respectable PPV while optimizing the model's sensitivity-specificity trade-off. With 

a PPV of about 0.55, approximately 1.8 echocardiograms would be required to confirm 1 case of low EF if the model 

suggests that the ECG is dysfunctional. It is demonstrated that almost all cases of severe LVD (≤35% EF) are captured by 

the model. In situations when there is an excessive demand for echocardiography services, this can serve as an additional 

triaging mechanism and allow for the proper diagnosis of severe LVD cases, which may require an urgent referral. Our 

model's high NPV guarantees few false negatives. This study acts as a proof of concept for further research in which the 

ejection fraction can be determined by taking ECG pictures using a mobile device. Unlike some earlier studies, this method 

does not require raw ECG data as model input. This approach increases the model's potential application and makes it 

more practical for a range of clinical settings by reducing the complexity of data needs. 

 

6. CONCLUSION 

This study demonstrates the successful implementation of an AI-driven model that accurately predicts LVEF from ECG 

images, providing a non-invasive and accessible solution to screen for LVD in both urban and resource-limited clinical 

settings. The model, developed using over 1.19 lakh ECG-echo pairs and externally validated on a separate 24k sample, 

exhibited high sensitivity, specificity, and diagnostic power, including a 97% sensitivity for severe dysfunction (EF ≤ 

35%). Its comparable performance across age groups, sexes, and ECG abnormalities reinforces its generalizability. Unlike 

traditional approaches that rely on raw ECG signals, our model simplifies deployment by utilizing image-based data 

readily available at all healthcare levels. 

By reducing reliance on echocardiography for initial LVD screening, this approach enhances early diagnosis and risk 

stratification, particularly in settings where echocardiographic resources are scarce. With a positive predictive value of 

~0.55, the model ensures clinical utility while maintaining high NPV to avoid missed diagnoses. The results establish a 

proof-of-concept for broader integration of AI-based ECG interpretation into mobile and outpatient care workflows, 

facilitating preventive cardiology. Future work can explore real-time LVEF estimation using smartphone-based ECG 

capture to enhance outreach and telemedicine-based cardiac care. 
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