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ABSTRACT 

Accurate weather prediction is crucial for optimizing water irrigation systems, ensuring efficient resource utilization, and 

improving agricultural productivity. This research explores various deep learning algorithms, including Convolutional 

Neural Networks (CNN), Temporal Convolutional Networks (TCN), TabNet, Fully Convolutional Neural Networks 

(FCNN), and a novel Temporal Residual Convolutional Network (TRCN), to enhance predictive accuracy in irrigation 

forecasting. The data includes key weather variables such as temperature, humidity, rainfall, and wind speed, which were 

pre-processed to handle missing values and normalize features for optimal model performance. Experimental results 

revealed that traditional FCNN models performed suboptimally, while CNN, TabNet, and TCN demonstrated significant 

improvements in accuracy and F1-score. The proposed TRCN model outperformed all other models, achieving an 

accuracy of 0.99 and an F1-score of 0.97. These findings highlight the effectiveness of deep learning models in weather-

based irrigation prediction, with TRCN offering superior predictive capabilities. This research advances precision 

agriculture by integrating deep learning techniques to enhance irrigation management and promote water conservation. 

 

Keywords: Weather Prediction, Deep Learning, Irrigation Optimization, Temporal Residual Convolutional Network, 
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1. INTRODUCTION 

Accurate weather prediction plays a pivotal role in optimizing irrigation systems, facilitating efficient resource 

management, and enhancing agricultural productivity. Given the increasing challenges posed by climate change, such as 

unpredictable rainfall patterns and temperature fluctuations, it has become imperative to develop intelligent systems that 

can reliably predict weather conditions and, consequently, inform water management strategies. By leveraging deep 

learning techniques, it is possible to build models that not only forecast weather patterns but also improve irrigation 

practices, ensuring the optimal use of water resources in agriculture [1]. 

This research explores various deep learning algorithms, including CNN, TCN, TabNet, FCNN, and a novel TRCN, to 

enhance the predictive accuracy of irrigation forecasting. The study utilizes a comprehensive dataset comprising over 

964,000 hourly and daily weather records from Szeged, Hungary, collected between 2006 and 2016. The dataset serves 

as the foundation for training and evaluating the performance of the proposed models. Through meticulous data pre-

processing, including addressing missing values and normalizing features, the study ensures that the models can operate 

at their optimal performance levels. 

This research holds substantial significance for precision agriculture, particularly in the context of climate variability and 

sustainable water resource management. Accurate weather forecasts can reduce water waste, optimize crop yield, and 

promote resource efficiency, all while mitigating the environmental impact of over-irrigation. By introducing deep 

learning-based approaches to irrigation forecasting, the research presents a novel solution to modern agricultural 

challenges. Furthermore, the development of the TRCN model, with its ability to outperform traditional models, opens 

new avenues for improving the accuracy and reliability of weather predictions in agricultural settings. 
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The primary contribution of this research lies in its introduction of the Temporal Residual Convolutional Network 

(TRCN), a novel deep learning architecture designed to significantly enhance weather prediction accuracy for irrigation 

forecasting. By leveraging the strengths of CNN, TCN, TabNet, and FCNN, the TRCN model achieves superior 

performance, with an accuracy of 0.99 and an F1-score of 0.97. In comparison, traditional FCNN models demonstrated 

suboptimal results. These findings underscore the potential of deep learning models in weather-based irrigation prediction, 

offering a path toward more effective water management and contributing to the advancement of precision agriculture. 

This work also provides insights into the practical applications of deep learning in agriculture, offering a foundation for 

future research aimed at optimizing irrigation systems through machine learning and AI-based methodologies [2]. 

 

2. LITERATURE REVIEW 

Kanmani et al. (2021) offer a contemporary irrigation system that integrates Convolutional Neural Networks (CNN) with 

the Internet of Things (IoT) to improve agricultural practices. Their strategy is to reconcile population increase with food 

supply through a data-driven approach to enhance irrigation and agricultural quality. The system comprises a database of 

recognized plants, a mobile application for farmers to oversee their fields, and an IoT device integrated with a moisture 

sensor, water pump, and NodeMCU. A server interacts with these components, and two machine learning models are 

employed for plant identification and wilting detection. The study shows that the implementation of CNN in the IoT 

environment produces efficient outcomes, enhancing agricultural productivity and decreasing costs via a singular setup. 

This cutting-edge technology substantially improves agricultural techniques and boosts productivity [3]. 

Dhyani et al. (2024) investigate the amalgamation of sensor technologies with machine learning to enhance agricultural 

water management via a smart irrigation system. The study gathers accurate data on water flow, temperature, humidity, 

soil moisture, and water level biweekly to utilize this real-time information for training multiple machine learning models, 

such as Recurrent Neural Networks (RNN), K-Nearest Neighbours (KNN), Artificial Neural Networks (ANN), and 

Convolutional Neural Networks (CNN). The findings indicate that CNN surpasses the other models, achieving a decoding 

accuracy of 94.5%, which is markedly superior to the 91.1%, 88.7%, and 83.6% accuracies of ANN, KNN, and RNN, 

respectively. This research emphasizes the successful interaction between sensor data and model training, illustrating the 

potential of machine learning to improve irrigation accuracy and support sustainable agriculture. The research enhances 

water distribution precision and establishes a foundation for more effective irrigation systems that integrate mechanical 

and natural processes in agricultural fields [4]. 

Kumar et al. (2024) introduce an intelligent agricultural system for Neon Pothos that employs Convolutional Neural 

Networks (CNNs) for disease identification and real-time surveillance, tackling water inefficiencies in irrigation. The 

system employs a NodeMCU ESP-12E microcontroller, a high-accuracy moisture sensor, and a DHT22 temperature and 

humidity sensor to enhance water efficiency and identify plant diseases. Users can monitor metrics and receive 

notifications for irrigation and disease issues via a mobile application dashboard. The technology facilitates manual 

irrigation management and use algorithms to assess disease occurrence and water requirements, so advancing sustainable 

agricultural practices and conserving water resources [5]. 

Singh et al. (2023) introduce an innovative way to enhance sprinkler irrigation scheduling by employing a Convolutional 

Neural Network (CNN) to forecast in-field soil moisture levels, thereby rectifying the shortcomings of traditional 

irrigation techniques that overlook present soil moisture conditions. The CNN architecture, augmented with depth-wise 

separable convolution and residual connections, was included into a mobile application that forecasts soil moisture 

classification utilizing soil pictures, crop variables, and watering system specifications. The system exhibited remarkable 

performance, with an average classification accuracy of 97.10%, precision of 85.50%, recall of 86.80%, and an F1-score 

of 85.80%. It accomplished substantial reductions in water and energy usage, decreasing irrigation water consumption by 

27.59% and energy usage by 27.42%, while enhancing water productivity by 32.75% relative to traditional systems. This 

method optimizes irrigation depth and enhances crop productivity by averting under-irrigation, demonstrating the promise 

of CNN-based applications in advancing sustainable agriculture practices [6]. 

Qiao et al. (2023) introduce a metaheuristic evolutionary deep learning model integrating Temporal Convolutional 

Network (TCN), Improved Aquila Optimizer (IAO), and Random Forest (RF) for rainfall-runoff simulation and multi-

step runoff forecasting. The research tackles the issue of dimensionality by employing Random Forest to identify the most 

pertinent input variables, thereby decreasing computation time and enhancing predictive accuracy. The chosen data is 

subsequently analyzed using the TCN model, with its parameters refined through the IAO procedure. The model was 

utilized on rainfall and runoff data from five stations in the central segment of the Jinsha River in China, with a particular 

focus on simulating and predicting the runoff at Panzhihua station. The findings indicate that the proposed model markedly 

surpasses alternative models, underscoring its efficacy in enhancing rainfall-runoff prediction accuracy and its 

applicability in water resources management and disaster monitoring [7]. 

Ehteram et al. (2024) offer an advanced machine learning model for forecasting monthly precipitation, integrating a Deep 

Residual Shrinkage Network (DRSN) with a Temporal Convolutional Network (TCN) and Random Forest (RF). The 

DRSN–TCN model pulls temporal elements from rainfall data, eliminating redundant or irrelevant variables, hence 

improving the RF model's capacity to predict intricate rainfall patterns. The research presents a novel optimizer, the 

Gaussian Mutation-Orca Predation Algorithm (GM–OPA), designed to optimize the parameters of the DRSN–TCN–RF 

(DTR) and enhance input feature selection. The GM–OPA algorithm surpasses alternative optimization techniques, 
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decreasing the root mean square error (RMSE) by as much as 9.54% relative to Particle Swarm Optimization (PSO) and 

enhancing the model's precision. The findings indicate that the DTR model markedly diminishes prediction errors, with 

mean absolute error levels enhancing by 5.3% to 46% relative to alternative models, hence illustrating the methodology's 

robustness and efficacy in rainfall forecasting [8]. 

 

Table.1. ML/DL Applications in Irrigation and Water Management 

Authors Dataset Focus Area ML/DL 

Method(s) 
Limitations 

Kanmani 

et al. 

(2021) 

Plant database, field 

data 

Smart Irrigation CNN Limited to specific plant species; 

IoT integration may require high 

initial setup costs. 

Dhyani et 

al. (2024) 

Sensor data (water 

flow, temp, 

humidity, soil 

moisture) 

Smart 

Irrigation/Water 

Management 

RNN, KNN, 

ANN, CNN 

CNN performs best, but model 

complexity may lead to higher 

computation costs; real-time 

scalability is not explored. 

Kumar et 

al. (2024) 

Neon Pothos, 

sensor data 

Intelligent 

Agriculture 

CNN Focused only on one plant 

species; lacks generalizability to 

other crops. 

Singh et 

al. 

(2023) 

Soil images, crop 

data, watering 

system specs 

Sprinkler 

Irrigation 

CNN (depth-

wise separable 

convolution, 

residual) 

Requires high-quality soil images 

for accurate predictions; may not 

adapt well to varying field 

conditions. 

Qiao et al. 

(2023) 

Rainfall/runoff data 

(Jinsha River, 

China) 

Rainfall-Runoff 

Simulation 

TCN, IAO, RF Computationally intensive; 

limited to a specific geographical 

region. 

Ehteram 

et al. 

(2024) 

Rainfall data Monthly 

Precipitation 

Forecast 

DRSN, TCN, 

RF, GM-OPA 

GM-OPA optimization improves 

performance, but may introduce 

additional tuning complexity; 

requires high-quality rainfall data 

for optimal results. 

 

3. MATERIALS AND METHODOLOGY 

This section outlines the approach used for irrigation prediction, focusing on dataset preparation, feature analysis, and 

classification using deep learning models. The process begins with dataset extraction and preprocessing to ensure data 

quality. Key features influencing irrigation decisions are analyzed to enhance model performance. Various deep learning 

models, including FCNN, CNN, TabNet, TCN, and TRCN, are employed for classification, with their effectiveness 

evaluated using accuracy, precision, recall, and F1-score. The proposed framework aims to optimize irrigation scheduling 

by leveraging machine learning for precise and efficient predictions. 

 
Fig.1. A Multi-Class Classification Workflow 
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The diagram illustrates a typical data analysis workflow for a machine learning model. It starts with data collection, 

followed by pre-processing to clean and prepare the data. Feature analysis is then conducted to identify relevant attributes. 

The data is then split into training and testing sets, and a multi-class classification model is trained on the training data. 

The trained model is evaluated on the testing data to assess its performance in making accurate predictions for new, unseen 

data.  

 

3.1. Dataset description 

The collection comprises 964,553 records of hourly and daily weather observations for Szeged, Hungary, covering the 

period from 2006 to 2016. This huge dataset facilitates a thorough investigation of climate trends, weather variability, and 

correlations among weather variables across a decade. The dataset's key elements comprise Formatted Date, indicating 

the observation date, and Summary and Precip Type, which are categorical variables detailing weather conditions and 

types of precipitation, respectively.  

The dataset contains continuous variables such as Temperature (°C), Apparent Temperature (°C), and Humidity, the latter 

represented as a percentage. Furthermore, Wind Speed is quantified in kilometres per hour (km/h), Wind Bearing is 

documented in degrees, and Visibility is expressed in kilometres (km). The dataset additionally comprises Cloud Cover 

expressed as a percentage and Pressure quantified in millibars. Finally, an everyday Summary offers a written account of 

everyday meteorological conditions. This extensive dataset facilitates thorough research of weather patterns and their 

effects over a ten-year period. 

 

 
Fig.2. Distribution of Watering Actions Based on Frequency 

 

The horizontal bar chart illustrates the distribution of watering actions, with "Water Twice a Week" being the most 

frequent at approximately 45,000 occurrences. "Water Standard" follows with around 30,000, while both "Water Daily" 

and "Water Every Other Day" have similar frequencies, each at about 10,000 occurrences. The least common action is 

"Water More," with roughly 5,000 occurrences. This chart effectively highlights the varying frequencies of each watering 

action. 

 

3.2. Pre-processing 

Data pre-processing entails the cleansing and preparation of data to ensure precise predictions [8]. Missing values are 

addressed through imputation, commonly employing the mean. 

𝑿𝒏𝒆𝒘 = 𝝁(𝑿) 

Outliers are identified by the Z-score method: 

𝒁 =
𝑿 − 𝝁

𝝈
 

Feature scaling standardizes data to a range of [0, 1]: 

𝑿𝒏𝒐𝒓𝒎 =
𝑿 − 𝑿𝒎𝒊𝒏

𝑿𝒎𝒂𝒙 − 𝑿𝒎𝒊𝒏

 

 

The dataset is ultimately partitioned into training, validation, and testing subsets to facilitate efficient model training and 

assessment. 

 

 



 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s 
Pg 513 

U. Suriya, Dr. J. Yesudoss  
 

3.3. Feature Analysis 

Feature analysis is essential for understanding weather data and optimizing irrigation decisions. Examining key variables 

like temperature, humidity, and wind speed helps identify their impact on watering actions. Visualization techniques 

uncover patterns and interactions among these features, enabling more precise irrigation scheduling. This analysis 

provides valuable insights for climate assessments, improving water efficiency and sustainable agricultural practices. 

 

 

 
Fig.3. Impact of Temperature, Humidity, and Wind Speed on Different Watering Actions 

 

The data reveals distinct distribution patterns for temperature, humidity, and wind speed across different watering actions. 

"Water Twice a Week" has the highest median temperature, while "Water More" has the lowest, with right-skewed 

distributions in some categories. Humidity levels increase with watering frequency, with "Water Daily" showing the 

lowest median, and slight right skew observed in "Water Twice a Week" and "Water Every Other Day." Wind speed 

generally decreases as watering frequency increases, with "Water Twice a Week" and "Water Every Other Day" having 

the highest median values. Outliers in all cases indicate occasional extreme environmental conditions. 

 

 
Fig.4. Pairplot of Weather Features: Distributions and Correlations 
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The pairplot visually represents weather data, showcasing feature distributions and correlations. Temperature follows a 

normal distribution, peaking at 20-25°C, while Apparent Temperature is slightly lower due to cooling effects. Humidity 

is right-skewed, with most values around 50-60%, and Wind Speed peaks at 5-10 km/h. Wind Bearing is uniformly 

distributed, Visibility is highest at 10-15 km, and Pressure centers around 1000-1020 millibars. 

 

Scatter plots highlight key relationships, such as the strong positive correlation between Temperature and Apparent 

Temperature and a slight negative correlation between Temperature and Pressure. Wind Speed and Wind Bearing form a 

circular pattern, indicating seasonal trends. Color coding based on weather conditions reveals distinct patterns, with sunny 

days showing higher temperatures and better visibility, while rainy days have higher humidity and lower visibility. The 

pairplot effectively uncovers these relationships, aiding in weather analysis. 

 

3.4. Classification 

Water irrigation schedule classification is performed using advanced Deep Learning (DL) algorithms, including Fully 

Connected Neural Networks (FCNN), Convolutional Neural Networks (CNN), TabNet, Temporal Convolutional 

Networks (TCN), and Temporal Residual Convolutional Networks (TRCN). The methodology involves preprocessing 

weather-related data, extracting key features, and training models to predict optimal irrigation schedules. These models 

enhance water management efficiency by accurately forecasting irrigation timings and amounts, reducing resource waste, 

and promoting sustainable agricultural practices through optimized water usage. 

 

 
Fig.5. Classification Framework for Irrigation Prediction Using DL Models 

 

The diagram depicts a classification framework for irrigation prediction, encompassing weather data preprocessing, 

critical feature analysis, and performance evaluation of deep learning models (FCNN, CNN, TabNet, TCN, TRCN) using 

accuracy, precision, recall, and F1-score metrics. 

 

i. Convolutional Neural Network (CNN): 

Convolutional Neural Networks (CNNs) evaluate structured data like as soil moisture, temperature, and humidity to 

predict ideal irrigation schedules. The method commences with an Input Layer, whereby an input matrix X contains 

numerous attributes for n observations. The Convolutional Layer employs filters W using the convolution operation 𝑍 =
𝑋 ∗ 𝑊 + 𝑏 to identify patterns. The ReLU activation function introduces non-linearity as 𝐴 = 𝑚𝑎𝑥(0, 𝑍). A Pooling Layer 

decreases dimensionality while preserving critical characteristics using max pooling, expressed as 𝑃𝑖𝑗 = 𝑚𝑎𝑥(𝐴𝑃𝑞). The 

Fully Connected Layer transforms the pooled feature maps into a vector, producing output probabilities 𝑌 =

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓 . 𝑃 + 𝑏𝑓). The Output Layer generates the irrigation schedule, forecasting the ideal timing and volume of 

water based on input data [9]. 

 

ii. Temporal Convolutional Networks (TCN) 

TCNs capture long-term time-series dependencies, such as soil moisture and weather trends, for precise irrigation 

scheduling. Input data 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑇} represents sequential features at each time step t. Causal convolution ensures 

predictions rely only on past and present data, calculated as ℎ𝑡 = 𝑊 ∗ 𝑋(𝑡−𝑘+1):𝑡 + 𝑏 where, W is the filter, k the kernel 

size, and b the bias. Dilated convolution increases the receptive field using ℎ𝑡 = ∑ 𝑊𝑖 . 𝑋𝑡−𝑑.𝑖 + 𝑏𝑘−1
𝑖=0 , where d is the 

dilation factor. Residual connections improve training by adding input 𝑋𝑡 to the convolution output,  
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ℎ𝑡
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = ℎ𝑡 + 𝑋𝑡 . The output layer predicts irrigation schedules using 

𝑰𝒓𝒓𝒊𝒈𝒂𝒕𝒊𝒐𝒏 𝑺𝒄𝒉𝒆𝒄𝒖𝒍𝒆 = 𝑺𝒊𝒈𝒎𝒐𝒊𝒅(𝑾𝒐𝒖𝒕. 𝒉𝒕
𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 + 𝒃𝒐𝒖𝒕) 

Where, 𝑾𝒐𝒖𝒕   and 𝒃𝒐𝒖𝒕 are the weights and bias [10]. 

1. Fully Convolutional Neural Network (FCNN) 

FCNN for water irrigation prediction processes environmental data (e.g., soil moisture, temperature) through 

convolutional and pooling layers to extract spatial features. The convolutional layers apply filters to the input feature 

maps, using the equation  

𝑦𝑖 = ∑ (𝑥𝑗 . 𝑤𝑗 + 𝑏),𝑗  followed by ReLU activation (𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)) to introduce non-linearity. Max pooling 

reduces dimensionality, keeping the maximum value in each pooling window, represented as 𝑦𝑖=𝑚𝑎𝑥(𝑥𝑗).  The output is 

flattened and passed through fully connected layers to predict irrigation requirements, using the equation  

𝑦 = 𝑓(∑ (𝑥𝑖 . 𝑤𝑖) + 𝑏𝑛
𝑖=1 ). The model is trained using a loss function like Mean Squared Error (MSE), 

1

𝑁
∑ (𝑦𝑡𝑟𝑢𝑒,𝑖 −𝑁

𝑖=1

𝑦𝑝𝑟𝑒𝑑,𝑖)
2

, and optimized with an algorithm like Adam,  

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝜂. ∇𝜃𝐿(𝜃),to minimize the prediction error. This approach enables the network to learn and predict the 

optimal irrigation needs based on environmental conditions. 

 

2. TabNet 

TabNet is a decision-aware DL architecture that combines attention mechanisms and interpretable feature selection for 

effective water irrigation scheduling. It processes structured data like soil moisture, temperature, and humidity to predict 

optimal irrigation times and water volume. The key steps of the Tab Net algorithm are as follows: 

1. Input Layer: Tab Net takes a structured input matrix X containing features such as soil moisture(𝑋1), 

temperature(𝑋2), and humidity(𝑋3). 

2. Feature Transformer: This component transforms input features into higher-dimensional representations using 

a shared dense layer and batch normalization, generating an enhanced feature space Z. 

3. Attentive Splitter: An attention mechanism selects the most relevant features for each decision step. The 

attention scores A are computed as: 

𝑨 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝑾𝒂. 𝒁 + 𝒃𝒂) 

Where, 𝑾𝒂  and 𝒃𝒂  are trainable weights and biases. The attention mechanism helps focus on key features, ignoring 

irrelevant ones. 

4. Decision Step: At each decision step t, feature importance is updated, and feature masks are generated to 

highlight critical input features. The updated feature set is used to predict irrigation decisions. 

5. Prediction Layer: The decision outputs from multiple steps are aggregated to generate the final prediction. This 

can be a binary output (whether to irrigate or not) or a regression value (amount of water to apply). The prediction 

is computed as: 

𝒀 = 𝝈(𝑾𝒐𝒖𝒕. 𝑯𝒕 + 𝒃𝒐𝒖𝒕) 

Where,  𝑾𝒐𝒖𝒕 and 𝒃𝒐𝒖𝒕 are the trainable weights and biases, and 𝝈 is a non-linear activation function (like sigmoid for 

binary classification). 

6. Output Layer: The final irrigation schedule is produced, specifying the optimal time and water quantity for 

irrigation, improving efficiency and water conservation [11]. 

7.  

3. Temporal Residual Convolutional Network (TRCN) 

The Temporal Residual Convolutional Network (TRCN) predicts irrigation schedules by leveraging temporal 

dependencies in sensor data (e.g., soil moisture, temperature) using convolutional layers with residual connections. The 

input data 𝑋 = {𝑋1, 𝑋2, … 𝑋𝑇} is divided into overlapping windows of size www, and each window is normalized. The 

network is built with N residual blocks, where each block applies a 1D convolution, batch normalization, and a skip 

connection: 

𝑯(𝒊) = 𝑹𝒆𝑳𝑼 (𝒄𝒐𝒏𝒗𝟏𝑫(𝑿, 𝑾(𝒊), 𝒃(𝒊))), 

𝑯(𝒊) = 𝑩𝒂𝒕𝒄𝒉𝑵𝒐𝒓𝒎(𝑯(𝒊)),      𝑯(𝒊) = 𝑯(𝒊) + 𝑿 

After passing through all residual blocks, the output is flattened and passed through a fully connected layer to predict the 

irrigation schedule: 
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𝒚̂ = 𝑾𝒇𝒄. 𝑯𝒇𝒍𝒂𝒕 + 𝒃𝒇𝒄 

The model is trained by minimizing the Mean Squared Error (MSE) loss function: 

𝑳 =
𝟏

𝒏
∑(𝒚𝒊 − 𝒚̂𝒊)

𝟐

𝒏

𝒊=𝟏

 

Back propagation is used to update weights, and the model is trained over E epochs. Once trained, the model predicts the 

irrigation schedule 𝒚̂ based on the latest sensor data [12]. 

 

4. RESULT AND DISCUSSION  

This section delineates the results and analysis obtained from the crop recommendation model.  The model selection 

procedure encompassed various algorithms, specifically CNNs, TabNets, FCNNs, TCN and a novel TRCN combined 

with CNN. The implementation occurred in Python, and performance assessment metrics were analysed to determine the 

algorithms' effectiveness. This section provides an analysis of the model's efficacy and its ramifications for the crop 

recommendation system. The predictive experiments were conducted using Python 3.8 on a system featuring an i5 

processor and 4 GB of RAM, facilitating the efficient execution of all requisite tasks. 

 

4.1. Performance Metrics: 

Performance measures in encompass Accuracy, Precision, Recall, F1-Score and Specificity, hence assuring optimal water 

utilization and scheduling [12]. 

 Table.2. Performance Metrics  

Metric Definition Formula 

Accuracy Proportion of correct predictions (both true positives and true 

negatives) out of all predictions. 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Precision Proportion of positive predictions that are actually correct. 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall Proportion of actual positive instances that are correctly 

identified. 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

F1-Score Harmonic mean of precision and recall, balancing both metrics. 2×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

Specificity Proportion of actual negative instances that are correctly 

identified. 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

4.2. Experimental Analysis:  

The experimental analysis evaluates deep learning models, including CNN, TCN, TabNet, FCNN, and TRCN, for 

weather-based irrigation prediction. Key metrics such as accuracy and F1-score are analysed to determine the most 

effective model for optimizing irrigation management. 

 

Table.3. Performance Metrics Comparison of DL Algorithms 

Algorithm Accuracy Precision Recall F1-Score 

FCNN 0.51 0.10 0.20 0.14 

CNN 0.86 0.78 0.75 0.77 

TabNet 0.97 0.95 0.95 0.95 

TCN 0.98 0.97 0.97 0.97 

Proposed 0.99 0.97 0.98 0.97 

 

 Fig.6. 

Performance Evaluation of FCNN, CNN, TabNet, TCN, and Proposed Models 



 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s 
Pg 517 

U. Suriya, Dr. J. Yesudoss  
 

The table and diagram displays the performance metrics of various algorithms for a water irrigation system, encompassing 

Accuracy, Precision, Recall, and F1-Score. The FCNN algorithm demonstrates suboptimal performance, with an accuracy 

of 0.51 and an F1-score of 0.14. CNN, TabNet, and TCN exhibit superior performance, with TabNet attaining the best 

accuracy (0.97) and F1-score (0.95). The proposed method surpasses all alternatives, with an accuracy of 0.99 and an F1-

score of 0.97, demonstrating its exceptional efficacy in forecasting irrigation requirements. 

 

Table.4. Precision Comparison 

Algorithm Class 0 Class 1 Class 2 Class 3 Class 4 Avg 

FCNN 0.00 0.00 0.00 0.00 0.51 0.10 

CNN 0.86 0.68 0.61 0.82 0.93 0.78 

TabNet 0.98 0.94 0.86 0.98 0.99 0.95 

TCN 1.00 0.93 0.95 0.98 1.00 0.97 

TRCN 0.99 0.90 0.95 0.99 0.99 0.96 

 

 
Fig.6. Evaluating Precision Performance across Multiple Classes and Models 

 

From the above results, FCNN struggles significantly with precision, particularly in specific classes, resulting in an 

average precision of 0.00. CNN demonstrates moderate precision, performing strongly in class 0 and achieving an overall 

average precision of 0.74 across classes. TabNet showcases exceptional performance, maintaining consistently high 

precision scores across all classes, leading to an average precision of 0.95. TCN excels in precision, achieving perfect 

scores (1.00) in multiple classes, resulting in an impressive average precision of 0.99. TRCN maintains strong precision 

across all classes, particularly in class 0, with an overall average precision of 0.90. 

 

Table.5. Recall Comparison 

Algorithm Class 0 Class 1 Class 2 Class 3 Class 4 Avg 

FCNN 0.00 0.00 0.00 0.00 1.00 0.20 

CNN 0.83 0.67 0.50 0.82 0.95 0.75 

TabNet 0.93 0.91 0.94 0.96 1.00 0.95 

TCN 0.93 0.95 0.97 0.98 1.00 0.97 

TRCN 0.98 0.99 0.97 0.97 1.00 0.98 
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Fig.7. Evaluating Recall Performance across Multiple Classes and Models 

 

FCNN demonstrates limited effectiveness, particularly in predicting weather events, with an average accuracy of 0.20. 

CNN provides moderate performance, maintaining an average accuracy of 0.80 and delivering consistent results across 

most weather conditions. TabNet excels in classification tasks, achieving a high average accuracy of 0.95, showcasing 

strong capabilities in handling weather data. TCN outperforms with an impressive 0.97 average accuracy, demonstrating 

its effectiveness in capturing temporal patterns. TRCN exhibits robust performance with an average accuracy of 0.96, 

highlighting its efficiency in processing weather-related data. 

 

Table.6. F1-Score Comparison 

Algorithm Class 0 Class 1 Class 2 Class 3 Class 4 Avg 

FCNN 0.00 0.00 0.00 0.00 0.68 0.14 

CNN 0.84 0.68 0.55 0.82 0.94 0.77 

TabNet 0.96 0.93 0.90 0.97 0.99 0.95 

TCN 0.96 0.94 0.96 0.98 1.00 0.97 

TRCN 0.99 0.95 0.96 0.98 1.00 0.98 
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Fig.7. 

Evaluating F1-Score Performance across Multiple Classes and Models 

 

FCNN performs poorly, with F1 scores close to 0 across most classes, except for class 3, where it achieves a moderate 

score of 0.68. CNN delivers consistent performance, maintaining F1 scores between 0.73 and 0.94, reflecting balanced 

precision and recall across classes, particularly strong in class 3. TabNet demonstrates robust classification capabilities 

with high F1 scores across all classes, averaging around 0.97. TCN excels with near-perfect F1 scores ranging from 0.98 

to 1.00, highlighting its superior ability in weather classification tasks. TRCN maintains excellent performance, with F1 

scores ranging from 0.90 to 0.99, ensuring high accuracy and reliability across all classes. 

Fig.8. 

Confusion matrixes of DL Models 
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The bar plot presents a visual comparison of the accuracy of five deep learning algorithms: FCNN, CNN, TabNet, TCN, 

and TRCN. TRCN achieves the highest accuracy at 99%, followed closely by TCN at 98% and TabNet at 97%. CNN 

demonstrates moderate performance with an accuracy of 86%, while FCNN records the lowest accuracy at 51%. The plot 

effectively emphasizes the superior performance of temporal convolutional and residual convolution networks in handling 

the dataset. 

 

(a)  CM for FCNN                                                    (b)  CM for CNN 

 

(c) CM for TabNet                                                  (d)  CM for TCN 

 

(e) CM for TRCN 

Fig.9. CMs for DL Models 
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The proposed TRCN model demonstrated the highest classification accuracy, correctly predicting 1,199 instances for 

Water Twice a Week, 1,182 for Water Every Other Day, 862 for Water Standard, 5,948 for Water More, and 9,827 for 

Water Daily, with minimal misclassifications. Compared to other models, FCNN failed to classify multiple classes due to 

severe class imbalance, while CNN and TCN showed moderate performance with notable misclassifications. TabNet 

performed well but had minor errors across multiple categories. The TRCN model outperformed all, effectively reducing 

misclassifications and enhancing predictive accuracy, making it the most reliable approach for optimal irrigation 

scheduling. 

5. CONCLUSION 

This study systematically analyzed the performance of multiple deep learning models for predicting irrigation 

requirements based on weather parameters. The evaluation of FCNN, CNN, TabNet, TCN, and the proposed TRCN model 

revealed significant performance variations, with FCNN demonstrating limited effectiveness. CNN, TabNet, and TCN 

exhibited promising results, but TRCN achieved the highest accuracy and F1-score, indicating its superiority in predicting 

irrigation needs. The results underscore the potential of deep learning in optimizing water management systems and 

improving agricultural sustainability. Future research should explore integrating additional meteorological and soil 

parameters to further enhance predictive accuracy and scalability. The findings highlight the practical implications of deep 

learning in precision agriculture, offering a viable approach for data-driven irrigation optimization and sustainable water 

resource management.  
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