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ABSTRACT 

Prediction of health disease employing ML algorithm system using predicting a patient’s illness based on observed 

symptoms. Proposed Scale Normalized Data Wrangle and Kurtosis Matching Regression (SNDW-KMR) is introduced for 

maternal health risk prediction. Initially, pregnancy risk factor dataset is considered as input. Robust Scaled Normalization 

Process and Box Plot Data Wrangling are performed for normalization and outlier detection. Features necessitated for 

pregnancy health risk prediction is selected employing Weight Jarque–Bera Kurtosis Matching Regressive Feature Selection 

algorithm. Experimental evaluation conducted with several metrics. 
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1. INTRODUCTION 

Maternal health risk prediction is critical feature as public health is concerned. An advanced machine learning technique was 

designed in [1] to forecast Gestational diabetes mellitus (GDM) risk in pregnant women. But error and outlier detection rate 

involved risk in pregnant women was not focused. A novel parameter optimization method using MRA-optimized SVM was 

proposed in [2] to improve maternal health risk prediction. But F-measure and false positive rate involved in maternal health 

risk prediction was not discussed. Weight Jarque–Bera Kurtosis Matching Regressive a clinical pregnancy prediction model 

was introduced in [3] for implementing ML. Bayesian approach was designed in [4] to predict weight gain while dealing 

with limited data availability. Ensemble ML classifier was introduced in [5] for features extraction by classification. End-to-

end overview of FetalAI’s development process was carried out in [6] to perform efficient user interactions. Prediction 

methods were developed in [7] and [8] to predict Period Score during delivery period. In [9], fundamentals of ML different 

prediction methods were designed. Prevailing management techniques consists of early identification and initiation of risk 

circumventing interventions eased by a rules-based checklist [10]. In [11] ML were applied with higher accuracy. Yet another 

method employing ensemble of ML technique was designed in [12]. A systematic review of ML based decision support 

system for different aspect of maternal health care prediction was investigated in [13]. An overview on evolution of ML 

techniques was designed in [14]. Two novel ensemble methods for miscarriage prediction was presented in [15] with main 

focus on error rate.  

1.1 Contributions of the work 

 To improve maternal health risk prediction accuracy, SNDW-KMR model is  developed  

 To reduce error rate, Robust Scaled Normalized and Box Plot Data Wrangling is used.  

 To select relevant features, Weight Jarque–Bera Kurtosis Matching Regressive Feature Selection algorithm 

denoising model is  applied  

 To conduct proposed SNDW-KMR methods are compared to existing [1] and [2]. 

Related Works 

In [16], ML technique was applied for predicting risk on basis of immune abnormalities. In [17], correlation based feature 

selection employing ML technique was proposed that based on high correlated features provided. A predicting maternal 

health risk employing sophisticated ML techniques was investigated in [18]. MLP-NN classifier was proposed in [19] of  
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predicting depression risk and anxiety in pregnant women. Yet another clinical-setting model to rule out unfavorable maternal 

aftermaths in women employing novel ML method was presented in [20]. Several ML algorithms were proposed in [21] for 

predicting moderate-to-severe depression. In [22], a plethora of ML algorithms in maternal risk level prediction employing 

global maternal mortality dataset from Oman was designed. A hybrid method combining IoT and big data for real time 

maternal risk prediction was presented in [23]. In [24], three distinct ML algorithms and decision tree regression were 

designed to predicting maternal health risk prediction. Yet another real time maternal health prediction method employing 

SVM and ANN was presented in [25]. A literature survey on ML based box methods were proposed in [26] for both ensuring 

pregnancy care. In [27] a method to predict risk associated with maternity using principal component analysis and stacked 

ensemble voting classifier was presented. By employing these two mechanisms resulted [28] in improvement of precision. 

Yet another method employing deep hybrid method, artificial neural network and random forest algorithm was proposed in 

[29]. A robust data scaling algorithm was designed in [30] to  improving accuracy of detection rate.  

2. PROPOSAL METHODOLOGY 

 ML method for maternal health risk prediction, called SNDW-KMR is choosing the relevant features with high accuracy.  

 

Figure 1 Structure of (SNDW-KMR) method 

In figure1, the proposed method performs two distinct processes, data pre-processing and feature selection.  

2.1 Dataset description 

The pregnancy risk factor dataset employed in our work for maternity health risk prediction consists of eleven features and 

6104 sample instances. the dataset including 11 Features such as , Patient ID, Name, Age, Body temperature , Heart rate, 

Systolic blood pressure, Diastolic blood pressure , BMI, Blood glucose, Blood glucose, Outcome. 

2.2 Robust Scaled Normalized and Box Plot Data Wrangling-based Preprocessing model  

      In this work a pre-processing model combining Robust Scaled Normalized and Box Plot Data Wrangling is designed 

 

 

 

 

 

 

 

 

Figure 2 Structure of Robust Scaled Normalized and Box Plot Data Wrangling model 

In figure 2, maternal data point pre-processing, input vector formulated for raw pregnancy risk factor dataset. Data 

preparation using Robust Scaled Normalization Process to scale data points in specific range. Box Plot Data Wrangling easily 

detects outliers. Normalized and outlier remove features input vector are ready for evaluation and deployment. Consider 

pregnancy risk factor dataset ‘𝐷𝑆’ as input with ‘𝑚’ features ‘𝐹’ and ‘𝑛’ samples ‘𝑆’ formulated as input vector.  
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𝐼𝑉 = [

𝑆1𝐹1 𝑆1𝐹2 … 𝑆1𝐹𝑚

𝑆2𝐹1 𝑆2𝐹2 … 𝑆2𝐹𝑚

… … … …
𝑆𝑛𝐹1 𝑆𝑛𝐹2 … 𝑆𝑛𝐹𝑚

]    (1) 

In (1), input vector ‘𝐼𝑉’ is described. Robust Scaled Normalization function is applied next for employing median and IQR 

to robust outliers. It scales feature values present in input vector utilizing IQR. Here Robust Scaled Normalization function 

for ‘𝐼𝑉’ as follows, 

𝑁𝐼𝑉 =
𝐼𝑉−𝑄2(𝐼𝑉)

𝑄3(𝐼𝑉)−𝑄1(𝐼𝑉)
      (2) 

In (2), ‘𝑄2(𝐼𝑉)’, ‘𝑄3(𝐼𝑉)’ and ‘𝑄1(𝐼𝑉)’ specifies three quartiles ‘25𝑡ℎ’, ‘50𝑡ℎ’ and ‘75𝑡ℎ’ quartile of feature values present 

in input vector. With obtained ‘𝑁𝐼𝑉’ results, wrangling function is applied for processing data and detect outliers. By 

performing munging or sorting, data is processed for resultant feature values. Second quartile or median results are obtained. 

𝑄2[𝐼𝑉] = {
𝑁𝐼𝑉 [

𝑛+1

2
] , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑁𝐼𝑉[
𝑛

2
]+𝑁𝐼𝑉[

𝑛

2
+1]

2
, 𝑖𝑓 𝑛 𝑖 𝑒𝑣𝑒𝑛

  (3) 

From (3), middle maternal data point value is selected for odd number of observations and mean of two maternal data points 

are selected in case of even number of observations. First quartiles ‘𝑄1[𝐼𝑉]’ and third quartiles ‘𝑄3[𝐼𝑉]’ are obtained by 

dividing into two.  

𝑄1[𝐼𝑉] = ∑ 𝑀𝑒𝑑(𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛)/2   (4) 

𝑄3[𝐼𝑉] = ∑ 𝑀𝑒𝑑(𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛)/2 (5) 

In (4) and (5) first quartiles ‘𝑄1[𝐼𝑉]’ and third quartiles ‘𝑄3[𝐼𝑉]’ results are arrived at averaging of median of lower region 

‘𝑀𝑒𝑑(𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛)/2’ and averaging of median of upper region ‘𝑀𝑒𝑑(𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛)/2’. Inter quartile region is 

obtained and range of box plot is, 

𝐼𝑄𝑅 = 𝑄3[𝐼𝑉] − 𝑄1[𝐼𝑉]     (6) 

From (6), inter quartile region ‘𝐼𝑄𝑅’ is evaluated by subtracting ‘𝑄1[𝐼𝑉]’ from ‘𝑄3[𝐼𝑉]’. Next, range of box plot is obtained 

as, 

𝑅𝑎𝑛𝑔𝑒: 𝑄1[𝐼𝑉] − 1.5 ∗ 𝐼𝑄𝑅 [𝑙𝑜𝑤𝑒𝑟 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒]; 𝑄3[𝐼𝑉] + 1.5 ∗ 𝐼𝑄𝑅[𝑢𝑝𝑝𝑒𝑟 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒   
      (7) 

In (7), by maternal data points going outside the range then it’s an outlier and vice versa.  

 

Algorithm 1 Robust Scaled Normalized and Box Plot Data Wrangling 

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Robust_statistics
https://en.wikipedia.org/wiki/Outlier
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2.3 Weight Jarque–Bera Kurtosis Matching Regressive Feature Selection model   

Weight Jarque–Bera Kurtosis Matching Regressive Feature Selection algorithm is designed to select the relevant features for 

maternal health risk prediction.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Flow diagram of Weight Jarque–Bera Kurtosis Matching Regressive Feature  

Selection  

Figure 3, pre-processed samples and features are considered to perform Weight Jarque–Bera Kurtosis Matching Regressive 

Feature Selection model. With preprocessed data samples, skewness ‘𝑆𝑘’ and sample kurtosis ‘𝐾𝑢’ for corresponding ‘𝑚’ 

set of feature is as follows.  

𝑆𝑘 =
1

𝑚
∑ (𝐹𝑖−𝐹)3𝑚

𝑖=1

(
1

𝑚 
∑ (𝐹𝑖−𝐹)2𝑚

𝑖=1 )
3/2 (8) 

𝐾𝑢 =
1

𝑚
∑ (𝐹𝑖−𝐹)4𝑚

𝑖=1

(
1

𝑚 
∑ (𝐹𝑖−𝐹)2𝑚

𝑖=1 )
2          (9) 

In (8) and (9), ‘𝑆𝑘’ and ‘𝐾𝑢’, with respect to features are evaluated. The value ‘𝑆𝑘’ is greater than ‘0’ denotes right-skewed 

and ‘𝑆𝑘’ less than ‘0’ denotes left-skewed. Then, Jarque–Bera Test is examined with its ‘𝑆𝑘’ and kurtosis is stated as.  

                                          𝐽𝐵 =
𝑙

6
(𝑆𝑘2 +

1

4
(𝐾𝑢 − 3)2) (10) 

With Jarque–Bera Test, Kurtosis matching goal is find weights for each observation in regression that, result of residuals 

with kurtosis value closer to normal distribution. Finally, relevant features are considered for maternal healthcare 

prediction.  

Input: Dataset ‘𝐷𝑆’, Samples ‘𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}’, Features ‘𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑚}’ 

Output: accurate and relevant features selected  

Step1: Initialize ‘𝑛 = 6104’, ‘𝑚 = 11’, preprocessed data samples ‘𝑃𝐷 = {𝑃𝐷1, 𝑃𝐷2, … , 𝑃𝐷𝑙}, 𝑙 ≤ 𝑛’  

Step 2: Initialize  ‘𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 3’ 

Step 3: Begin 

Step 4: For each Dataset ‘𝐷𝑆’ with Features ‘𝐹’ and pre-processed data samples ‘𝑃𝐷’ 

Step 5: Evaluate skewness ‘𝑆𝑘’ according to (8) 

Step 6: Evaluate kurtosis ‘𝐾𝑢’ according to (9) 

Step 7: If ‘𝑆𝑘 > 0’ 

Step 8: Then the feature distribution is right-skewed 

Step 9: Consider the resultant ‘𝑆𝑘’ value for conducting Jarque–Bera Test 

Step 10: End if 
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Step 11: If ‘𝑆𝑘 < 0’ 

Step 12: Then the feature distribution is left-skewed 

Step 13: Discard the resultant ‘𝑆𝑘’ value and go to step 5 

Step 14: End if  

Step 15: Formulate Jarque–Bera Test according to (10) 

Step 16: If ‘𝐽𝐵 ≥ 0 𝑎𝑛𝑑 𝐽𝐵 < 0.5’ 

Step 17: Then features are selected  

Step 18: Return features selected ‘𝐹𝑆’ 

Step 19: End if 

Step 20: If ‘𝐽𝐵 ≥ 0.5 𝑎𝑛𝑑 𝐽𝐵 < 1’ 

Step 21: Then features are discarded 

Step 22: Go to step 4 

Step 23: End if 

Step 24: Return  

Step 25: End for 

Step 26: End  

Algorithm 2 Weight Jarque–Bera Kurtosis Matching Regressive Feature Selection 

4.Experimental setup 

Proposed, SNDW-KMR model and existing (GDMPredictor) [1] and (MRA-optimized SVM) [2] are implemented in Python. 

The pregnancy risk factor dataset obtained from https://www.kaggle.com/datasets/mmhossain/pregnancy-risk-factor-data.  

2.4 Performance metrics of data pre-processing 

Performing pre-processing ( 𝑃𝑇): Time consumed for data pre-processing.                                𝑃𝑇 = ∑ 𝑆𝑖 ∗ 𝑇𝑖𝑚𝑒 (𝑃𝐷)𝑚
𝑖=1    

(11) 

In (11), data samples ‘𝑆𝑖’ and time consumed to preprocess ‘𝑇𝑖𝑚𝑒 (𝑃𝐷)’. It is measured in terms of seconds (sec). Error rate 

is defined as a amount of samples to undetected. 

                                           𝐸𝑅 = ∑
𝑆𝐼𝑂

𝑆𝑖

𝑚
𝑖=1 ∗ 100   (12) 

From, Error rate ‘𝐸𝑅’ is measured and producing inaccurate outcomes ‘𝑆𝐼𝑂’.  

2.5 Performance metrics of feature selection  

Two distinct feature selection performance metrics are analyzed and validated. 

                                           𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (14) 

True positive ‘TP’, true negative rate ‘TN’ false positive ‘FP’, false negative ‘FN’ It is measured in terms of percentage (%). 

False positive rate (𝐹𝑃𝑅): the analysis of maternal health care prediction is evaluated as,                                     

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (15) 

https://www.kaggle.com/datasets/mmhossain/pregnancy-risk-factor-data
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Figure 4 Graphical representation of pre-processing time 

In figure 4, illustrates pre-processing time of SNDW-KMR reduced by 29% [1] and 45% [2].  

 

Figure 5 Graphical representation of error rate 

Figure 5 illustrates error of SNDW-KMR method by reduced 12% [1] and 23% [2]  

 

Figure 6 Graphical representation of accuracy 

Figure 6 illustrates accuracy of SNDW-KMR method improved by 5% [1] and 18% [2]  
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Figure 7 Graphical representation of false positive rate 

Finally, figure 7 false positive rate using SNDW-KMR method by 29% [1] and 40% [2]  

3. CONCLUSION  

The SNDW-KMR for maternal health risk prediction is proposed. Proposed method realizes the joint modeling and analysis 

of maternal health risk prediction and improve identification performance. Simulation results using SNDW-KMR method 

provides attractive benefits upon comparison to existing methods with pre-processing time, error rate, accuracy and false 

positive rate 
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