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ABSTRACT 

Type 1 diabetes mellitus (T1DM) is associated with acute complications such as diabetic ketoacidosis (DKA) and long-

term glycemic dysregulation. This study aimed to develop and validate machine learning models to predict DKA episodes 

and glycemic control, defined as HbA1c >7%, using a large multi-center, bi-national database from the Diabetes Data 

Network (DDN). Nine machine learning algorithms, including Deep Learning (DL), Support Vector Machine (SVM), 

Random Forest (RF), and Logistic Regression (LR), were trained and validated on clinical and demographic features 

collected longitudinally from 10,868 individuals aged 2–21 years between January 2012 and May 2022. The DL model 

demonstrated the highest predictive performance for DKA, achieving an area under the curve (AUC) of 0.887, while SVM 

was most effective in predicting HbA1c >7% with an AUC of 0.884. Key predictors for DKA included age at diagnosis, 

diabetes duration, prior DKA events, BMI z-score, HbA1c, CGM use, insulin regimen, and center. For HbA1c prediction, 

baseline HbA1c and BMI emerged as dominant features. The results suggest that integrating machine learning models 

into clinical care could enable early identification of high-risk individuals, facilitating timely interventions and potentially 

reducing hospitalization rates and healthcare costs associated with T1DM complications. These models underscore the 

importance of personalized management strategies and highlight the feasibility of real-world application in diabetes 

clinics. 
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1. INTRODUCTION 

Type 1 diabetes mellitus (DM) is becoming more common and is associated with a number of costly and difficult 

consequences. Type 1 diabetes is the most prevalent type among young people, according to reports, however many are 

diagnosed in adulthood. A serious and potentially fatal acute consequence of Type 1 diabetes is diabetic ketoacidosis 

(DKA) [1]. Although DKA can happen to anyone with Type 1 diabetes, it is the first symptom that 6–21% of individuals 

with the disease experience. It has been noted that among adults with a diabetes diagnosis, those with infections, other 

illnesses, psychological stress, or those who have neglected or used insulin therapy insufficiently are the ones most likely 

to get DKA [2, 3]. Tomic and colleagues discovered that among people with type 1 diabetes under the age of 20, more 

than 60% of hospitalizations were directly due to diabetes, with nearly half of them being for ketoacidosis.  

The most accurate indicator for evaluating long-term diabetes control is HbA1c, which measures blood glucose levels 

over the previous two to three months. Higher HbA1c levels have been found to be independently associated with a 

number of factors over time, such as indigenous status, speaking a language other than English at home, using a multiple 

daily injection (MDI) regimen rather than continuous subcutaneous insulin infusion (CSII) or "insulin pump therapy," not 

using continuous glucose monitoring (CGM), having diabetes for a longer period of time, being older when diagnosed, 

having more annual visits, and having a lower body mass index (BMI) z-score. With severe DKA at diagnosis linked to 

increased HbA1c over a median follow-up period of 5.6 years, we also showed in that same study that there is a positive 

correlation between presentation at diagnosis with DKA and eventual HbA1c. A literature review on the use of artificial 

intelligence for diabetes management and decision support found evidence of acceleration in the development of artificial 

mailto:sweta.mishra@medicaps.ac.in
mailto:ratnesh.litoriya@medicaps.ac.in


 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s 
Pg 561 

Sweta Mishra, Dr. Ratnesh Litoriya  
 

intelligence-powered tools for prediction and prevention of complications associated with diabetes [4]. Additionally, 

supervised machine learning techniques have been successfully used in the past to classify short and long term HbA1c 

response after treatment initiation with good AUC values of 0.80 and 0.81, respectively. It has been observed that 

supervised machine learning techniques outperform standard statistical regression models in big clinical datasets [5-9]. 

However, there has never been a comprehensive evaluation of several machine learning models to predict DKA and 

HbA1c>7% in a multi-center type 1 diabetes clinic environment. Using a large bi-national, multi-center database, our goal 

was to create and compare many machine learning approaches to predict which patients with type 1 diabetes would present 

with an undesirable result of DKA during their clinic visit. Predicting a HbA1c >7% at the most recent clinic visit was the 

secondary outcome [10, 11]. In order to enable the future integration of these models into clinical databases at the point 

of care, we sought to identify critical risk indicators (features) that were predictive of the outcomes for the best models 

[12-16]. 

 

2. SAMPLING METHODOLOGY 

2.1. Study population 

The Diabetes Data Network (DDN), which provided the data for this investigation. De-identified, prospectively gathered 

individual data from 33 participating DDN centers that treat patients with type 1 diabetes is included in the database. Data 

was moved from sites to the register twice a year using a common data dictionary. All participants aged 2 and older who 

were followed up with at the centers between January 2012 and May 2022 are included in the data extraction for this 

study, which was completed in May 2022. In our study, we only included people with type 1 diabetes. Patients who were 

older than 21 at the time of their clinic visit were not included in our analysis. The Monash University Human Research 

Ethics Committee granted ethics approval for this study (Project ID: 37978). 

 

2.2. Feature variable prediction 

The reported DKA at the most recent clinic visit (coded as Yes/No) served as our main outcome variable. Hyperglycemia, 

ketonuria or ketonemia, and a pH of less than 7.3 or a bicarbonate level of less than 15 mmol/L were all considered 

indicators of DKA. The glycaemic outcome of HbA1c>7%, coded Yes/No, was the secondary endpoint. It was assessed 

once again at the patient's most recent (final) visit. The following risk factors were included in the predictive features of 

the model: DKA at diagnosis (Yes/No/Missing), age at diagnosis (in years), DKA at previous visit, gender (Male/Female), 

insulin regimen at previous visit. 

(MDI/CSII/Others/Missing), Index of Relative Socio-economic Index (IRSD) based on postcode of diagnosis, de-

identified center ID, center type (Paediatric/Adult), duration of diabetes at previous visit, BMI percentile at previous visit, 

counts of comorbidity at previous visit, HbA1c% at previous visit, country of birth and use of CGM device before last 

visit (Yes/No). In order to establish a temporal relationship between the predictive features and outcomes, we attempted 

to use the individual's prior clinic measurements as predictors. To make it easier to investigate non-linear correlations, all 

continuous variables were divided into quartiles. Missing data was kept as a separate category within the variable to 

maintain the overall sample size. Since it was impossible to determine if the missing data was absent at random from our 

data, we decided against using multiple imputation. There was more missing visit data for patients who experienced DKA 

since a much larger percentage of them had only one visit documented in our database during the study period. For adults 

over the age of 18, height and weight were taken during each clinic visit using the standard procedures for each clinic. 

After that, measurements were used to calculate BMI. The height and weight data of children aged 2 to 18 years were 

used to calculate their BMI standard deviation or z-scores, which are measures of relative weight adjusted for the child's 

age and sex. The 2000 reference scale from the Centers for Disease Control and Prevention was used for the calculations. 

Both at the time of diagnosis and during follow-up clinic visits, HbA1c levels were measured using standardized 

techniques using either laboratory-performed HbA1c or desk-top analyzers. The IRSD is a proxy for socioeconomic status 

(SES) at the local level. A postcode with a low IRSD score has a higher percentage of people who are relatively 

disadvantaged. 

 

3. MACHINE LEARNING MODELS 

In our investigation, we used the following nine machine learning techniques: (1) Naïve Bayes (NB), a low variance, high 

bias estimator based on conditional probability and the Bayes Theorem, (2) In order to regularize parameters ranging 

between L1 (Lasso) and L2 (Ridge regression), the Generalized Linear Model (GLM), a statistical technique that is an 

extension of the standard linear regression model, is fitted by maximising the log-likelihood function with an elastic net 

penalty alpha parameter. (3) The Generalized Linear Model includes the Logistic Regression (LR) Model as a subset. (4) 

Deep Learning (DL): a technique based on a multi-layer artificial neural network that features numerous hidden layers 

made up of neurons and sophisticated features like adaptive learning rate and L1 or L2 regularization, and is trained using 

stochastic gradient descent using back-propagation, (5) Fast Large Margin (FLM), a model that optimizes the cost 

parameter, C, the error term's penalty parameter, is based on the linear support vector learning technique and is helpful 

for large sparse data with a large number of observations and features., The sixth machine learning technique is the Support 

Vector Machine (SVM), which creates a set of hyperplanes in a high-dimensional space for categorization. Effective 
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separation is achieved by determining the hyperplane that keeps the largest distance from each class's closest training data 

points, also known as the "functional margin." Decision Trees (DT), these represent a non-parametric binary classification 

method in which one tree is used to evaluate threshold points to find the one that yields the highest consistency within 

new subgroups while attempting to minimize impurity in the node. Generally speaking, a larger margin corresponds to a 

reduced generalization error for the classifier. When more divisions are unable to improve the current homogeneity, the 

process is over. (8) Random Forests (RF), which are made up of several DTs that were trained using the ensemble bagging 

approach. The final categorization is decided after a vote by all DTs. Data is continually divided into child nodes by DTs, 

resulting in binary trees. Trees that are not functioning well can be pruned. RF is a suggested classifier because it can 

manage noise, outliers, underfitting, and overfitting. Gradient Boosted Trees (GBT), XGBoost, and a well-known 

classification ensemble, through iterative improvements of a single tree model, this machine learning technique improves 

a model. It modifies example weights according to prior expectations at each iteration. A weighted combination of all the 

models produced is the final model. The gradient of the function generated by the errors is used to fine-tune the training 

parameters. 

 

3.1. Optimal feature and model parameter selection 

The 60% training dataset served as the basis for the optimal feature selection process (Fig. 1). To reduce classification 

error, a seven-step cross-validation procedure was used, evaluating several complicated functions and optimization 

heuristics on 90% training and 10% validation datasets. Following feature optimization, the features were applied to the 

entire training dataset, and using a 3-fold cross-validation stratified sampling technique with 90% training and 10% 

validation sub-sets, the parameters for each machine learning model were optimized using this 60% dataset. 

 

3.2. Model evaluation 

An assessment of the model's prediction accuracy and other performance metrics, which differ based on the particular 

classification task at hand, is given in this section. We use a 40% hold-out dataset, which hasn't been used in any of the 

previous model optimization procedures, to evaluate performance. We assess performance across seven different subsets 

using this hold-out set as the input for a multi-hold-out-set validation (Fig. 1). The following performance metrics were 

computed in order to quantitatively compare the efficacy of the different machine learning approaches: classification error 

(the total percentage of subjects incorrectly classified), sensitivity (the total percentage of true positives, such as those 

with DKA), specificity (the total percentage of true negatives), F-measure (the combination of sensitivity and precision), 

total time spent developing and validating the model, and lastly, the primary performance metric: AUC. The most 

dependable performance metric that combines sensitivity and specificity is the AUC. AUC is computed for the validation 

dataset, which allows for external validation, and values nearer 1 signify higher discriminatory qualities. Values over 0.8 

are regarded as good performance. Rapidminer Studio V10.1(14) and Stata V18.0 (Stata Corp, College Station, TX, USA) 

were used for data analysis. 

 

 
Fig. 1. Conceptual framework of data preparation, model development and validation 
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Table 1 Clinical characteristics of cohort by DKA status at last visit 

DKA at 

last visit 

Age at 

diagnosis 

Age at 

previous 

visit 

Gender 
Insulin  

regimen 

Duration 

of 

diabetes 

HbA1c 

previous 

DKA at 

diagnosis 

0 12 18 Male Others 7.5 8.41 Missing 

0 18 14 Male Missing 8.9 7.46 No 

0 9 18 Male CSII 4.4 7.55 Yes 

0 5 13 Male CSII 6.3 8.26 Yes 

0 7 19 Female BD 1.8 6.77 Missing 

0 9 14 Female BD 5.4 6.85 Yes 

0 4 18 Male MDI 8.1 7.94 Missing 

0 17 17 Male Missing 11.1 9.02 Yes 

0 4 12 Male Others 0.5 8.48 No 

 

4. RESULTS AND DISCUSSION 

Our study included 10,968 individuals with type 1 diabetes who had available DKA information at the time of their visit 

to DDN centers between January 2012 and May 2023 (Fig. 2). 367 (2.9%) of the 10,868 participants in our research 

reported having at least one DKA episode during their most recent visit (Table 1). The cohort was followed up in the trial 

for a median of 3.4 years (IQR 1.3–5.7 years), with the majority (50.1%) being between the ages of 15 and 21 at the last 

visit. The clinical and demographic characteristics of those who reported DKA and those who did not differed 

significantly. Those who were under 15 years old at the last visit, had been diagnosed and had had diabetes for less than 

5 years, had lower missing values for BMI z-score and HbA1c at the last visit. Comorbidities were present in a 

substantially greater percentage of DKA patients at the prior visit. Based on the validation dataset, Table 2 presents an 

overview of the performance of the different machine learning techniques. With an AUC of 0.887, DL outperformed GLM 

and LR in terms of the major performance metric, AUC. AUC < 0.5 indicates that DT did not perform properly. Fig. 3 

displays the AUC for comparing the different machine learning models for DKA.  

A low classification error rate of 0.9%, high sensitivity of 100%, specificity of 50%, and F-measure of 99.6% were also 

provided by the DL. It took about eleven minutes to compute, which is a respectable amount of time. At the price of AUC 

(0.853), the next best-performing RF model offered a little greater specificity of 53%. Two input blocks with 50 layers 

each that were activated by the rectifier function were the ideal model parameters for the DL model. The following 

variables were measured at prior visits: DL used age, duration of diabetes, Center, BMI z-score, HbA1c, CGM usage, 

insulin regimen, and DKA. Out of five distinct machine learning models, DKA at the prior visit was the most frequently 

chosen attribute. Center, which was chosen by four machine learning models, was the next most popular feature. 

An overview of how well the different machine learning techniques performed in predicting HbA1c >7% is provided. 

With an AUC of 0.884, SVM outperformed the others based on the AUC metric. Several other models with somewhat 

lower AUCs came right after this. Fig. S1 displays the AUC for comparing the different machine learning models for 

glycemic levels greater than 7%. Additionally, the SVM yielded the highest specificity of 95.6%, the lowest classification 

error rate of 11.6%, and the F-measure of 58.9%. At 39 minutes, it was the second slowest in terms of computing time. 

Although the LR model was the fastest, its performance was somewhat compromised (AUC = 0.876). Gamma = 0.005 

and C = 10 were the ideal model parameters for SVM. Regarding the features chosen, SVM made use of the following 

variables: center, number of comorbidities, BMI z-score at the prior visit, and HbA1c at the prior visit. The HbA1c from 

the prior visit was chosen by all of the machine learning models, and it was evident that this was a powerful predictor of 

the upcoming HbA1c. With only one feature, HbA1c, NB and DT seemed to be the most economical models. They also 

had similar AUCs, making them potential substitutes for practical use. 
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Fig. 2. Flowchart of patient inclusion/exclusion criteria and final cohort for stud 

 

Based on the AUC determined on a validation dataset, our work has determined that it is possible to apply cutting-edge 

machine learning models to categorize people according to whether they report DKA during their clinic visits with good 

discriminatory qualities. In particular, we discovered that the DL model had the highest AUC of 0.887 with good 

sensitivity when it came to the following factors: age, duration of diabetes, BMI z-score, HbA1c, CGM use, insulin 

regimen, DKA during a prior visit, and center. Our discovery that the use of CGM was predictive of DKA is in line with 

previous research, which found that hospitalizations for hypoglycemia or ketoacidosis were linked to "time in range" data 

from CGM and that longitudinal measurements of CGM data were also highly predictive of identifying patients at risk of 

DKA. Our study has discovered a center effect in addition to what has already been noted in the literature. Clinical practice, 

healthcare resources, and other unmeasured variations in patient characteristics are examples of unmeasured or "latent" 

center level effects that can be quantified using the Center, an objective metric. In terms of differentiating individuals for 

this outcome, we discovered that the SVM model offered a decent match for predicting HbA1c >7% (AUC = 0.884). The 

HbA1c, comorbidities, BMI z-score at the prior visit, and center were among the important features that the model used 

in the prediction. 

Previous studies have demonstrated baseline HbA1c, age, BMI, and duration of diabetes to be major drivers of subsequent 

HbA1c, thus our conclusion that clinical factors like HbA1c and BMI evaluated at a prior visit are a strong regulator of 

glycaemic outcome is not surprising. These findings also demonstrate that it is possible (computationally) to apply these 

models in practice with a fair degree of accuracy to help clinicians identify patients who may be at risk for developing 

DKA or who have a HbA1c of greater than 7% and who may benefit from targeted education, especially in the area of 

DKA prevention. AUC, which measures the discriminatory capacity of the model as a trade-off between sensitivity and 

specificity, served as the primary performance metric in our investigation. This would account for the model's high 

specificity and low sensitivity for HbA1c >7% and its high sensitivity and low specificity for DKA. Depending on the 

goal of the clinical implementation, models can be chosen using a variety of criteria (such as maximizing sensitivity or 

true positives). 

Our models outperformed other relevant studies, such as a case-control analysis of a large analysis that compared the 

effectiveness of multiple machine learning techniques utilizing electronic medical information [20]. With AUCs ranging 

from 0.72 (partial out of sample validation cohort) to 0.85 (full out of sample validation cohort), our AUCs were also 

higher than those of a large electronic medical record analysis that predicted admissions linked to DKA within 180 days. 

The type of machine learning models examined and the study strategy (case-control versus our prospective cohort) may 

be the causes of the discrepancies. Elastic net regularization was one of the strategies examined in earlier related studies. 

For our investigation, we were able to take advantage of the longitudinal character of a sizable, real-world multi-center 

clinical dataset spanning two nations. Our analysis found the center effect in addition to what was previously noted in the 

literature, suggesting that these models must be tailored to certain geographic contexts. 
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Table 2 Comparison of accuracy, error rate and total time for different machine learning methods 

Model AUC SD 
Classification 

Error 
Sensitivity Specificity F-Measure 

Naive Bayes (NB) 0.811 0.019 1.2 % 100.0 % 24.0 % 99.4 % 

Generalized Linear Model (GLM) 0.853 0.035 0.8 % 100.0 % 51.7 % 99.6 % 

Logistic Regression (LR) 0.837 0.017 0.9 % 99.9 % 53.4 % 99.6 % 

Fast Large Margin (FLM) 0.662 0.023 1.2 % 100.0 % 22.5 % 99.4 % 

Deep Learning (DL) 0.887 0.033 0.9 % 99.9 % 50.3 % 99.6 % 

Decision Tree (DT) 0.5 0.001 1.6 % 100.0 % 0.0 % 99.2 % 

Random Forest (RF) 0.615 0.029 1.6 % 100.0 % 0.0 % 99.2 % 

Gradient Boosted Trees (GBT) 0.636 0.037 1.6 % 100.0 % 0.0 % 99.2 % 

Support Vector Machine (SVM) 0.536 0.049 1.4 % 99.7 % 24.4 % 99.3 % 

 

 
Fig. 3. Area under the curve comparing the various machine learning models for predicting DKA 

 

5. SUGGESTIONS 

To offer reliable and accurate estimations, a model must be developed from a training dataset and externally validated on 

fresh data before being used in clinical practice. We conducted an analysis of a sizable multi-center dataset with this goal 

in mind, enabling accuracy and generalizability in our findings. Implementing such models into standard clinical care data 

collection systems in diabetes clinics is the last phase. A collaborative shared decision-making process with clinicians and 

healthcare workers to take preventive measures and interventions to avoid this serious complication from occurring, as 

well as to avoid the healthcare costs and other psycho-social impact on individuals associated with the potential 

hospitalizations, can be made possible by machine learning models' ability to accurately predict which individuals may 

present with DKA (or HbA1c >7%) during the next clinic visit. Physicians should think about screening programs to 

prevent diseases including infections and mental health issues, which can lead to the development of DKA. In order to 

prevent DKA presentation, targeted case management and education about glycemic management, including ketone 

testing, extra insulin administration, and self-monitoring of blood glucose (SMBG), could be given priority for the most 

vulnerable groups. With prompt education and guidance, having access to phone assistance throughout illness can avoid 

admittance. The correct estimation of correction insulin boluses and the matching of insulin needs with carbohydrate 

intake can both be facilitated by education. In order to prevent DKA and improve glycaemic levels as determined by 

HbA1c, it is beneficial to encourage and involve young people in avoiding missed bolus doses or in catching up on missed 

bolus doses, particularly to avoid missing basal insulin. 

Early detection of DKA risk and prevention of DKA treatment and related hospitalization expenses have financial 

advantages. Individuals can also benefit from things like less time away from work or school and less negative psycho-

social effects. Our models may also be helpful in clinical practice when it comes to giving patients access to more recent 

targeted medications. Based on our model's predictions, it might be feasible to recruit participants for randomized 

controlled trials that are integrated into the clinical database according to their risk of getting DKA. A sizable multi-center, 

multi-country study with a sizable sample size served as the foundation for our investigation. The goal of this strategy is 

to lessen inequalities in healthcare accessibility and standards. About 40% of children and young adults in both nations 

have type 1 diabetes, and the DDN is essential to their care. Furthermore, healthcare facilities reach out to both urban and 

rural people through established outreach initiatives. As a result, our data offers a representative sample that captures the 

two countries' disparate health care systems and demographics. The use of numerous machine learning models and their 
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assessment using a robust design framework in terms of feature selection and model parameter selection via cross-

validation constitute another strength of our research. 

We admit that the list might not be all-inclusive in terms of the predictive factors, and we omitted laboratory 

measurements. Although the predictive performance of the models may be enhanced by these factors, systematic 

missingness, especially among non-DKAs in terms of the clinicians who prescribe the tests, may lead to bias in the data' 

analysis and interpretation. In a similar vein, 2564 people were not included in our study because they did not have DKA 

at clinic visits. In contrast to those with available DKA data, those with missing DKA values are more likely to be 

significantly older, have had diabetes for a longer period of time, be on an MDI regimen, live in moderately disadvantaged 

areas, be from adult centers, and have a higher proportion of people born abroad, according to a comparison of the 

characteristics of those with missing DKA at their most recent visit. Our study's machine learning models may perform 

worse than expected, especially when it comes to underestimating the more severe category. We also admit that there was 

a substantial amount of missing data for certain variables, such as insulin regimen, BMI, DKA at diagnosis, and IRSD. In 

the case of data that might not be missing at random, multiple imputation may be a viable remedy and is a topic for future 

study. Since this is a computationally costly operation, not every parameter in each model was optimized. As a result, our 

research's findings are conservative, and there may be room for additional model performance improvement. 

 

6. CONCLUSION 

In this study, we successfully developed and externally validated machine learning models capable of predicting DKA 

episodes and elevated HbA1c levels (>7%) in individuals with type 1 diabetes using a comprehensive, real-world multi-

center dataset. The Deep Learning model achieved superior performance in predicting DKA with an AUC of 0.887, while 

the Support Vector Machine model excelled in predicting glycemic dysregulation with an AUC of 0.884. Significant 

predictors included clinical features such as prior DKA history, BMI z-score, CGM use, HbA1c levels, and diabetes 

duration, reflecting the multifactorial nature of risk assessment in T1DM management. These findings affirm the potential 

of machine learning models to enhance risk stratification and clinical decision-making in routine diabetes care. By 

facilitating the early identification of individuals at high risk for DKA or poor glycemic control, these models offer a 

pathway toward targeted educational interventions and resource allocation. Future implementation into clinical databases 

could further support proactive care models, aiming to reduce complications, improve patient outcomes, and optimize 

healthcare delivery systems across diverse demographic settings. 
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