

Electrospun Nanofibers: Connecting Regenerative Medicine and Biomaterials

Nirmal Kumar J¹, Akiladevi D^{2*}

¹PG scholar, Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai - 600117, Tamilnadu.

²Professor & Head, Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai - 600117, Tamilnadu.

*Corresponding Author:

Akiladevi.D,

Professor & Head, Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai - 600117, Tamilnadu.

Email ID: akilaajcp@gmail.com

Cite this paper as: Nirmal Kumar J, Akiladevi D, (2025). Electrospun Nanofibers: Connecting Regenerative Medicine and Biomaterials. *Journal of Neonatal Surgery*, 14 (7), 465-469.

ABSTRACT

Electrospinning is a well-documented and best-supported process for the nanofibrous scaffolds with the biomimetic attributes needed for regenerative tissue engineering. Electrospun nanofibers were implemented with novel biomaterials to significantly enhance their biological, mechanical, and functional characteristics appropriate for tissue engineering and drug delivery purposes. The review outlines the composition and the methods for the preparation of electrospun nanofibers, loaded with various biomaterials based on different natural and synthetic polymers, biomolecules and the surface modification techniques, which improve biocompatibility and therapeutic potency. Moreover, it emphasizes practical bio fabrication methods, drug-loading strategies and functionalization techniques for the advancement of nanofibers in regenerative medicine. We critically discuss recent developments in particular applications including wound healing, bone and cartilage regeneration, neural tissue engineering and cardiovascular therapies. However, a series of shortcomings including scalability, mechanical stability, and controlled biodegradability limits their translation into the clinic. Future works should focus on exploring novel fabrication approaches, personalized medicine principles, and eventually, scale-up production to iterate between the gap from the bench science to the clinical relevance.

Keywords: Regenerative Medicines, Electrospun Nanofibres, Bio fabrication.

1. INTRODUCTION

Regenerative medicine has emerged as game game-changing field aimed at repairing, regenerating, or replacing damaged tissue and/or organs by employing a combination of biomaterials, stem cells, and bioactive molecules. Natural nano-structured materials are promising in tissue engineering applications as they can mimic the extracellular matrix (ECM) and promote cellular interactions necessary for tissue regeneration¹. Electrospinning is a technique commonly used in nanofabrication, allowing for the production of nanofibrous scaffolds, including those with high surface area, porosity, and tunable mechanical properties, making these ideal candidates for applications in regenerative medicine.

Recent attempts have been made to improve their structural and functional properties, including biocompatibility, bioactivity, and controlled drug release, through the introduction of new hybrid biomaterials into electrospun nanofibers. Natural and synthetic polymers and bioactive agents like growth factors, nanoparticles, and peptides have been used to tailor these scaffolds towards specific tissue engineering applications. Additionally, surface modification methods and improved electrospinning methods like coaxial and emulsion electrospinning have allowed the design of multi-functional nanofibers with higher potential for regeneration².

While electrospun biomaterial-based scaffolds have advanced considerably, there are still hurdles to overcome in their clinical translation; these hurdles include their mechanical stability, control of biodegradability, and large-scale production. Herein, we review the strategies for the formulation and fabrication of biomaterial-loaded electrospun nanofibers and also highlight their biomedical applications for wound healing, bone and cartilage regeneration, neural tissue engineering, and

Journal of Neonatal Surgery

ISSN(Online): 2226-0439 Vol. 14, Issue 7 (2025)

https://www.jneonatalsurg.com

cardiovascular therapeutics. In addition, a discussion on major challenges and future perspectives within the focus area is presented, aiming to shed light on the advanced electrospun scaffolds for regenerative medicine

2. Electrospinning Technology in Biomedical Application:

Electrospinning for Nanofibrous Scaffolds As a strategy for the fabrication of nanofibrous scaffolds becomes important in biomedical engineering and regenerative medicine, electrospinning has emerged as a powerful candidate for this purpose³. This method allows for the generation of high surface area, tunable porosity, and biomimetic architecture nanofibers that mimic the extracellular matrix (ECM). Single-needle, coaxial, and emulsion electrospinning techniques have also been implemented to improve, and functionalize fibers.

Natural and synthetic polymers, for instance, are all biomaterials of choice that significantly affect the biocompatibility, mechanical strength, and degradation of the electrospun scaffolds. Moreover, electrospun nanofibers can be loaded with bioactive molecules (e.g. growth factors, peptides, and nanoparticles) for improving cellular interactions and therapeutic effects. Functionalized nanofibers have been the focus of extensive research for their applications in tissue engineering, wound healing, drug delivery, and biomedical implants⁴.

For all the advantages, however, serious challenges remain that can hamper their translational potential, including mechanical stability, controlled drug release, and scalability. Future directions including 3D-electrospinning and hybrid nanofiber fabrication, functionalized smart biomaterials incorporated with electrospinning technology are promising aspects for the next generation of biomedical applications.

3. Biomaterials for Electrospun Nanofibres:

Biomaterials gained significant attention in the production of electrospun nanofibers for biomedical application as the mechanical properties determine the applicability of engineered scaffolds in biomedical applications and biocompatibility reflects the functionality of the biomaterials⁵. These materials can be divided into three categories based on natural polymers, synthetic polymers and composite materials.

Owing to their good biocompatibility and bioactivity, natural polymers, such as collagen, chitosan, gelatin, silk fibroin, etc., are used in tissue engineering. However, they usually need to be optimized for their mechanical strength and degradation rates. These synthetic polymers such as polycaprolactone (PCL), polylactic-co-glycolic acid PLGA), and polyethylene oxide (PEO) offer higher tunability on their mechanical and degradation properties; however, these two materials may require surface modifications to improve cell adhesion and bioactivity. To achieve the desired properties for biomedical applications, composite materials, involving dynamic combinations of natural and synthetic polymers or integration of bioactive nanoparticles (i.e., hydroxyapatite, graphene oxide) are emerging.

The choice and alterations of biomaterials affect the regenerative performance of electrospun scaffolds. To improve tissue regeneration and therapeutic efficacy, further investigation seeks to create smart biomaterials that are responsive and multifunctional⁶.

4. Bioactive Agent Loading Strategies:

We discuss how these bioactive agents are incorporated into electrospun nanofibers to enhance their biological properties, thus enabling their use in regenerative medicine to promote cell adhesion, proliferation, and differentiation. Nanofibrous scaffolds are used to load bioactive molecules, including drugs, growth factors, peptides, and active nanoparticles, using different strategies ¹⁶.

Common approaches are mentioned: physical mixing, where bioactive agents are added to the polymer solutions prior to electrospinning for more uniform distribution but potentially burst release. The coaxial electrospinning method also enables the preparation of fiber configurations in which the core-shell structure is formed, leading to controlled and prolonged release of bioactive substances⁷. The surface functionalization by chemical grafting or layer-by-layer assembly for post-electrospinning modifications allows fine-tuning of bioactivity while preserving fiber morphology. Other possibilities include emulsion electrospinning, which can loading hydrophilic and hydrophobic agents into the nanofibers, so as to realize dual or sequential release¹⁸.

The therapeutic efficacy of electrospun scaffolds is greatly dependent on the bioactive loading approach used. In the future, the aim in regenerative medicine will be targeted and personalized treatment in the form of smart and stimuli-responsive delivery systems⁹.

5. Functionalization of Electrospun Nanofibres:

The process of functionalization of electrospun nanofibers is significant to induce bioactivity, improve mechanical properties and therapeutic activation for biomedical applications. Functionalized nanofibers are produced to modulate cell adhesion, promote tissue regeneration, and provide sustained or controlled drug release through surface modification or via incorporation of the bioactive content¹².

Surface modification is a widely employed and highly effective strategy for surface functionalization of nanofibers, enhancing biocompatibility and bioactivity while preserving key properties of the parent material⁸. Various methods (e.g., plasma treatment, chemical grafting and layer-by-layer (LbL) assembly) have been widely employed to achieve such a modification by introducing functional groups capable of enhancing the cell-material interface or allowing drug

immobilization¹⁴.

Alternatively, bioactive molecules can be integrated in the nanofibers during the electrospinning process. Such as embedding growth factors, peptides, antibiotics, or nanoparticles (e.g., silver, hydroxyapatite, graphene oxide) to impart antimicrobial properties, osteogenic differentiation, or increased mechanical strength¹³. Core-shell electrospinning provides superficial biocompatibility in wound healing and bone regeneration due to controlled and sustained release of bioactive agents, greatly improving therapeutic efficacy.

Additionally, stimuli-induced functionalization is emerging, whereby nanofibers are created to react to external stimuli such as pH, temperature or enzyme action. These responsive smart materials allow for on-demand drug delivery or prompt adjust of the mechanical/physical properties of the scaffold based on the healing tissue requirements¹⁷.

Although much progress had been made, further improvements are needed to enhance functionalization methods so they can be optimized for large-scale use—and they need to retain both reproducibility and cost-effectiveness. You are anonymous, No user data is saved and you follow up on privacy policy¹⁰.

6. Applications of Electrospun Nanofibres in Regenerative medicine:

Due to the high surface area and tunable mechanical properties, electrospun nanofibers are being utilized for regenerative medicine applications and they also mimic the architecture of the native extracellular matrix (ECM)¹⁵. Such features make them ideal scaffolds for applications in tissue engineering, including wound healing, bone and cartilage regeneration, neural tissue engineering, and cardiovascular therapies.

Functional electrospun nanofibers as bioactive dressings accelerating cell adhesion, proliferation, and vascularization toward wound healing Wound healing nanofibers are functionalized with growth factors, antimicrobial agents, or anti-inflammatory drugs to counter infections and promoting tissue remodelling for enhancing wound healing ¹⁹.

Nanofibrous scaffolds prepared via biocompatible polymers and loaded with bioactive nanoparticles can enhance osteogenic differentiation, which makes them suitable for bone and cartilage regeneration, such as hydroxyapatite or graphene oxide as substrates. These scaffolds offer the necessary supporting elements for cell growth, such as adhesion, mineralization, and the controlled release of osteo inductive factors for healing bones.

Electrospun Nanofibers: The Potential Guide of Nerve Regeneration in Neural Tissue Engineering Aligned nanofibers with close resemblance to the ECM of nerve, which harbor the growth guidance constituents in nature, and guide the axon growth to improve functional recovery²¹. The combination of neurotrophic factors and conductive nanoparticles also enhances the process of nerve regeneration.

For cardiovascular applications, electrospun scaffolds have been used to fabricate vascular grafts, heart valve replacements, and cardiac patches. These scaffolds can be considered promising candidates for the repairing of damaged blood vessels and cardiac tissues due to their biocompatibility, mechanical properties, and hemocompatibility¹¹.

However, many issues including mechanical stability, controlled degradation and large-scale manufacturing need to be addressed for its clinical translation. Bio responsive electrospun scaffolds will be used to allow for the in-situ tissue engineered regeneration, making it applicable in personalized medicine and future tissue engineering²².

7. Challenges and Future Perspectives:

Introduction Although electrospun nanofibers have made significant strides within the regenerative medicine landscape, certain hurdles remain in their path toward clinical translation. From the perspective of the cells, regarding many electrospun scaffolds, the mechanical stability will be one of the crucial issues, since most of them appear to have low mechanical strength unable to bear physiological stresses, especially in load-bearing situations, such as bone and cartilage regeneration. Molecular blending, cross-linking and addition of nanoparticle reinforcement techniques are used to enhance the mechanical properties²³.

Controlled degradation and biocompatibility is another major hurdle²⁰. Natural polymers deliver superlative bioactivity, but upon degradation, they do so too rapidly to provide adequate mechanical support, while synthetic polymers degrade too slowly or in an acidic manner that may elicit inflammation. Changing the polymer composition and introducing bioresorbable materials can help to render degradation rates to those compatible with tissue regeneration.

Despite great interest in this field, the fabrication of electrospun scaffolds at an industrially relevant scale for clinical applications remains riddled with challenges regarding their scalability and reproducibility²⁴. A drawback with electrospinning methods is their broad applicability is limited due to variability of fiber morphology, batch-to-batch consistency, as well as challenges to upscale of the electrospinning process. New approaches such as 3D-electrospinning and automated high-throughput systems are in development to mitigate the drawbacks of conventional methods.

Recent developments of smart and bio responsive nanofibers providing a dynamic interaction with the environment can be explored in future studies. pH, temperature or enzyme-specific responsive drug release from stimuli-responsive materials holds an exciting promise toward personalized medicine. In addition, the introduction of nanofibers with the 3D

bioprinting and artificial-intelligent-driven fabrication strategies would revolutionize the scaffolds design, which struggle to solve the individual-specific repairs²².

"The transition of electrospun nanofiber-based scaffolds to the clinic in regenerative medicine applications can be prefaced by concentrating on innovative material design methodologies, high-throughput manufacturing processes, and multidisciplinary approaches to study the challenges hindering their clinical advancement²⁵.

8. Conclusion:

Because of their unique structural and functional properties that closely resemble ECM, electrospun nanofibers have shown great promise in regenerative medicine. The structural properties of hydrogels, such as their high specific area, tunable porosity capacity for incorporating bioactive agents, make them suitable candidates for many biomedical applications such as wound healing, tissue generation like bone and cartilage, neural repair and cardiovascular therapies. Additionally, the combination of new age biomaterials ranging from natural and synthetic polymers, bioactive nanoparticles, and functionalized molecules has further improved their biocompatibility, mechanical characteristics, and therapeutic efficacy.

The development of electrospinning technologies such as coaxial, emulsion, and 3D electrospinning not only allows the modification of fiber microstructures, but also polymer/drug release profiles. Additionally, the versatility of electrospun scaffolds has been greatly expanded by functionalization strategies, including surface modifications and loading of bioactive agents, allowing for the delivery of localized and controlled therapeutic effects. Despite these efforts, however, many barriers are still hindering the clinical translatability of electrospun nanofibers. These are some of the issues: mechanical instability, uncontrolled degradation rates, batch-to-batch inconsistency and hurdles for mass production. Further, in order to enable their successful clinical use, production methods must be reproducible, free of regulatory compliance, and established at cost-effective levels.

In the electrospinning field, the main focus now lies on the design of smart and bio responsive nanofibers which undergo dynamic interactions with their biological milieu. Stimuli-responsive responsive innovative fibers (fibers involving pH- or temperature-reactive components) have the perspective in drug delivery important in RFs and for obtaining the active healing phase of regeneration. Ultimately, the combination between electrospun scaffolds and new technologies like 3D bioprinting, AI-based design and nanotechnology will assist in another revolution in tissues engineering and regenerative medicine.

Electrospun nanofibers possess a niche, superior abstraction for wide gamut of bio-medical application, but need to be enhanced with material science, fabrication methods, clinical translation, manufacture and testing. Overcoming current limitations will require an interdisciplinary effort, calling together material scientists, biomedical engineers and clinicians alike to realize electrospun nanofiber-based scaffolds as an effective therapeutic strategy in the real world. So, electrospinning technology may provide a futuristic approach of regenerative medicine by providing an advanced treatment to various patient-driven problems

REFERENCES

- [1] Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603-5621. https://doi.org/10.1016/j.polymer.2008.09.014
- [2] Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. https://doi.org/10.1016/j.biotechadv.2010.01.004
- [3] Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
- [4] Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298-5415. https://doi.org/10.1021/acs.chemrev.8b00593
- [5] Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., & Ko, F. K. (2002). Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 60(4), 613-621. https://doi.org/10.1002/jbm.10167
- [6] Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89. https://doi.org/10.1088/0957-4484/17/14/R01
- [7] Wang, M., Yu, J., & Yang, J. (2019). Recent progress in electrospun nanofibers: Fabrication, modification and applications in tissue engineering. Frontiers in Bioengineering and Biotechnology, 7, 218. https://doi.org/10.3389/fbioe.2019.00218
- [8] Ding, Y., Li, W., Zhang, F., Liu, S., & Lu, X. (2021). Electrospun nanomaterials for wound healing. Materials Today Nano, 15, 100098. https://doi.org/10.1016/j.mtnano.2021.100098
- [9] Venugopal, J., Low, S., Choon, A. T., Sampath Kumar, T. S., Ramakrishna, S. (2008). Nanobioengineered

- electrospun composite nanofibers and osteoblasts for bone regeneration. Artificial Organs, 32(5), 388-397. https://doi.org/10.1111/j.1525-1594.2008.00554.x
- [10] Kim, H. J., Kim, U. J., Kim, H. S., & Kim, S. J. (2021). Applications of electrospun nanofibers in regenerative medicine. Biomedical Materials, 16(4), 042003. https://doi.org/10.1088/1748-605X/abfc89
- [11] Zhang, X., Lu, Y., Song, J., Wei, Y., & Wang, W. (2019). Electrospun nanofibers for wound healing applications. Journal of Materials Chemistry B, 7(5), 875-892. https://doi.org/10.1039/C8TB02820C
- [12] Basu, S., Pacelli, S., Feng, Y., Lu, Q., Wang, J., Paul, A. (2018). Harnessing the non-canonical role of hedgehog signaling for interfacial tissue engineering applications using bioactive nanofibers. ACS Nano, 12(4), 3487-3501. https://doi.org/10.1021/acsnano.8b00441
- [13] Zhang, Y. Z., Venugopal, J., Huang, Z. M., Lim, C. T., Ramakrishna, S. (2005). Crosslinking of the electrospun gelatin nanofibers. Biomaterials, 26(33), 679-685. https://doi.org/10.1016/j.biomaterials.2005.06.013
- [14] Sill, T. J., & von Recum, H. A. (2008). Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006. DOI: 10.1016/j.biomaterials.2008.01.011
- [15] Garg, K., & Bowlin, G. L. (2011). Electrospinning jets and nanofibrous structures. Biomicrofluidics, 5(1), 013403. DOI: 10.1063/1.3567097
- [16] Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Engineering, 12(5), 1197-1211. DOI: 10.1089/ten.2006.12.1197
- [17] Greiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703. DOI: 10.1002/anie.200604646
- [18] He, P., Liu, Q., Li, X., & Yu, L. (2021). Recent advances in electrospun nanofibers for wound healing. Materials Science and Engineering: C, 123, 112005. DOI: 10.1016/j.msec.2021.112005
- [19] Liu, W., Thomopoulos, S., & Xia, Y. (2012). Electrospun nanofibers for regenerative medicine. Advanced Healthcare Materials, 1(1), 10-25. DOI: 10.1002/adhm.201100021
- [20] Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. (2003). A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24(12), 2077-2082. DOI: 10.1016/S0142-9612(02)00635-X
- [21] Chen, S., John, J. V., McCarthy, A., Xie, J. (2020). A review of small-diameter vascular grafts and their in vivo evaluation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(2), 361-377. DOI: 10.1002/jbm.b.34388
- [22] Ma, P. X. (2004). Scaffolds for tissue fabrication. Materials Today, 7(5), 30-40. DOI: 10.1016/S1369-7021(04)00233-0
- [23] Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews, 48(2), 317-352. DOI: 10.1080/15583720802022182
- [24] Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. World Scientific Publishing. DOI: 10.1142/5895
- [25] Sharma, R., Jaganathan, S. K., Jaganathan, S. K., & Ng, L. S. (2017). Nanostructured scaffolds for tissue engineering and regenerative medicine. Nanomedicine, 12(19), 2331-2343. DOI: 10.2217/nnm-2017-0135