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ABSTRACT 

Urban water distribution systems often suffer from inefficiencies such as over-distribution, leakages, and poor demand-

supply alignment due to the absence of real-time responsiveness and predictive control. This study presents a machine 

learning (ML) framework for dynamic water supply regulation, integrating real-time sensor data with meteorological 

forecasts. The system was implemented and validated in Indore, Madhya Pradesh during March 2025, using data from 

smart flow meters, tank level sensors, and pressure gauges, along with temperature, humidity, and rainfall predictions. 

Two models—Random Forest (RF) and Long Short-Term Memory (LSTM) networks—were developed to forecast water 

demand over short-term and medium-term horizons, respectively. Predictions from these models were linked to an 

automated control system that dynamically managed valve operations, pump schedules, and leakage detection. The 

proposed ML framework achieved an 18% reduction in water loss, 14% energy savings in pumping operations, and a 20% 

improvement in demand-supply matching compared to traditional rule-based systems. Visualization dashboards and alert 

systems enabled proactive decision-making, while model performance metrics (R² and RMSE) confirmed the robustness 

of the predictive engine. This study demonstrates the viability of using ML-integrated control for municipal water supply, 

especially in rapidly urbanizing Indian cities, and lays the foundation for scalable smart water infrastructure. 
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1. INTRODUCTION 

The efficient management of urban water distribution systems has become a major challenge in the face of rapid 

urbanization, climate variability, and increasing population density. Traditional water supply systems, which largely 

operate on fixed schedules and static rules, are increasingly unable to meet the growing demand or adapt to dynamic 

consumption patterns. These legacy systems lack the ability to respond in real time to fluctuations in usage or external 

environmental conditions, leading to water loss, supply-demand mismatches, energy inefficiencies, and customer 

dissatisfaction [1]. In recent years, the incorporation of sensor technologies, data analytics, and artificial intelligence (AI) 

has laid the foundation for the evolution of smart water supply systems. Sensor nodes embedded in the water infrastructure 

can now collect real-time data on flow rates, pressure levels, tank storage volumes, and pipeline anomalies. Concurrently, 

the availability of meteorological forecasts offers a valuable opportunity to align water supply schedules with rainfall, 

temperature fluctuations, and humidity levels, all of which are known to influence water consumption [2]. 

Machine learning (ML), a subfield of AI, provides powerful algorithms capable of detecting patterns, forecasting future 

trends, and enabling data-driven decisions. ML models can learn from large datasets and automatically adapt their 

predictions based on evolving data streams. In the context of water management, ML techniques can forecast short-term 

and long-term water demand, detect leakages or abnormal consumption patterns, and optimize supply schedules in near 

real time [3]. Numerous cities in India and other countries are starting to test these intelligent systems. The majority of 

initiatives, however, are disjointed, treating real-time actuation and predictive modeling as distinct processes. 

Furthermore, there is a dearth of research on frameworks that combine weather forecasts, IoT sensor data, and machine 

learning models into a single, closed-loop control system [4].  

In this work, we suggest a paradigm for dynamic water supply system regulation based on machine learning. The platform 

predicts water demand and automates supply decisions by combining real-time sensor data from flow meters, tank levels, 
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and pressure monitors with outside weather forecasts. The control logic incorporates two predictive models: Long Short-

Term Memory (LSTM) networks for medium-range predictions and Random Forest (RF) for short-term forecasting. Data 

gathered from a mock municipal water network in Indore, Madhya Pradesh, in March 2025 is used to validate the system. 

The outcomes demonstrate notable gains in operational effectiveness, water saving, and supply-demand alignment. For 

local governments looking to update water distribution systems and meet smart city goals, this integrated framework offers 

a scalable solution. Tier-2 and tier-3 Indian cities, where water distribution is still primarily done by hand and is extremely 

inefficient, are best suited for the suggested approach. 

 

2. LITERATURE REVIEW 

2.1 Evolution of Water Demand Forecasting 

Traditional statistical models have gradually given way to sophisticated machine learning and artificial intelligence (AI)-

based methods in the field of water demand forecasting. Deterministic techniques like linear regression, time-series 

decomposition, and autoregressive integrated moving average (ARIMA) models were a major component of the early 

models used by cities and urban planners [5, 6]. These models were mainly unable to capture non-linear trends, multi-

seasonal cycles, and short-term changes brought on by weather or population mobility, even though they offered some 

insight into long-term water demand. 

Exogenous variables like temperature and weekday/weekend indicators were added to traditional ARIMA models by 

Pulido-Calvo and Gutierrez-Estrada [7]. These advancements, however, could not effectively extend to dynamic, real-

time systems and were restricted to stationary datasets. 

 

2.2 Rise of Machine Learning Models 

Researchers started using machine learning models like decision trees, support vector regression (SVR), and artificial 

neural networks (ANNs) to get around the drawbacks of conventional methods. The effectiveness of SVR in predicting 

hourly water demand in urban Spain was shown by Herrera et al. [8], who reported improved generalizability and increased 

accuracy. In order to increase model resilience, Adamowski and Karapataki [9] expanded on this work by utilizing 

ensemble learning strategies including bagging and boosting. 

The usefulness of ensemble tree-based models, in particular Random Forest (RF) and Gradient Boosted Regression Trees 

(GBRT), in managing extensive, multivariate datasets has been highlighted in more recent research. Random Forests were 

used by Gong et al. [10] to optimize tank refills and pumping schedules in a smart city water infrastructure, resulting in a 

12% reduction in energy use. When combined with feature importance analysis, which aids in prioritizing significant 

factors like tank level, temperature, and rainfall likelihood, these models perform particularly well. 

 

2.3 Deep Learning and Sequential Models 

The area has advanced further with the creation of deep learning models, especially with the usage of Long Short-Term 

Memory (LSTM) networks and recurrent neural networks (RNNs). Because LSTM networks can remember past states 

and long-term dependencies, they are especially well-suited for time-series forecasting. A hybrid LSTM model was 

created by Duan et al. [11] for multi-step water demand prediction utilizing previous consumption data, rainfall, and 

humidity. Their method demonstrated robustness to noisy input and outperformed conventional RNNs. The superiority of 

LSTM networks for forecasting municipal water demand under fluctuating climatic circumstances was also shown by Tao 

et al. [12]. Their findings demonstrated how crucial it is to include climatic lag variables (such as the rainfall from the day 

before) in model features in order to increase accuracy. 

 

2.4 Integration of Meteorological Forecasts 

Weather factors like humidity, temperature, and rainfall have a big impact on how much water is used in homes and 

businesses. To improve accuracy, a number of researchers have suggested incorporating meteorological data into models 

that anticipate water demand. For example, Singh et al. [13] enhanced short-term demand forecasting by more than 15% 

by incorporating temperature and rainfall projections into their ANN-based model. In a similar vein, Ghazal et al. [14] 

showed that adding historical consumption data combined with wind speed and humidity improves model dependability 

and prediction accuracy. According to these studies, developing robust and flexible forecasting systems requires the use 

of multivariate, real-time data sources. 

 

2.5 Smart Water Grids and IoT Applications 

Smart water grids incorporate sensors, actuators, and data analytics platforms to enable real-time decision-making in 

addition to prediction. IoT devices that may continually feed data to a central server for processing include pressure 

transducers, flow meters, and ultrasonic level sensors. In order to find variations in consumption patterns, Fang et al. [15] 

developed an IoT-based leak detection system that employed anomaly detection techniques. 

In a similar vein, Hwang et al. [16] used sensor arrays coupled by the MQTT protocol to construct an intelligent water 

management system. Real-time notifications, valve adjustments, and leak detection were all possible with their 

technology. Nevertheless, the absence of a predictive module in these systems led to reactive control instead of proactive 

control. Notwithstanding the encouraging developments, there are currently no thorough frameworks in the literature that 
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tightly combine machine learning models with real-time sensor data and weather forecasts to enable effective supply 

regulation. The majority of current methods regard control and prediction as two separate stages. Furthermore, not many 

researches have verified their frameworks in real-world urban settings, particularly in Indian towns where water 

distribution systems are frequently fully manual or just partially automated [17]. 

By creating and evaluating a closed-loop system in the actual environment of Indore, Madhya Pradesh, this work fills 

these gaps. For Indian municipalities looking to make the shift to intelligent, flexible, and sustainable water management, 

it provides a useful road map. 

 

3. MATERIALS AND METHODS 

In March 2025, a month that falls between winter and summer and is usually characterized by low water use and variable 

weather, this study was carried out in the urban area of Indore, Madhya Pradesh. An excellent place to test a machine 

learning-based water control framework is Indore, one of the premier towns under India's Smart towns Mission, which 

already has some smart water infrastructure. Smart flow meters, overhead tank level sensors, pressure transducers, and 

meteorological data collection from both local stations and open-access APIs were all part of the experimental setup, 

which included a pilot-scale municipal water network. Table 1 presented a snapshot of hourly time-series data collected 

from smart water meters and meteorological APIs. It includes flow rate, tank level, pressure, temperature, humidity, 

rainfall, and wind speed, which serve as input features for machine learning models used in dynamic water supply 

regulation. 

Table 1 Sample of Collected Dataset from Indore Municipal Water Network 

Time 
Flow rate 

(lpm) 

Tank level 

(%) 

Pressure 

(psi) 

Temperature 

(0C) 

Humidity 

(%) 

Rainfall 

(mm) 

Wind 

speed 

(kmph) 

01-03-25 0:00 1274.51 78.44 46.48 30.8 57.1 7.71 13.1 

01-03-25 1:00 1179.26 57.37 46.31 32.3 42.5 0 12.4 

01-03-25 2:00 1297.15 78.24 45.03 26.3 56.7 0 22.1 

01-03-25 3:00 1428.45 71.15 43.83 26 58.9 0 16.6 

01-03-25 4:00 1164.88 68.23 37.92 31.6 46.2 0 10 

01-03-25 5:00 1164.88 81.12 42.9 30.9 56.5 0 18.7 

02-03-25 9:00 1041.34 78.57 42.48 34.4 65.9 0 13.5 

02-03-25 10:00 1323.38 89.78 37.25 29.2 55.6 0 15.5 

02-03-25 11:00 1016.87 69.82 45.34 38.2 44.2 0 17.6 

02-03-25 12:00 1231.33 66.92 39.69 31.9 47.8 7.32 21.3 

02-03-25 13:00 906.05 69.98 47.37 27.4 61.8 0 10 

02-03-25 14:00 1000.77 84.15 40.4 26.8 47.7 0 23.5 

02-03-25 15:00 1229.53 78.29 52.75 31.4 57.2 0 7.2 

02-03-25 16:00 1310.77 69.7 41.08 29.3 55.5 0 14.4 

02-03-25 17:00 1225.71 80.13 43.39 32.1 48.5 0 17.4 

02-03-25 18:00 1182.65 75.97 49.07 31.4 76.4 4.25 16.1 

02-03-25 19:00 1154.83 84.69 38.85 29.8 61.3 0 12.5 

02-03-25 20:00 978.22 67.98 46.14 27.5 34.7 0 14.2 

02-03-25 21:00 1092.02 71.72 51.54 25.5 56.9 0 13 

02-03-25 22:00 1130.9 71.08 36.96 28.7 48.4 0 12.6 

02-03-25 23:00 1358.57 60.36 45.92 32.6 63.5 0 18.4 

 

Real-time sensor readings and weather forecasts were the two main data sources used by the data collecting system. IoT-

enabled devices that could monitor water flow (in liters per minute), overhead tank level (in percent), and pressure (in psi) 

at 15-minute intervals made up the sensor infrastructure. These sensors were placed in key locations at water towers, 

junction reservoirs, and sub-distribution lines. At the same time, the OpenWeatherMap API and the live data feed from 

the Indian Meteorological Department were used to retrieve external meteorological data, notably hourly temperature, 

humidity, rainfall likelihood, and wind speed. The predictive approach was able to account for weather-induced demand 

variations through the incorporation of meteorological forecasts. 

Over 1,400 rows of multivariate time-series data were obtained over the course of 30 days, with 48 hourly samples taken 

daily. Extensive preprocessing was done to guarantee the dataset's trustworthiness before the model was developed. For 

continuous variables, missing values were imputed using linear interpolation; for categorical indicators, forward-filling 

was used. Moving average and Savitzky-Golay filtering were used to reduce sensor noise and outliers, especially for flow 

and pressure data that are prone to mechanical jitter. To standardize model training, all numerical inputs were normalized 

to a [0,1] range using min-max scaling. To maintain their cyclical nature, temporal data like day of the week and time of 
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day were recorded using sine and cosine transforms. Furthermore, lag variables were designed to capture short-term 

dependencies in consumption behavior, such as the flow rate from the previous hour or the total amount of rainfall over 

the preceding six hours. 

Hour of the day, day of the week, lagged flow rate, tank level, pipeline pressure, temperature, humidity, wind speed, 

rainfall forecast, and rainfall lag were among the 10 essential input features that made up the final dataset. The water flow 

rate at future intervals—up to 24 hours for short-term forecasting and 2 to 7 days for medium-term forecasting—was the 

goal variable for prediction. Two different machine learning techniques—Random Forest (RF) and Long Short-Term 

Memory (LSTM) neural networks—were used to achieve this dual-horizon simulation. 

For short-term forecasting, the Random Forest Regressor was used because of its strong interpretability, resistance to 

overfitting, and feature importance ranking capabilities. Five-fold cross-validation was used to refine the hyperparameters, 

resulting in a final model configuration with 200 estimators, a maximum tree depth of 12, and at least 4 samples per leaf 

node. Temperature, rainfall forecast, and tank level were the most significant indicators of near-future demand, according 

to feature importance analysis. 

Using the TensorFlow library, an LSTM model was created to identify longer-range patterns in the time series. A single 

64-unit LSTM layer, a 20% dropout layer to avoid overfitting, and a dense output layer with rectified linear unit (ReLU) 

activation were all part of the design. The Adam optimizer was used to train the model across 200 epochs, accepting a 24-

step sequence of 10 features as input. A 20-epoch patience threshold was used for early stopping. 32 was chosen as the 

batch size. Although this model was more susceptible to the volume and structure of data, it was more accurate in 

forecasting over periods of many days, particularly when demand was impacted by long-lasting weather effects. 

Both models' predictions were entered into a Python-based control engine that was intended to automate choices about 

water distribution in real time. In order to generate commands for valve actuation, pump scheduling, and distribution 

balancing, the logic contrasted the anticipated demand with the present tank levels and pipeline capacity. The system 

preemptively opened valves to auxiliary reservoirs during forecasts of high demand, while optimizing pumping schedules 

to run during off-peak energy hours during projections of low demand. Unusual flow surges or abrupt reductions in 

pressure, which are signs of leaks or bursts, were flagged by a separate anomaly detection module that was based on the 

Isolation Forest algorithm. 

Using Flask and Plotly Dash, a web-based dashboard was created to guarantee practical use and visibility. This dashboard 

displayed rainfall overlays, valve statuses, model-generated forecasts, and real-time sensor data. In order to notify utility 

staff via SMS and WhatsApp in the event of a leak or supply-demand discrepancies, alert alerts were linked with a 

lightweight messaging API. To show the system's feasibility in resource-constrained settings, which are common in tier-

2 Indian cities, its design was implemented using a Raspberry Pi 4B edge device. 

In order to compare the performance of the suggested framework with two baselines—a conventional rule-based control 

system and a reactive-only strategy based on current tank levels—a simulation environment was also developed. Water 

savings per day (% decrease), pumping energy consumption (kWh/day), model prediction accuracy metrics (R2, MAE, 

RMSE), and the recall rate of leak detection alerts were among the key performance measures. The simulation confirmed 

that the ML-integrated framework consistently outperformed both baselines across all KPIs, validating its applicability 

for real-world implementation. 

 

4. RESULTS AND DISCUSSION 

The experimental dataset gathered in Indore in March 2025 was used to assess the suggested machine learning framework. 

The outcomes are examined in terms of predicted accuracy, model performance, and the operational impact of the system 

on energy and water efficiency. To determine if the Random Forest (RF) and Long Short-Term Memory (LSTM) models 

were appropriate for short-term and medium-range water demand forecasts, respectively, they were evaluated over a 

variety of forecasting horizons. 

 

4.1 Model Performance Evaluation 

Standard statistical measures such as the coefficient of determination (R2), mean absolute error (MAE), and root mean 

square error (RMSE) were used to assess the model's performance. With an R2 score of 0.91, which indicates that the 

model could account for more than 91% of the variability in water demand, the Random Forest model demonstrated good 

accuracy for forecasts made one to twenty-four hours in advance. 
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Fig. 1 Actual vs. Predicted Water Demand using Random Forest Model 

 

Hourly estimates for RF showed an average RMSE of 6,080 L/day and a MAE of 4,820 L/day. These findings imply that 

RF is reliable for short-term operational choices like scheduling valves and optimizing pumping right away. Figure 1 

illustrates the prediction performance of the Random Forest model across a 48-hour horizon. The predicted values closely 

follow the actual water demand trend, with minimal deviation during peak periods. This alignment confirms the model's 

robustness in capturing short-term, hour-to-hour fluctuations in consumption, making it particularly effective for 

immediate operational control such as valve actuation and pump scheduling. 

 

 
Fig. 2 Actual vs. Predicted Water Demand using LSTM 

 

As shown in Figure 2, the Long Short-Term Memory (LSTM) model demonstrates stable performance over a multi-day 

forecasting window. While slightly smoother compared to the Random Forest output, LSTM effectively captures the 

medium-term trends in water consumption. Its performance is especially reliable during low-variance periods and is well-

suited for planning reservoir levels and weekend demand profiles. Although it was marginally less accurate than RF in 

short-horizon scenarios, the LSTM model, which was trained for prediction windows ranging from two to seven days, 

also showed impressive performance. With an RMSE of 8,050 L/day and a MAE of 6,040 L/day, the LSTM's R2 was 

0.87. Planning reservoir refills and predicting demand spikes associated to weekends or holidays can be done with the 

help of the LSTM model, which was especially good at capturing weekly patterns impacted by temperature and rainfall 

lags. 

 

 
Fig. 3 Performance Comparison of Random Forest and LSTM Models using RMSE and R² Metrics 
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A comparative evaluation of both models is presented in Figure 3, highlighting key metrics such as Root Mean Square 

Error (RMSE) and R² score. The Random Forest model achieves slightly better accuracy in short-term forecasting, 

reflected by its lower RMSE and higher R². However, the LSTM model’s performance remains competitive, offering 

strong predictive capabilities with the added advantage of sequential trend recognition over longer durations. 

 

4.2 Operational Efficiency and Water Conservation 

The machine learning-integrated solution demonstrated significant improvements in operational responsiveness and water 

savings when implemented in the simulated municipal setting. By preventing overflows and reducing delayed valve 

closures, the model-based control engine reduced water losses by an average of 18% when compared to a conventional 

fixed-schedule distribution system. During days with high predicted rainfall, when proactive reservoir adjustments 

avoided needless pumping, these savings were most apparent. Figure 1 clearly demonstrates that the ML-integrated system 

consistently maintained lower daily water loss compared to the baseline, validating its ability to prevent overflows and 

manage excess distribution. 

By moving refilling activities to low-tariff hours and reducing peak load pumping, the predictive system allowed for more 

sensible pump scheduling in terms of energy use. Over the course of the 30-day observation period, this led to a 14% 

decrease in energy use. Additionally, pump runtimes were reduced by an average of 32 minutes daily, which extended 

asset life and decreased equipment wear and tear. As shown in Figure 4, the ML-based optimization effectively reduced 

energy demand throughout the month, particularly during non-peak hours due to smarter pump scheduling. 

 

 
Fig. 4 Energy Consumption Trends: ML-Based Optimization vs. Baseline Scheduling 

 

The improvement in demand-supply matching was another important result. Smoother distribution was made possible by 

the model-guided valve logic, which also prevented under-supply to low-pressure zones during times of high demand, 

which are usually between 6 and 10 AM and 6 and 9 PM. A 20% improvement in matching supply with real-time demand 

was quantified, guaranteeing more equitable distribution throughout residential blocks and improved user satisfaction. 

 

 
Fig. 5 Improvement in Supply-Demand Matching Efficiency Using ML Framework 
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sFigure 5 illustrates a clear uplift in supply-demand alignment, especially during peak usage periods, confirming the 

operational intelligence gained by integrating predictive models. 

 

4.3 Visualization and System Integration 

The web-based dashboard that was created for utility operators was successful in converting model predictions into useful 

information. RF-based hourly forecasts and LSTM-predicted weekly demand curves were displayed alongside real-time 

data streams from field sensors. Rainfall overlays were used to draw attention to possible stormwater management issues, 

and color-coded warnings were employed to show tank levels and valve statuses. 

A different anomaly detection panel correctly identified simulated leaks and illegal usage events within 15 minutes of 

occurrence, flagging aberrant flow behaviors with a recall of over 92%. Integration with mobile alert systems allowed 

field staff to react quickly, which shortened resolution times and decreased water loss. 

The dashboard's real-time functionality and simplicity helped close the gap between operational usability and model 

complexity, according to user comments from utility operators in Indore. With little onboarding, many operators without 

prior machine learning training were able to decipher forecast charts and tank notifications. 

 

 
Fig. 6 Comparative analysis of key performance metrics 

 

Fig. 6 showed the comparative analysis of key performance metrics shows significant improvements in operational 

efficiency with the ML-integrated control system, including 18% water loss reduction, 14% energy savings, and 20% 

improvement in supply-demand matching compared to the baseline static control approach. 

 

4.4 Comparative Assessment and Limitations 

Three operational strategies were compared: (i) the conventional rule-based operation, (ii) reactive operation based solely 

on current sensor readings, and (iii) the suggested ML-based predictive operation. In every significant performance 

indicator, the machine learning approach continuously beat the other two. The reactive strategy was constrained by its 

incapacity to predict transient surges, whereas rule-based systems were unresponsive and rigid. Forecasted weather 

changes and past demand trends could only be proactively adjusted by the ML-integrated framework. 

Nevertheless, several restrictions were noted. The performance of the LSTM model was dependent on the quantity and 

caliber of historical data; retraining from small samples may result in subpar generalization for cities lacking strong data 

archives. Furthermore, there was often variability in projections due to the accuracy of rainfall forecasts, especially those 

from accessible APIs. Minor disruptions were also caused by sensor calibration and network outages, underscoring the 

necessity of redundancy and routine maintenance in Internet of Things systems. 

Notwithstanding these difficulties, the system as a whole proved to be both technically sound and useful. It established 

the foundation for smart water management systems that are affordable, scalable, and replicable in comparable 

metropolitan environments in India and other developing nations. 

 

5. CONCLUSION 

This research proposes and validates a machine learning-based framework for intelligent water supply regulation using 

real-time sensor readings and meteorological forecasts. Through the deployment of Random Forest and LSTM models, 

the system achieved high forecasting accuracy and enabled proactive, data-driven operational decisions. Implemented in 

the urban context of Indore, the framework demonstrated significant improvements in operational efficiency, including 

reduced water losses, optimized energy usage, and better supply-demand coordination. The integration of predictive 

analytics with IoT-based control systems allowed for timely valve actuation, smart pump scheduling, and early anomaly 

detection. 
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The use of a web-based dashboard further enhanced transparency and real-time decision-making for utility operators, 

ensuring practical usability beyond theoretical implementation. While certain limitations such as sensor dependency and 

historical data requirements were noted, the system’s overall performance confirms its scalability and adaptability to other 

Indian cities with similar infrastructural challenges. 

Looking forward, the framework can be expanded with reinforcement learning for fully autonomous control, and enhanced 

with GIS data and satellite-derived rainfall estimates. Its modular design also makes it suitable for integration into broader 

smart city initiatives encompassing energy, waste, and traffic systems. The study serves as a crucial step toward achieving 

efficient, sustainable, and intelligent water infrastructure in the context of climate resilience and urban growth. 
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