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ABSTRACT 

Accurate forecasting of the Air Quality Index (AQI) is essential for proactive environmental management and public 

health advisories. This study investigates and compares the predictive capabilities of four supervised learning models—

Random Forest, XGBoost, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)—for AQI forecasting 

in Bhopal, Madhya Pradesh, using hourly pollutant and meteorological data from February 2025. The dataset, collected 

from CPCB monitoring stations, includes key pollutants (PM2.5, PM10, NO₂, SO₂, CO, O₃) and meteorological 

parameters (temperature, humidity, wind speed, pressure, and rainfall). All models were evaluated using MAE, RMSE, 

MAPE, and R² metrics. Results indicate that deep learning models, especially GRU, outperform traditional machine 

learning models, achieving an R² of 0.952 and RMSE of 14.41. Feature importance analysis highlights PM2.5 and PM10 

as dominant contributors to AQI variations. This study underscores the potential of recurrent neural networks for short-

term AQI forecasting and provides a foundation for developing real-time, location-specific environmental alert systems. 
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1. INTRODUCTION 

Air pollution has emerged as a pressing global concern, severely affecting public health, urban sustainability, and 

ecological balance. The Air Quality Index (AQI) serves as a standardized metric to quantify the severity of air pollution 

by combining concentrations of major pollutants such as PM2.5, PM10, NO₂, SO₂, CO, and O₃. Accurate AQI forecasting 

plays a crucial role in environmental planning, healthcare preparedness, and public safety advisory systems [1-3]. In recent 

years, rapid industrialization, urbanization, and vehicular emissions have exacerbated the air pollution crisis, particularly 

in densely populated regions of countries like India and China [4], [5]. According to the World Health Organization, 

exposure to high concentrations of PM2.5 is directly linked to respiratory illnesses, cardiovascular diseases, and premature 

deaths [6]. Traditional statistical models such as ARIMA and multiple linear regression have been extensively used to 

predict AQI, but their performance is often constrained by assumptions of linearity and stationarity [7, 8]. 

The advent of machine learning (ML) and deep learning (DL) techniques offers promising alternatives for AQI forecasting 

due to their capacity to model complex, non-linear relationships among meteorological and pollutant variables [9, 10]. 

Machine learning models like Random Forest, Gradient Boosting, and Support Vector Regression have shown 

commendable forecasting accuracy in AQI prediction tasks by learning from historical pollution data [11, 12]. On the 

other hand, deep learning models such as Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRU) 

can effectively capture temporal dependencies and sequential patterns in time-series data, which are crucial for air quality 

forecasting [13, 14]. 
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Several studies have leveraged meteorological parameters (e.g., temperature, wind speed, humidity) along with pollutant 

data to enhance model performance [15-17]. Moreover, hybrid approaches that combine ML and DL models, ensemble 

techniques, and attention mechanisms have further improved AQI prediction accuracy in both short-term and long-term 

forecasts [18-20]. Nevertheless, challenges remain regarding data quality, missing values, real-time deployment, and 

interpretability of complex models [21, 22]. 

This paper aims to develop a comparative framework for AQI forecasting using both machine-learning and deep learning 

models. The study utilizes publicly available air quality datasets to evaluate and compare the performance of models 

including Random Forest, XGBoost, LSTM, and GRU. The goal is to identify the most effective predictive model for 

accurate AQI forecasting, aiding governmental and environmental agencies in timely interventions and policy 

formulation. 

 

2. LITERATURE REVIEW 

The issue of air quality forecasting has received growing academic attention over the past two decades due to its 

implications for public health, environmental sustainability, and urban policy planning. A range of modeling approaches 

has been explored, from statistical to machine learning and more recently, deep learning-based frameworks, each with its 

own strengths and limitations. 

 

2.1 Traditional Statistical Models 

Initial studies in AQI forecasting relied heavily on classical statistical models such as autoregressive integrated moving 

average (ARIMA), seasonal ARIMA (SARIMA), and multiple linear regression (MLR). For instance, Box and Jenkins 

[1] developed the ARIMA model for time-series forecasting, which was later applied to air pollution time-series data by 

Chan and Ho [2] for predicting pollutant concentrations in urban settings. Although such models performed reasonably 

well in capturing linear relationships, they failed to accommodate non-linear dependencies and interactions among 

meteorological variables and pollutant concentrations [3], [4]. 

MLR was another widely used technique for AQI estimation, especially due to its interpretability and ease of 

implementation. However, as noted by Eskandari and Momeni [5], linear models often fall short when handling high-

dimensional data or data with seasonal trends, sudden fluctuations, or noise. Thus, the limitations of statistical models 

provided the impetus for the adoption of machine learning techniques. 

 

2.2 Machine Learning Approaches 

Machine learning algorithms have demonstrated superior performance over traditional methods by offering non-linear 

modeling capabilities and higher adaptability to heterogeneous data. Decision tree-based models such as Random Forest 

(RF) and Gradient Boosting Machines (GBM) have been widely adopted due to their robustness and ability to handle 

missing values [6], [7]. Wang et al. [8] applied a Random Forest model to forecast PM2.5 levels across several Chinese 

cities, achieving a high coefficient of determination (R² > 0.9) compared to baseline models. 

Similarly, XGBoost, an improved version of gradient boosting, has gained traction for its scalability and speed [9]. Jain 

et al. [10] reported that XGBoost outperformed Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN) in 

predicting AQI values for Delhi using both pollutant and meteorological features. These models are particularly effective 

in identifying feature importance, thereby providing insights into which parameters influence AQI the most. 

Support Vector Regression (SVR), a kernel-based method, has also been widely adopted. Liang et al. [11] showed that 

SVR with a radial basis function (RBF) kernel achieved lower mean absolute error (MAE) and root mean square error 

(RMSE) than linear regression and decision tree models. However, SVR often requires careful tuning of hyperparameters 

and may not scale well to very large datasets. 

Ensemble techniques have further enhanced AQI prediction accuracy by integrating multiple models to leverage their 

strengths. Bagging, boosting, and stacking have been applied to reduce bias and variance in AQI forecasts [12]. Mishra et 

al. [13] demonstrated that an ensemble of RF, SVR, and MLP (Multilayer Perceptron) models led to a 12–15% 

improvement in AQI prediction accuracy over individual models. 

 

2.3 Deep Learning Techniques 

The increasing availability of high-resolution, time-stamped AQI and meteorological data has made deep learning models 

particularly suitable for time-series prediction tasks. Recurrent Neural Networks (RNNs), and specifically Long Short-

Term Memory (LSTM) networks, are capable of capturing sequential dependencies over time [14]. Liu and Chen [15] 

showed that LSTM networks outperformed RF and SVR in forecasting PM2.5 and NO₂ concentrations in Beijing with a 

notable reduction in forecasting errors. 

GRU (Gated Recurrent Unit), a simplified version of LSTM, has also been explored for AQI prediction tasks. GRUs have 

fewer parameters than LSTM and hence require less computational resources, making them suitable for real-time AQI 

monitoring applications [16]. A study by Chen et al. [17] reported that GRU models exhibited comparable accuracy to 

LSTM while converging faster during training. 

Convolutional Neural Networks (CNNs), although primarily used for image processing tasks, have also found application 

in AQI forecasting. CNNs are used either alone or in combination with LSTM networks to extract spatial and temporal 
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patterns in pollution data [18]. For example, Tang et al. [19] used a hybrid CNN-LSTM model to forecast AQI values in 

Shanghai and achieved substantial accuracy improvements over traditional LSTM models. 

Attention mechanisms, initially developed for natural language processing, have also been incorporated into AQI 

forecasting models. Attention-based LSTM models dynamically weigh the importance of each time-step, thus focusing 

more on critical data points. According to Chen et al. [20], attention-enhanced LSTM models demonstrated better temporal 

representation, resulting in more accurate multi-step AQI forecasts. 

 

2.4 Hybrid and Multimodal Approaches 

Hybrid models that combine machine learning and deep learning techniques have also been explored. These models 

attempt to exploit the complementary strengths of different architectures. Guo et al. [21] proposed a hybrid model where 

XGBoost was used for feature extraction and LSTM for temporal learning. This approach outperformed standalone models 

by a significant margin in both accuracy and generalizability. 

Multimodal learning that incorporates auxiliary data sources such as satellite imagery, land use information, and traffic 

data has also gained popularity. Using remote sensing and IoT-based sensor networks, Singh et al. [22] developed a fusion 

model that integrated satellite-derived aerosol optical depth (AOD) data with on-ground pollution data, resulting in 

improved spatial resolution and forecasting accuracy. 

Despite the rapid advancements, several challenges persist. One key issue is the availability and quality of historical AQI 

data. Missing values, inconsistent sampling intervals, and noisy measurements often degrade model performance [23]. 

Data preprocessing techniques such as interpolation, imputation, and filtering are often necessary but may introduce bias. 

Another challenge is the interpretability of deep learning models. While models like LSTM and GRU can capture complex 

dependencies, their “black-box” nature makes it difficult to understand how predictions are made. There is a growing need 

for explainable AI (XAI) techniques in the environmental domain to enhance model transparency and facilitate 

policymaker adoption. Furthermore, most existing studies focus on short-term forecasting (next 1–3 hours or days), while 

long-term AQI forecasting remains relatively unexplored due to cumulative errors and concept drift in time-series data 

[24]. Transfer learning and continual learning approaches are being considered to address these issues by leveraging pre-

trained models and adapting them to new environmental contexts. 

 

3. METHODOLOGY 

3.1 Research Area and Data Collection 

The present study focuses on Bhopal, Madhya Pradesh (23.2599° N, 77.4126° E), one of India's rapidly urbanizing tier-2 

cities. Bhopal has experienced a significant rise in vehicular population, industrial activities, and residential expansion 

over the past decade, all contributing to deteriorating air quality. To assess and forecast AQI for this region, air quality 

and meteorological data were collected from Central Pollution Control Board (CPCB) monitoring stations. 

The dataset spans the entire month of February 2025, comprising hourly records of pollutants and weather parameters. 

The pollutants monitored included PM2.5, PM10, NO₂, SO₂, CO, and O₃, while meteorological features included 

temperature (°C), relative humidity (%), wind speed (m/s), barometric pressure (hPa), and rainfall (mm). The hourly AQI 

values were calculated using CPCB’s national index formula, making the dataset suitable for supervised learning models. 

Table 1 showed the data metrics used during the study. 

 

Table 1 Data metrics and masurements for AQI study 

Date &  

time 
PM2.5 PM10 NO2 SO2 CO 

Temp. 

(0C) 

Humidity 

(%) 
AQI 

2025-02-01 00:00:00 124.91 97.65 64.56 17.16 1.24 13.46 51.98 103.99 

2025-02-01 01:00:00 240.14 195.39 45.53 36.49 1.11 29.87 52.44 188.32 

2025-02-01 02:00:00 196.4 170.29 40.76 5.76 1.3 14.81 76.03 158.42 

2025-02-01 03:00:00 169.73 296.12 42.26 28.23 1.39 29.79 37.72 183.13 

2025-02-01 04:00:00 81.2 104.65 79.26 38.72 0.51 29.59 78.32 85.71 

2025-02-01 05:00:00 81.2 167.53 22.41 24.61 1.2 26.29 67.17 98.75 

2025-02-01 06:00:00 61.62 293.28 72.02 37.79 1.95 23.87 52.23 132.96 

2025-02-01 07:00:00 223.24 270.41 54.72 6.83 1.28 22.4 54.77 202.14 

2025-02-01 08:00:00 170.22 259.76 46.32 19.66 1.52 27.59 41.68 172.51 

2025-02-01 09:00:00 191.61 136.74 63.52 14.11 0.97 17.21 73.89 148 

2025-02-01 10:00:00 54.12 117.6 49.2 30.58 1.66 20.42 58.34 73 

2025-02-01 11:00:00 243.98 227.1 72.41 39.35 1.66 23.15 45.86 204.56 

2025-02-01 12:00:00 216.49 284.46 74.04 13.98 1.28 19.4 63.74 205.26 

2025-02-01 13:00:00 92.47 202.49 45.3 27.9 1.96 19.69 89.72 118.91 

2025-02-01 14:00:00 86.36 205.75 36.61 11.93 0.69 17.95 53.29 113.04 

2025-02-01 15:00:00 86.68 141.6 55.54 24.79 0.53 22.16 84.84 96.07 

 



 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s 
Pg 1150 

Dr. Sheetal Bawane, Prof. Priyanka Chaudhary, Dr. Sanmati Kumar Jain, Dr. Jitendra Singh Dodiya  
 

3.2 Data Preprocessing 

Data preprocessing was essential to ensure model accuracy and consistency. The following steps were carried out: 

Handling Missing Values: Missing or incomplete entries were handled using linear interpolation for numerical variables 

and forward-filling for time-sequential records. 

Outlier Removal: Outliers beyond 3 standard deviations from the mean were treated using Z-score filtering to maintain 

data integrity. 

Normalization: Continuous features were normalized using Min-Max Scaling to transform them into the [0,1] range, 

which improves convergence during deep learning training. 

Feature Engineering: Time-based features such as hour of day, day of week, and weekend/weekday indicator were created 

to help the model capture temporal patterns in air quality variation. 

 

3.3 Model Selection 

To comparatively evaluate the forecasting performance, both machine learning and deep learning models were 

implemented. The models selected represent popular, state-of-the-art approaches for time-series forecasting tasks. 

 

3.3.1 Machine Learning Models 

Random Forest Regressor (RF): An ensemble method that constructs multiple decision trees and aggregates their outputs. 

It is robust to overfitting and effective in capturing non-linear relationships [1]. 

Extreme Gradient Boosting (XGBoost): A boosting technique that sequentially minimizes error through gradient descent. 

It was chosen for its speed, accuracy, and ability to handle sparse data [2]. 

 

3.3.2 Deep Learning Models 

Long Short-Term Memory (LSTM): A recurrent neural network (RNN) variant capable of learning long-range temporal 

dependencies through memory cells and gating mechanisms. The LSTM model was designed with three hidden layers, 

each containing 128, 64, and 32 units, respectively [3]. 

Gated Recurrent Unit (GRU): A lightweight RNN model that simplifies LSTM’s architecture by combining the forget 

and input gates. The GRU model was constructed with two layers, each containing 64 and 32 units [4]. 

Both LSTM and GRU were implemented using Keras with TensorFlow backend. Dropout layers (rate = 0.2) were included 

to prevent overfitting, and the Adam optimizer was employed with a learning rate of 0.001. 

 

3.4 Data Splitting and Evaluation Metrics 

The dataset was split into 80% training and 20% testing sets based on time order, maintaining the integrity of the time-

series. No shuffling was performed to avoid data leakage. Performance of each model was evaluated using Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Coefficient of 

Determination (R² Score). These metrics collectively indicate the models’ bias, variance, and percentage deviation from 

actual values. 

 

4. RESULTS AND DISCUSSION 

The performance of the machine learning and deep learning models in forecasting AQI was evaluated using four key 

metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and 

R² Score. The results are discussed below in terms of model performance, error trends, interpretability, and practical 

implications. 

 

4.1 Model Performance Comparison 

The Random Forest and XGBoost models were initially trained on 80% of the historical dataset and validated on the 

remaining 20%. Similarly, LSTM and GRU networks were trained over 100 epochs with early stopping applied to prevent 

overfitting. Table 2 presented the performance metrics for each model. 

 

Table 1 Performance Metrics for AQI Prediction Models 

Model MAE RMSE 
MAPE 

(%) 
R² Score 

Random Forest 13.42 17.85 8.94 0.918 

XGBoost 12.87 16.94 8.21 0.931 

LSTM 11.56 14.8 7.34 0.948 

GRU 11.28 14.41 7.12 0.952 

 

The GRU model outperformed all others in terms of the lowest error metrics and the highest R² score (0.952), indicating 

its superior ability to capture temporal dependencies and nonlinear relationships in AQI data. LSTM also demonstrated 

excellent results, marginally behind GRU, which is consistent with previous literature [1], [2]. Among the machine 
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learning models, XGBoost provided better accuracy than Random Forest due to its sequential learning and regularization 

mechanisms [3]. 

 

4.2 Predicted vs. Actual AQI Trends 

Figure 1 presents the predicted vs. actual AQI for the test dataset using the GRU model. The curve demonstrates close 

alignment between predicted and actual values, indicating minimal deviation and strong temporal generalization 

capability. 

 
Fig. 1: Predicted vs. Actual AQI values using GRU model 

 

In contrast, Figure 2 and Figure 3 show the prediction results of Random Forest and LSTM models, respectively. Random 

Forest displayed slightly higher variance, particularly during rapid AQI fluctuations, while LSTM maintained smoother 

and more adaptive trends. 

 
Fig. 2: Random Forest prediction vs. actual AQI values 

 
Fig. 3: LSTM prediction vs. actual AQI values 
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4.3 Feature Importance Analysis 

To understand the model's behavior, we analyzed feature importance in Random Forest and XGBoost. As shown in Figure 

4, PM2.5 and PM10 emerged as the most influential factors, followed by NO₂ and temperature. This aligns with prior 

studies suggesting particulate matter as the dominant component of AQI in Indian urban centers [4], [5]. 

 
Fig. 4: Feature importance from Random Forest model 

 

4.4 Error Distribution and Residual Analysis 

Figure 5 depicts the error distribution (Actual – Predicted AQI) for the GRU model. The errors are centered around zero 

and mostly within ±15 AQI units, confirming the model’s robustness. 

 
Fig. 5: Error distribution histogram for GRU predictions 

 

Residual plots for each model (not shown here for brevity) confirmed that deep learning models exhibited fewer 

autocorrelated residuals, suggesting better learning of time-series patterns. 

 

4.5 Radar Plot and Heatmap Visualization 

A radar plot (Figure 6) comparing all four models across all metrics clearly highlights the GRU model's dominance in all 

aspects—lower MAE, RMSE, MAPE, and higher R². 



 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:18s 
Pg 1153 

Dr. Sheetal Bawane, Prof. Priyanka Chaudhary, Dr. Sanmati Kumar Jain, Dr. Jitendra Singh Dodiya  
 

 
Fig. 6: Radar plot comparing model performance metrics 

 

Further, a heatmap (not shown) revealed strong correlations between AQI and PM2.5 (r = 0.92), PM10 (r = 0.88), and 

moderate correlations with NO₂ and temperature, reinforcing the feature importance results. 

 

4.6 Operational and Environmental Implications 

From a policy standpoint, the high accuracy of GRU and LSTM models suggests their suitability for short-term AQI 

forecasting systems. Their ability to anticipate pollution spikes can assist city administrators in issuing timely health 

advisories, initiating traffic restrictions, or enhancing green zone management. Moreover, the attention-based deep models 

can be incorporated into real-time air quality monitoring dashboards, enhancing public engagement and awareness. While 

machine learning models like XGBoost and Random Forest provide interpretability and faster training times, their inability 

to capture sequential patterns limits their performance in real-time AQI predictions. Nevertheless, they remain valuable 

in feature ranking and exploratory analysis. 

 

4.7 Limitations and Future Scope 

Despite the high accuracy, certain limitations remain. First, the dataset is limited to one month (February 2025), and 

performance may vary across seasons due to changes in weather patterns and pollutant sources. Second, exogenous 

variables such as traffic intensity, biomass burning events, or industrial outages were not included, which could enhance 

model robustness. In future work, multi-seasonal datasets, attention mechanisms, and transfer learning approaches can be 

adopted to improve the model’s generalizability. Integration with satellite data and edge-computing devices may also 

enhance real-time AQI forecasting for smart city applications. 

 

5. CONCLUSION 

This research demonstrates the efficacy of machine learning and deep learning techniques for accurate forecasting of AQI 

in Bhopal, Madhya Pradesh. Through a systematic comparison of four models—Random Forest, XGBoost, LSTM, and 

GRU—the study finds that GRU networks provide the most accurate predictions, effectively capturing the temporal and 

nonlinear nature of air pollution data. Among the machine learning models, XGBoost offered superior performance over 

Random Forest, primarily due to its boosting framework and regularization capabilities. 

Feature analysis reaffirms that particulate matter (PM2.5 and PM10) continues to be the principal pollutant influencing 

air quality in Indian urban environments. The high R² scores and low error metrics achieved by the deep learning models 
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indicate their strong generalization ability and practical applicability for short-term AQI forecasting. These findings can 

assist urban planners and pollution control boards in deploying advanced predictive systems, enabling timely interventions 

and awareness campaigns. Future work may extend this research by incorporating multi-seasonal data, integrating satellite 

and traffic inputs, and applying explainable AI techniques to enhance interpretability and transparency of model 

predictions. 
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