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ABSTRACT 

Brain tumors represent one of the most critical and challenging health conditions, requiring early and accurate diagnosis for 

effective treatment. Traditional machine learning and standalone deep learning models often struggle to capture the complex 

features in MRI brain images, leading to suboptimal classification performance. To address these limitations, this work 

proposes a novel method titled Robust MRI-Based Brain Tumor Detection Using Hybrid Feature Learning and Self-

Supervised Pretraining. The approach integrates a hybrid model that combines Convolutional Neural Networks (CNN) for 

local feature extraction with Transformer encoders for global feature representation, enhanced further by a self-supervised 

Masked Autoencoder (MAE) pretraining strategy. Using a well-structured feature fusion mechanism, the proposed system 

focuses on efficiently classifying brain tumors into glioma, meningioma, pituitary, and no tumor categories. Experimental 

evaluations demonstrate that the hybrid SSL+CNN+Transformer model outperforms baseline architectures such as CNN-

only, Transformer-only, and CNN+Transformer (no SSL) combinations. Specifically, the proposed model achieved an 

accuracy of 94% and an F1-score of 93%, significantly improving classification performance compared to traditional 

methods. Compared to the best existing non-hybrid models, the proposed solution offers an improvement of approximately 
6% in accuracy and 7% in F1-score, highlighting its potential to enhance diagnostic reliability and support clinical decision-

making in neuro-oncology applications. 

 

Keywords: Brain Tumor Detection, MRI Imaging, Hybrid Deep Learning, Self-Supervised Pretraining, CNN-Transformer 
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Introduction 

Brain tumors are among the most severe and life-threatening medical conditions, significantly impacting human health across 

all age groups. Accurate and early diagnosis of brain tumors is critical, as it directly influences treatment planning and patient 
survival rates. Magnetic Resonance Imaging (MRI) remains the gold standard for brain tumor diagnosis due to its superior 

contrast resolution and ability to capture detailed anatomical structures without ionizing radiation. However, manual 

interpretation of MRI scans is time-consuming, requires specialized expertise, and is susceptible to human error, especially 

when dealing with complex or subtle tumor patterns. Consequently, there is a growing demand for robust, automated systems 

that can assist clinicians in identifying and classifying brain tumors effectively. 

Over the past decade, deep learning has revolutionized the field of medical imaging, enabling models to automatically learn 

hierarchical features from raw image data. Convolutional Neural Networks (CNNs) have proven highly effective in 

extracting localized features, whereas Transformer architectures have gained attention for their ability to model long-range 

dependencies and global context. Despite these advancements, existing standalone models often struggle to generalize well 
across diverse tumor types, partly due to limited annotated datasets and the inherent complexity of brain tumor variations. 

Furthermore, purely supervised models are heavily reliant on large amounts of labeled data, which is challenging and costly 

to obtain in medical domains. 

 

 

mailto:rucpatel19861@gmail.com
mailto:divyangnagandhi.ec@indusuni.ac.in


Rucha Patel, Dr. Divyangna Gandhi 

pg. 877 
 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 24s 

 

To address these limitations, this manuscript proposes a novel approach titled Robust MRI-Based Brain Tumor Detection 

Using Hybrid Feature Learning and Self-Supervised Pretraining. Our methodology integrates the strengths of both CNNs 

and Transformers into a hybrid feature extraction framework, further enhanced through a self-supervised learning (SSL) 

phase utilizing a Masked Autoencoder (MAE). By leveraging SSL, the model learns rich and generalized feature 

representations from unlabeled data before fine-tuning on the labeled dataset, reducing the dependency on extensive 
annotations and improving generalization. The hybrid CNN-Transformer design enables the model to capture both fine-

grained local features and global contextual relationships within MRI scans. 

Extensive experiments were conducted on a balanced MRI dataset comprising glioma, meningioma, pituitary, and no tumor 

categories. The results demonstrate that the proposed hybrid SSL+CNN+Transformer model achieves a classification 

accuracy of 94% and an F1-score of 93%, outperforming traditional CNN-only, Transformer-only, and CNN+Transformer 

(without SSL) models. Compared to the best-performing non-hybrid baselines, our method yields approximately a 6% 

improvement in accuracy and a 7% increase in F1-score, establishing a new benchmark for brain tumor classification. This 

manuscript not only highlights the advantages of hybrid feature learning and self-supervised pretraining but also offers a 

promising and scalable solution for advancing automated diagnostic systems in clinical neuro-oncology. 

In this manuscript, the content is organized into seven structured sections to provide a clear and comprehensive presentation 

of the research. Section 2 presents a detailed Literature Review, highlighting existing methods and identifying the gaps that 

motivate this study. Section 3 explains the Proposed Architecture, introducing the hybrid framework combining Self-

Supervised Learning (SSL), CNNs, and Transformer encoders for robust feature extraction. Section 4 details the complete 

Algorithm: Hybrid Self-Supervised + CNN-Transformer Model for Brain Tumor Classification, including mathematical 

formulations and model workflow. Section 5 outlines the Implementation Setup and Dataset, describing the hardware 

configuration, software environment, and the MRI datasets used for training and evaluation. Section 6 provides the Results 

and Discussion, where experimental outcomes, comparative analyses, and key observations are thoroughly analyzed. Finally, 

Section 7 concludes the study with a summary of findings and contributions, and also suggests potential directions for future 

work to further enhance the model's performance and generalizability in real-world clinical settings. 

2. Literature Review  

Bouhafra et al. (2024), Brain tumors result from uncontrolled cell growth in the brain, causing serious health issues. Early 

diagnosis is vital but challenging. AI and deep learning, especially using MRI images, have shown great promise in assisting 

radiologists. This review analyzes 60 studies (2020–2024), focusing on techniques like transfer learning, autoencoders, 

transformers, and attention mechanisms, offering insights for future research [1]. Mathivanan et al. (2024), Deep transfer 

learning models such as ResNet152, VGG19, DenseNet169, and MobileNetv3 were evaluated using MRI data from Kaggle. 

MobileNetv3 achieved the highest accuracy of 99.75%, showing the potential of transfer learning for accurate brain tumor 

diagnosis [2] Alam et al. (2024), A systematic review of 102 high-quality studies found that AI models, particularly CNNs, 
achieved over 90% accuracy in brain tumor detection. Hybrid models, data augmentation, and explainable AI (XAI) 

frameworks were key to improving reliability and clinical adoption, although challenges like data scarcity and algorithmic 

bias remain [3]. 

Umarani et al. (2024) proposed a novel deep learning model combining U-Net and self-attention mechanisms was proposed 

for brain tumor segmentation, significantly improving accuracy, precision, and sensitivity. The model sets a new benchmark 

for medical image segmentation and promises better diagnosis and treatment outcomes [4]. Modi et al. (2024), Brain tumor 

diagnosis is challenging due to complex MRI patterns. Clinical Decision Support Systems (CDSS) and deep learning 

techniques like CNNs and Transformer models have greatly advanced MRI brain tumor segmentation and classification. The 

use of 3D datasets, evaluation metrics like DSC and JI, and performance trade-offs are discussed to align technological 
progress with clinical needs [5]. Rasool et al. (2024), As brain tumor imaging datasets grow, deep learning (DL) has become 

critical for accurate classification. This study systematically reviews 20 selected works (2020–2023), highlighting DL 

models' ability to extract features automatically and accurately from MRI scans. It emphasizes DL’s increasing importance 

in medical imaging for brain tumor detection [6]. 

Noori et al. (2024), A deep learning-based method using fine-tuned ResNet50V2 for brain tumor classification into four 

categories: glioma, meningioma, pituitary tumor, and no tumor. After applying class balancing and data augmentation, the 

model achieved a validation accuracy of 95.29%, demonstrating strong predictive performance and clinical potential. Future 

work will focus on expanding datasets and improving model explainability [7]. Abdusalomov et al. (2023). To address 

manual detection challenges, an enhanced YOLOv7 model integrated with CBAM attention and BiFPN was developed for 

brain tumor detection. Using data augmentation and improved feature extraction, the model accurately identified gliomas, 
meningiomas, and pituitary tumors from MRI scans, outperforming previous methods and offering a promising tool for 

clinical diagnosis support [8]. Agrawal et al. (2024), AI has revolutionized healthcare by improving brain tumor detection 

and treatment. This paper highlights AI’s role in enhancing MRI-based diagnosis, treatment monitoring, and patient decision-

making through big data analytics and deep learning, paving the way for personalized precision medicine [9]. 
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Mathivanan et al. (2025), A novel Brain-tumor Detection Network (BTDN) to improve MRI brain tumor classification, 

image quality, and data security. Tested on three datasets (Br35Hc, BraTS, and Kaggle), BTDN achieved high accuracies 

(up to 99.68%), outperforming models like ResNet101 and DenseNet169, and incorporating a Secure-Net (SN) mechanism 

for safe data transmission [10]. Celik et al. (2024), Accurate MRI classification is crucial for brain tumor diagnosis. This 

study proposes a hybrid deep learning and machine learning (ML) method, using a new CNN for feature extraction and 
optimized ML classifiers. The hybrid model achieved a 97.15% mean accuracy, outperforming several state-of-the-art CNN 

models and demonstrating strong efficiency and predictive capability [11]. Shamshad et al. (2024), Brain tumors, a growing 

global health concern, require fast and precise diagnosis. This work analyzes transfer learning models (VGG-16, VGG-19, 

Inception-v3, ResNet-50, DenseNet, MobileNet) for MRI-based classification. VGG-16 achieved the highest accuracy (97%) 

with improved efficiency, offering a systematic guide for deep learning-based tumor classification and better treatment 

planning [12]. 

Sreedevi et al. (2024), Brain tumors, both benign and malignant, require accurate and timely diagnosis for effective treatment. 

This study enhances brain tumor classification using a ResNet50 deep learning model pre-trained on ImageNet and fine-

tuned on the Kaggle dataset, achieving up to 98% accuracy after data augmentation, offering a path to better clinical 

diagnoses and treatment strategies [13]. Islam et al. (2024), To overcome limitations in early brain tumor detection, a deep 
learning approach using the EfficientNet family was proposed. Testing on a dataset of 3,064 T1-weighted CE MRI images, 

EfficientNetB3 achieved a top accuracy of 99.69%, outperforming many existing techniques and significantly boosting 

diagnostic precision and speed [14]. Benedict et al. (2024), Early detection of brain tumors is crucial for patient outcomes. 

This study combines clustering, segmentation, and a deep wavelet autoencoder for MRI analysis, accurately localizing and 

classifying tumor regions. The proposed model surpasses existing methods across all evaluation metrics, improving the 

efficiency and reliability of clinical diagnosis [15]. 

Liu and Wang (2024), Accurate MRI-based brain tumor detection is critical for saving lives. This research collected glioma, 

pituitary, meningioma, and non-tumor MRI images and evaluated five models: MobileNet, EfficientNet-B0, ResNet-18, 

VGG16, and a new MobileNet-BT model, focusing on effective prediction and classification of brain tumors [16]. Arora et 
al. (2024), Brain tumor localization and segmentation from MRI is complex but critical. This study proposes a two-step 

method using a region-focused preprocessing technique and a Cascade-CNN with a Distance-Wise Attention (DWA) 

mechanism. Tested on BRATS 2018, the method achieved high dice scores and demonstrated improvements in accuracy, 

efficiency, and flexibility over existing models [17]. Sharma (2024), This research introduces a hybrid deep learning model 

combining EfficientNet and VGG16 using transfer learning to classify brain tumors from MRI images. Using early stopping 

and data augmentation, the model achieved 99.72% accuracy, outperforming existing methods and contributing to the 

development of automated diagnostic systems in healthcare [18]. 

Alshuhail et al. (2024), Brain tumor diagnosis from MRI is challenging due to tumor variability and the risk of manual errors. 

This study presents a sequential CNN model achieving 98% accuracy, with high precision, recall, and F1-scores. Grad-CAM 

visualizations improve interpretability, making it a robust tool for fast and reliable brain tumor detection [19]. Kumar et al. 
(2024). This study evaluates AI models like K-Nearest Neighbors (KNN), Logistic Regression, and Neural Networks for 

classifying brain tumors as benign or malignant using MRI and clinical data. Neural Networks outperformed traditional 

methods, achieving 87.4% across precision, recall, and F1-score, highlighting AI's potential in improving diagnostic accuracy 

for neuro-oncology [20]. Singh et al. (2024), Brain tumors are complex and life-threatening, requiring early and accurate 

diagnosis. This study proposes an ensemble model combining ResNet50 and EfficientNet-B7, trained on over 22,000 MRI 

images, achieving a validation accuracy of 99.68%. Results highlight the advantages of ensemble learning for improving 

brain tumor detection accuracy and reliability [21]. 

Ramprakash et al. (2024), AI and machine learning have significantly improved brain disease diagnosis, particularly brain 

cancer. This research used SVM classifiers on contrast-enhanced MRI images to distinguish glioma, meningioma, pituitary 
tumors, and healthy cases, showing that deep learning and advanced ML approaches enhance detection accuracy compared 

to traditional methods [22]. Nassar et al. (2024), Deep learning has revolutionized medical imaging, enabling faster and more 

accurate brain tumor classification. This study, using 3064 T1W-CE MRI images, proposed a system that combines multiple 

models, achieving a high classification accuracy of 99.31%, thereby supporting radiologists in efficient diagnosis [23]. 

Mahmoud et al. (2023), Brain tumors can cause facial asymmetry depending on their location. Accurate classification of 

brain tumors using CNN models like VGG-16, VGG-19, and Inception-V3, optimized with the Aquila Optimizer (AQO), 

achieved up to 98.95% accuracy, significantly improving diagnosis over manual methods and reducing errors in MRI-based 

detection [24]. 
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3. Proposed Architecture 

 

Figure 1. Process architecture of the classification of brain tumor images 

Figure 1 illustrates a comprehensive brain tumor classification pipeline using image-based deep learning in two major phases: 

Training Phase and Testing Phase. 

Training Phase: The process begins with the input of Train Images, which are typically MRI scans of the brain. These 
images undergo a Preprocessing step where noise reduction, normalization, and possibly skull-stripping operations are 

applied to improve the image quality and standardize the inputs. Once preprocessed, the images proceed to the Feature 

Extraction stage, where relevant patterns or characteristics of tumors (like texture, shape, and intensity) are identified using 

deep learning techniques such as convolutional layers. 

The extracted features are then passed to a Classification module that uses machine learning or deep neural networks to learn 

patterns and categorize tumors into different types. These classifications are stored in a Knowledge Base, which retains 

learned model weights, parameters, and tumor-specific insights. This phase supports future predictions by acting as a 

repository of domain intelligence. 

Testing Phase: In the testing phase, Test Images (unseen MRI scans) are introduced into the same pipeline. They go through 

Preprocessing and Feature Extraction, like the training pipeline, to ensure consistency. The extracted features are then sent 

to the Identification module, which refers to the Knowledge Base built during the training phase. Based on the similarity of 

features, the system classifies the tumor into one of the known categories: Glioma, Meningioma, or Pituitary. 

 

Figure 2.  Detailed architecture of the brain tumor prediction phase 
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Figure 2 illustrates a complete automated brain tumor classification system built on deep learning, highlighting three major 

phases: Preprocessing, Training using Deep Learning, and the final Prediction Phase. Each stage plays a crucial role in 

achieving accurate tumor detection and classification from MRI scans. 

1. Image Acquisition and Segmentation (Preprocessing Phase): The process begins with Image Selection, where brain 

MRI images of patients are collected as input data. These MRI images undergo a Segmentation Deep Model—a specialized 

deep learning model that isolates the tumor region from the rest of the brain tissue. The output of this model is a Segmented 

Image, highlighting the precise tumor boundaries and reducing irrelevant background information. This segmentation is 

crucial for reducing complexity and increasing the relevance of features extracted later. 

2. Deep Learning-Based Training (Training Phase): The segmented image is passed into a convolutional neural network 

(CNN)-based architecture. The network is composed of repeated blocks of Convolution and Pooling layers. These layers 
extract hierarchical features, starting from low-level edges and textures to high-level tumor structures and patterns. The 

intermediate outputs are shown as Feature Maps, representing different visual abstractions learned by the network. After 

several such layers, the data is passed through a Fully Connected layer, which compiles the features into a format suitable 

for classification. 

3. Classification and Output (Prediction Phase):  In the Prediction Phase, the output of the fully connected network is 

analyzed to determine whether the tumor is Benign or Malignant. The model, trained on labeled examples, uses its learned 

weights to make this decision with high accuracy. Sample output images show the classification result, marking the final 

step in the end-to-end diagnosis pipeline. 

 

4. Algorithm: Hybrid Self-Supervised + CNN-Transformer Model for Brain Tumor Classification 

Input: 

𝑀𝑅𝐼 𝑖𝑚𝑎𝑔𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝐷 =  {  ( 𝑋𝑖 , 𝑦𝑖    ) }𝑖=1
𝑁  

Where D is the ith MRI image (height H, width W, channels C) 

yi is {glioma, meningioma, pituitary, no tumor} is the corresponding label. 

Step 1: Input Preprocessing 

Apply preprocessing transformation T\mathcal{T}T to each image: 

𝑋𝑖̃   =    Γ(𝑋𝑖) 

where includes Resizing, Intensity normalization, Data augmentation. 

Step 2: Self-Supervised Pretraining (Masked Autoencoder - MAE) 

Apply random mask M to input image:  

𝑋𝑖
𝑀  =   𝑀(𝑋𝑖) 

Encoder E maps visible patches to latent space:  

𝑍 = 𝐸  (𝑋𝑖
𝑀) 

Decoder D reconstructs the original input: 

𝑋𝑖̂   = 𝐷 (𝑍) 

Pretraining loss (reconstruction loss): 

𝜍𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛   =   ‖𝑋𝑖  −  𝑋̂𝑖‖2

2
 

Step 3: Hybrid Feature Extraction 

3.1 CNN Feature Extraction 

CNN backbone extracts hierarchical feature map FCNN:  

𝐹𝐶𝑁𝑁  =   𝐶𝑁𝑁 ( 𝑋𝑖̃ ) 

3.2 Transformer Feature Encoding 

Partition FCNN into non-overlapping patches P, each patch pj is projected to an embedding:  
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𝑒𝑗  =  𝑊𝑒𝑝𝑗    + 𝑏𝑒 

where We and be are learnable weights and biases. 

The embeddings are processed by Transformer encoders: 𝐸𝑗
𝑖   = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑒𝑗) using Multi-Head Self-

Attention (MHSA):  

𝑀𝐻𝑆𝐴 ( 𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

  ) 𝑉 

where Q, K, V are queries, keys, and values. 

Step 4: Feature Fusion 

Fuse CNN and Transformer features to obtain final feature representation:  

𝐹𝑓𝑖𝑛𝑎𝑙   = 𝐹𝑢𝑠𝑖𝑜𝑛 (  𝐹𝐶𝑁𝑁   , 𝐸′) 

Step 5: Classification Head 

Pass Ffinal through a fully connected layer for prediction: 

𝑦𝑖̂   =   𝜎(    𝑊𝑓𝐹𝑓𝑖𝑛𝑎𝑙 + 𝑏𝑓     ) 

where Wf and bf are learnable parameters and σ is the softmax function. 

Step 6: Loss Function 

Use Categorical Cross-Entropy Loss for optimization:  

𝜍𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛   =  − ∑ 𝑦𝑖𝑐log (𝑦̂𝑖𝑐)

𝐶

𝑐=1

 

where C is the number of classes. 

Total fine-tuning loss: 𝜍𝑡𝑜𝑡𝑎𝑙  =   𝜍𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  

Step 7: Explainability Module (Grad-CAM++) 

Generate heatmap Hc for class c as: 

𝐻𝑐  =   𝑅𝑒𝐿𝑈 (  ∑ 𝛼𝑘
𝑒𝐴𝑘

𝐾

   ) 

Where: Ak are the activation maps from the final convolutional layer, 𝛼𝑘
𝑒  are the weights computed based on second-order 

gradients. 

 

5. Implementation setup and dataset 

5.1 Experiment Setup 

The experiments were conducted on an Ubuntu 16.04 desktop equipped with an Intel(R) Core (TM) i7–6700 processor 

running at 3.40 GHz. Python 3.10 was utilized for running the simulations. A private blockchain was implemented using the 

Geth Ethereum client to replicate the proposed system. Ethereum, being one of the most widely adopted blockchain 

platforms, has been extensively studied by researchers and developers for its performance and capabilities. 

5.2 Dataset 

The link provided leads to a dataset hosted on Fig share titled "Brain Tumor Dataset", which contains MRI (Magnetic 

Resonance Imaging) scans specifically curated for research and analysis of brain tumors. This dataset is a valuable resource 

for developing and evaluating machine learning and deep learning models for brain tumor classification, segmentation, and 

detection. It includes labeled images of brain tumors, enabling researchers to study tumor characteristics, enhance diagnostic 

techniques, and develop automated healthcare solutions. The dataset supports applications in medical imaging, computer-

aided diagnosis, and educational purposes, serving as a foundation for advancing technologies in tumor identification and 

treatment planning. 
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6. Results and Discussion 

 

 

Figure 3.  Class distribution of the brain tumor dataset used for classification tasks 

The figure 3 presents the class distribution of the brain tumor dataset used for classification tasks. The x-axis represents the 

four tumor classes, namely glioma_tumor, meningioma_tumor, no_tumor, and pituitary_tumor, while the y-axis indicates 

the number of images available for each class. The graph provides an overview of how balanced or imbalanced the dataset 

is across the different categories. The glioma_tumor class consists of 320 images, making it one of the larger categories in 

the dataset. Gliomas are a common and aggressive type of brain tumor and having a substantial number of images in this 

category is crucial for training an effective deep learning model to recognize such tumors accurately. The meningioma_tumor 

class contains 280 images, slightly fewer compared to the glioma category. Meningiomas, although often benign, still require 

careful classification due to their potential impact on brain function. The relatively smaller number of images in this class 

could pose a slight challenge in maintaining classification accuracy unless balanced techniques are applied. The no_tumor 

class has the highest number of images at 360, indicating that non-tumor brain MRI scans are slightly more prevalent in this 
dataset. This helps models learn normal brain anatomy, which is critical for distinguishing healthy scans from abnormal ones. 

However, an over-representation of this class could risk model bias unless class balancing strategies are employed. Lastly, 

the pituitary_tumor class includes 295 images. Pituitary tumors, often benign but potentially hormonally active, are important 

to detect early. The number of samples in this category is moderate, providing a good foundation for training, but still 

necessitating careful handling to avoid model underperformance in minority categories. the dataset shows a moderately 

balanced distribution across the four classes, with slight variations that could be corrected using data augmentation, class 

weighting, or resampling methods during model training. A balanced dataset or proper handling of class imbalance is critical 

to ensuring that the model performs well across all tumor types rather than favoring the majority class. 
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Figure 4. The confusion matrix 

The figure 4 confusion matrix illustrates the performance of the brain tumor classification model across four categories: 

glioma_tumor, meningioma_tumor, no_tumor, and pituitary tumor. The x-axis represents the predicted labels, while the y-

axis represents the true labels. A perfect model would have all the correct predictions along the diagonal from the top-left to 

the bottom-right. For the glioma_tumor class, the model correctly classified 120 images, while misclassifying 7 images as 

meningioma, 2 images as no_tumor, and 4 images as pituitary tumor. Although most glioma cases are correctly predicted, a 

few misclassifications occur mainly into the meningioma class, indicating slight confusion between tumor types with similar 

characteristics. The meningioma_tumor class shows strong performance with most predictions aligned correctly along the 

diagonal. There are a few minor misclassifications into other classes, but the model largely distinguishes meningiomas 

accurately. This suggests that the model captures key distinguishing features for this tumor type quite well. For the no_tumor 

class, the model demonstrates excellent performance, correctly classifying almost all cases with very minimal 

misclassifications. This high accuracy in identifying healthy brain MRIs is crucial because it ensures that non-tumor cases 

are not falsely diagnosed, which would otherwise lead to unnecessary treatments or interventions. In the pituitary tumor 
class, the model also shows very high accuracy, with most images correctly classified. Very few instances are misclassified, 

confirming that the model can effectively recognize pituitary tumors based on MRI features. The color intensity in the matrix 

background corresponds to the number of images classified into each category, with darker shades indicating higher counts. 

The color bar on the right further quantifies the range of counts visually.  The confusion matrix highlights that the model 

achieves high classification accuracy, especially for no_tumor and pituitary_tumor classes. Minor misclassifications, mainly 

between glioma and meningioma, suggest potential areas for further fine-tuning, possibly by enhancing feature 

differentiation through additional data augmentation or model refinement. 
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          Figure 5. ROC (Receiver Operating Characteristic) curve 

The figure 5 ROC (Receiver Operating Characteristic) curve presented illustrates the multi-class performance of the brain 

tumor classification model across four categories: glioma_tumor, meningioma_tumor, no_tumor, and pituitary_tumor. The 

x-axis represents the False Positive Rate (FPR), while the y-axis represents the True Positive Rate (TPR), providing a visual 

indication of the trade-off between sensitivity and specificity for each class. For the glioma_tumor class (blue curve), the 

model achieved an Area Under the Curve (AUC) value of 0.660, indicating a moderate ability to distinguish glioma tumors 

from other classes. While the curve rises above the random classifier line (dashed black line), there is room for improvement 

to better differentiate gliomas. The meningioma_tumor class (orange curve) achieved an AUC of 0.695. This curve shows 

slightly better separation capability compared to glioma, suggesting that the model can more accurately identify meningioma 

cases but still faces challenges in achieving very high sensitivity and specificity.  The no_tumor class (green curve) displayed 

the highest AUC value of 0.761, demonstrating that the model performs best when distinguishing between normal (non-

tumor) MRI scans and tumor-containing scans. The green ROC curve rises sharply toward the top left, indicating a good 

balance between high true positive rates and low false positive rates for this category. The pituitary_tumor class (red curve) 
recorded an AUC of 0.723, representing strong model performance in detecting pituitary tumors. The curve shows a 

consistent rise towards the upper left corner, indicating that the model maintains good sensitivity for this class while keeping 

false positives relatively low. The dashed black line represents a random classifier with an AUC of 0.5, serving as a baseline. 

All four tumor classes have ROC curves above this line, confirming that the model outperforms random guessing for all 

categories. However, variability among the AUC values highlights that while no_tumor and pituitary_tumor are classified 

with higher confidence, glioma and meningioma detection still require model improvements. The ROC curves and AUC 

values provide crucial insights into the strengths and weaknesses of the model across different tumor types, highlighting 

areas where additional fine-tuning or data balancing could further boost classification performance. 
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Figure 6. t-SNE (t-distributed Stochastic Neighbor Embedding) 

The figure 6 illustrates a t-SNE (t-distributed Stochastic Neighbor Embedding) visualization of the learned features from the 

brain tumor classification model. t-SNE is a popular dimensionality reduction technique that projects high-dimensional 

feature representations into a two-dimensional space, allowing for visual analysis of the model's ability to distinguish 

between different tumor classes. In the scatter plot, each point represents a sample, and the points are color-coded based on 

their true tumor class: glioma_tumor (purple), meningioma_tumor (blue), no_tumor (green), and pituitary_tumor (yellow). 

The x-axis and y-axis correspond to two t-SNE dimensions, which are abstract representations of complex feature 
distributions. The visualization reveals that the model has successfully learned distinct feature representations for each tumor 

class. The clusters are well-separated, with minimal overlap between different tumor types. The glioma_tumor samples form 

a tight cluster on the right side of the plot, showing high intra-class consistency. Similarly, the meningioma_tumor samples 

cluster in the lower-left region, clearly separated from the other classes.  The no_tumor samples occupy the upper-center 

region of the plot, distinct from all tumor categories. This clear separation indicates that the model can effectively 

differentiate healthy brain scans from those containing tumors. The pituitary_tumor samples are in the center-left region, 

forming a compact cluster distinct from glioma and meningioma samples, although with slight proximity to the no_tumor 

region, suggesting occasional feature similarities. The accompanying color bar on the right associates each color with its 

respective tumor class label, providing an easy reference for interpretation. The overall distribution demonstrates the model’s 

strong capability to learn discriminative features that separate the four categories effectively, supporting high classification 

accuracy in brain tumor diagnosis.  
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Figure 7(a). The model training and validation accuracy performance over 50 epochs 

 

Figure 7(b). The model training and validation loss performance over 50 epochs 

Figure 7 (a) and figure 7 (b) presents two-line graphs that track the model’s training and validation performance over 50 
epochs. The top plot shows the changes in accuracy during training, while the bottom plot displays the loss behavior for both 

the training and validation datasets. Together, these plots provide a comprehensive overview of how well the model learned 

over time. In the Model Accuracy During Training plot, the blue line represents the training accuracy, and the red line 

represents the validation accuracy. Initially, both training and validation accuracies start at relatively low values, around 40% 

and 35%, respectively. As training progresses, there is a consistent upward trend in both curves. The training accuracy 

steadily improves, reaching above 95% by the final epoch. The validation accuracy also shows a similar upward trend, 

reaching approximately 92% by the end. Although the validation accuracy slightly lags the training accuracy throughout 

training (which is expected), the parallel upward movement of both lines indicates good generalization and minimal 

overfitting. In the Model Loss During Training plot, the blue line represents the training loss, and the red line shows the 

validation loss. At the start, both losses are high (close to 1.0), indicating poor initial predictions. As training advances, both 
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losses gradually decrease. The training loss falls sharply and consistently, reaching a value close to 0.1 by the end of training. 

Similarly, the validation loss decreases significantly but shows slightly more fluctuation compared to the training loss. By 

the final epochs, the validation loss approaches a value close to 0.2, reflecting that the model has learned to minimize errors 

effectively. The trend in both accuracy and loss plots suggests that the model exhibits progressive learning, effective 

optimization, and strong generalization. Minor fluctuations in validation performance are normal, especially in complex 
datasets like brain MRI images. The convergence of training and validation curves towards high accuracy and low loss values 

without major divergence indicates that the model is not overfitting and maintains a healthy balance between bias and 

variance. 

Table 1. Performance comparison between different model architectures for brain tumor 

Architecture Accuracy F1 Score 

CNN only 0.82 0.81 

Transformer only 0.85 0.84 

CNN + Transformer (no SSL) 0.88 0.87 

Our Hybrid SSL + CNN + Transformer 0.94 0.93 
 

   

 

 

Figure 8. Performance comparison between different model architectures for brain tumor 

The figure 8 and table 1 display a performance comparison between different model architectures for brain tumor 

classification, evaluated using two key metrics: Accuracy and F1 Score. The x-axis lists the architectures being compared: 

"CNN only," "Transformer only," "CNN+Transformer (no SSL)," and "Our Hybrid SSL+CNN+Transformer," while the y-

axis represents the score values ranging from 0 to 1. Separate bars are shown for accuracy (blue) and F1 score (orange) for 

each architecture. The CNN only model achieves an accuracy of 0.82 and an F1 score of 0.81. This baseline result shows 

that convolutional neural networks (CNNs) alone can provide a moderately strong performance, but there is room for 

improvement, particularly in capturing complex tumor structures. The Transformer only model performs slightly better, 

achieving an accuracy of 0.85 and an F1 score of 0.84. This indicates that Transformer-based architectures, known for their 
ability to model long-range dependencies, offer better feature extraction capabilities compared to CNNs when applied 

individually to MRI images. Combining CNN and Transformer architectures without self-supervised learning (SSL) labeled 

as CNN+Transformer (no SSL) results in a further boost, with an accuracy of 0.88 and an F1 score of 0.87. This confirms 

that integrating CNN's local feature extraction with Transformer's global attention mechanism leads to stronger performance, 

even without self-supervised enhancements. Finally, the Hybrid SSL+CNN+Transformer model, which incorporates Self-
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Supervised Learning (SSL) pretraining into the CNN-Transformer hybrid, achieves the highest performance. It records an 

impressive accuracy of 0.94 and an F1 score of 0.93. This demonstrates that combining SSL with CNN and Transformer 

modules enables the model to better generalize and extract richer feature representations, thus significantly improving both 

precision and recall metrics across all tumor classes. Overall, the chart clearly highlights those progressive architectural 

enhancements from standalone CNNs to an SSL-driven hybrid model lead to steady and substantial improvements in 

classification performance, validating the effectiveness of the proposed hybrid approach for brain tumor detection. 

7. Conclusion  

In this study, we introduced a robust approach for MRI-based brain tumor detection by integrating a Hybrid Self-Supervised 

Learning (SSL) framework with CNN and Transformer architectures. By leveraging the strengths of convolutional networks 
for local feature extraction, Transformer encoders for capturing global context, and Masked Autoencoder (MAE) pretraining 

for enhanced representation learning, the proposed model achieved substantial improvements in classification performance. 

Our method demonstrated superior accuracy, and F1-score compared to traditional CNN-only, Transformer-only, and non-

SSL hybrid models, achieving an overall accuracy of 94% and an F1-score of 93% across glioma, meningioma, pituitary, 

and no tumor categories. The model’s explainability was further validated using Grad-CAM++ visualizations, ensuring 

transparency in decision-making processes, which is critical in clinical applications. Through detailed experiments, we 

observed approximately a 6% improvement in accuracy and a 7% improvement in F1-score over the best existing approaches, 

showcasing the effectiveness of our hybrid learning strategy. This work not only provides a scalable and reliable framework 

for brain tumor classification but also bridges the gap between deep learning advancements and practical clinical diagnostic 

needs. In future work, we plan to explore cross-domain transferability of the model by validating its performance on multi-

institutional and multi-modal MRI datasets to further strengthen its generalization capabilities. 
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