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ABSTRACT 

This research introduces TI-PedThyroNet (Transparent and Interpretable Paediatric Thyroid Network), a novel framework 

enhancing interpretability and reliability in neural network-based thyroid nodule diagnosis specifically for paediatric 

populations. By integrating complementary interpretability techniques with uncertainty quantification, the methodology 

addresses the critical trust gap in AI-driven paediatric diagnostics where radiation exposure concerns and long-term 

implications of interventions require particular attention. Our multi-pathway attention mechanism optimizes feature 

extraction while providing granular explanations. Clinical validation with paediatric radiologists demonstrates significant 

improvements in diagnostic confidence (31% increase), decision-making speed (34% reduction in interpretation time), and 

trust metrics. TI-PedThyroNet achieves state-of-the-art performance (accuracy: 92.8%, sensitivity: 94.3%, specificity: 

91.6%) while providing human-interpretable explanations and reliable uncertainty estimates, demonstrating considerable 

potential for clinical integration in paediatric settings. 
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1. INTRODUCTION 

1.1 Background and Motivation 

Thyroid nodules in children and adolescents, though less prevalent than in adults, present a higher malignancy risk—22-26% 

compared to 7-15% in adults. This stark contrast underscores the critical importance of accurate diagnosis in paediatric 

populations. Unlike adults, children’s growth patterns, hormonal changes, and unique thyroid ultrasound characteristics pose 

significant diagnostic challenges for traditional methods. 

Deep neural networks have revolutionized thyroid nodule diagnosis in adults, offering impressive accuracy. However, their 

"black-box" nature limits clinical adoption in paediatrics, where trust, transparency, and medicolegal considerations are 

paramount. The inability to explain AI-driven results impedes communication with patients and parents, raising concerns in 

a vulnerable population requiring clear and reliable diagnostic approaches. The figure-1 shows an image of thyroid gland 

with nodules. 

 

Figure-1: Thyroid Nodule Image 
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1.2 Problem Statement 

Two critical barriers prevent the widespread adoption of AI in paediatric thyroid nodule diagnosis: 

interpretability and reliability. 

1. Interpretability: Paediatric specialists need clear, understandable explanations for AI predictions. Without these, 

validating AI outputs against clinical expertise or detecting biases specific to paediatric thyroid tissue is impossible. 

2. Reliability: Conventional neural networks only provide deterministic point estimates without quantifying 

prediction uncertainty. This lack of confidence metrics is unacceptable in high-stakes paediatric diagnostics, where 

errors can lead to severe consequences, such as unnecessary surgeries with lifelong hormonal impacts or delayed 

treatment of aggressive cancers. 

Additionally, paediatric thyroid imaging datasets are smaller and less diverse than adult datasets, compounding the difficulty 

of training robust and generalizable deep learning models for this population. 

1.3 Objectives and Contributions 

This research addresses the challenges of interpretability and reliability in paediatric thyroid nodule diagnosis with the 

following contributions: 

1. TI-PedThyroNet: Development of a novel multi-pathway neural network architecture optimized for the unique 

ultrasound characteristics of paediatric thyroid tissue. This architecture incorporates attention mechanisms to 

improve feature extraction and diagnostic accuracy. 

2. Hybrid Interpretability Framework: Integration of visual explanation methods and feature attribution techniques 

tailored to paediatric thyroid patterns, ensuring clear, human-understandable AI outputs. 

3. Dual Uncertainty Quantification: Implementation of a combined uncertainty quantification approach using 

Bayesian neural networks and evidential deep learning, addressing the need for confidence metrics, especially in 

rare and atypical paediatric presentations. 

4. Adaptive Refinement Strategy: Creation of a methodology to systematically identify and correct diagnostic errors, 

enhancing the reliability of predictions in paediatric cases. 

5. Clinical Integration Pipeline: Design and validation of a workflow to integrate interpretable AI systems into 

paediatric clinical practice. This pipeline emphasizes effective communication between physicians and parents, 

bridging the trust gap in AI-driven diagnostics. 

6. Paediatric Thyroid Ultrasound Dataset: Collection and curation of the largest paediatric thyroid ultrasound 

dataset to date, addressing the data scarcity challenge and enabling robust deep learning training for paediatric 

populations. 

Through these objectives, this research aims to establish a reliable, transparent, and clinically actionable framework for AI-

driven paediatric thyroid nodule diagnosis. 

2. LITERATURE REVIEW 

2.1 Paediatric Thyroid Nodules: Epidemiology and Clinical Significance 

Thyroid nodules in the paediatric population represent a distinct clinical entity with epidemiological and pathological 

characteristics that differ significantly from those seen in adults. While thyroid nodules are less common in children and 

adolescents, with a prevalence of only 0.2-5.1% compared to 20-76% in adults, they carry a substantially higher risk of 

malignancy (22-26% versus 7-15% in adults) [1, 2]. This elevated malignancy risk necessitates meticulous evaluation and 

precise diagnostic approaches tailored specifically to paediatric patients. 

Gupta et al. [1] conducted a comprehensive review of paediatric thyroid cancer, highlighting the unique challenges in 

diagnosis and management. Their findings emphasize that paediatric thyroid cancer often presents at a more advanced stage 

than in adults, with higher rates of lymph node metastasis and extrathyroidal extension at diagnosis. Similarly, van Santen et 

al. [2] examined the clinical course and long-term follow-up of paediatric differentiated thyroid carcinoma, noting that 

despite more aggressive presentation, paediatric patients generally have better long-term survival outcomes compared to 

adults, yet face prolonged surveillance and potential treatment-related morbidity throughout their lifetimes. 

Francis et al. [3] specifically compared thyroid ultrasound findings between children and adults, identifying several nodular 

features that carry different predictive values in paediatric populations. Their research revealed that certain sonographic 

characteristics traditionally associated with malignancy in adults may have different implications in children, highlighting 

the need for age-specific interpretation criteria. This work was complemented by Norlen et al. [4], who conducted a 

systematic review of risk factors for malignancy in paediatric thyroid nodules, identifying family history, radiation exposure, 
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and specific ultrasound features as key predictors requiring careful consideration. 

The long-term consequences of paediatric thyroid cancer management were explored by Chen et al. [5], who documented 

quality of life outcomes in adult survivors of paediatric differentiated thyroid carcinoma. Their research emphasized the 

lifelong impact of therapeutic decisions made during childhood, reinforcing the critical importance of accurate initial 

diagnosis to avoid both unnecessary interventions and delayed treatment of genuinely malignant lesions. 

2.2 Artificial Intelligence in Medical Imaging: Advances and Limitations 

Recent years have witnessed remarkable progress in applying artificial intelligence, particularly deep learning, to medical 

imaging analysis. However, the adoption of these technologies in clinical practice has been hampered by several critical 

limitations, most notably the lack of interpretability and reliability in their predictions. 

Lauritsen et al. [6] demonstrated the potential of explainable artificial intelligence models in predicting critical illness from 

electronic health records, emphasizing the importance of transparent decision processes for clinical adoption. Their work 

highlighted how explanation mechanisms could enhance clinician trust and facilitate more effective human-AI collaboration 

in healthcare settings. In the specific domain of thyroid imaging, Zhang et al. [7] developed an ultrasound image-guided 

vision transformer with attention mechanisms for thyroid nodule classification, achieving impressive accuracy but with 

limited interpretability of the decision-making process. 

The challenge of quantifying uncertainty in deep learning predictions was addressed by Amini et al. [8], who introduced 

deep evidential regression as a method for generating reliable uncertainty estimates without requiring multiple forward 

passes. Their approach represents a significant advancement in developing AI systems that can acknowledge their limitations 

and provide confidence metrics alongside predictions. 

The practical challenges of deploying AI systems in clinical settings were thoroughly examined by Beede et al. [9], who 

conducted a human-centered evaluation of a deep learning system for diabetic retinopathy detection. Their findings 

underscored the importance of considering workflow integration, trust-building mechanisms, and clinician-AI interaction 

patterns when designing systems intended for clinical use. Similarly, Oakden-Rayner et al. [10] identified hidden 

stratification as a major cause of clinically meaningful failures in machine learning for medical imaging, highlighting how 

models trained on aggregate populations may perform poorly on important subgroups, including paediatric patients. 

Arcadu et al. [11] demonstrated the potential of deep learning algorithms to predict disease progression in individual patients, 

showcasing the capability of AI systems to provide personalized risk assessments when properly designed and validated. 

This individualized approach is particularly valuable in paediatric settings, where treatment decisions must consider long-

term developmental impacts. 

2.3 Vision Transformers and Attention Mechanisms in Medical Imaging 

Recent architectural innovations in deep learning have shown considerable promise for medical image analysis. Dosovitskiy 

et al. [12] introduced the Vision Transformer (ViT) architecture, demonstrating that transformers originally designed for 

natural language processing could be effectively adapted for image recognition tasks by treating images as sequences of 

patches. This approach has proven particularly beneficial for capturing long-range dependencies within medical images, 

including ultrasound. 

Kim et al. [13] applied deep learning algorithms specifically to the differentiation of solid thyroid nodules using ultrasound 

data, achieving high diagnostic accuracy but with limited interpretability. Their work emphasized the potential of AI to 

enhance thyroid nodule diagnosis but highlighted the need for greater transparency in the decision-making process. This 

challenge was addressed more broadly by Lei et al. [14], who surveyed local interpretation methods for deep neural networks, 

providing a comprehensive overview of approaches to explain black-box models and their relative strengths and limitations. 

Yang et al. [15] focused on the fundamental task of thyroid ultrasound image segmentation using deep learning approaches, 

demonstrating how accurate delineation of nodule boundaries could enhance downstream diagnostic performance. Their 

work highlighted the importance of precise feature extraction as a foundation for reliable nodule classification. 

2.4 Interpretability in Medical AI Systems 

The interpretability of AI systems represents a critical requirement for clinical adoption, particularly in paediatric settings 

where diagnostic decisions carry heightened significance due to long-term implications. Park et al. [16] developed an 

ensemble-based deep learning model for thyroid nodule diagnosis with integrated interpretability mechanisms, 

demonstrating how ensemble approaches could simultaneously improve accuracy and provide more robust explanations. 

Specifically addressing paediatric applications, Mitani et al. [17] pioneered deep learning-based image analysis for paediatric 

thyroid nodule diagnosis, achieving promising results but acknowledging limitations in model interpretability and paediatric-

specific optimization. Building upon this foundation, Vergara et al. [18] conducted a pilot study of explainable artificial 

intelligence for paediatric thyroid ultrasound, providing initial evidence for the feasibility and potential clinical value of 

transparent AI systems in this sensitive domain. 
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Borson et al. [19] provided a perspective review of interpretable machine learning models for paediatric radiology, 

highlighting the unique considerations required when developing AI systems for children. Their work emphasized the 

importance of age-appropriate explanations, consideration of developmental variations, and heightened attention to long-

term consequences of diagnostic decisions in paediatric populations. 

2.5 Paediatric Thyroid Genetics and Pathology 

Understanding the molecular genetics of paediatric thyroid nodules is essential for developing AI systems that can effectively 

identify and differentiate malignant lesions. Goutte et al. [20] examined the genetics of paediatric thyroid nodules and 

differentiated thyroid cancer, highlighting distinct molecular pathways and genetic alterations that characterize paediatric 

thyroid malignancies. Similarly, Liu et al. [21] provided current insights into the molecular genetics of paediatric thyroid 

carcinoma, emphasizing how genetic profiles differ between paediatric and adult populations and how these differences 

contribute to the unique clinical behavior of paediatric thyroid cancer. 

Lam et al. [22] compared histopathological features and gene expression patterns between follicular thyroid tumors in 

paediatric and adult populations, identifying age-related differences that may influence imaging characteristics and 

necessitate age-specific diagnostic approaches. Their work underscored the importance of developing AI systems specifically 

optimized for paediatric thyroid tissue rather than simply adapting adult models. 

The importance of cytological evaluation was highlighted by Nishino et al. [23], who conducted a multi-institutional review 

of ultrasound-guided fine-needle aspiration cytology in paediatric thyroid nodules. Their findings emphasized the value of 

combining imaging and cytological data for optimal diagnostic accuracy while noting the unique challenges of performing 

invasive procedures in paediatric populations. 

2.6 AI Applications in Paediatric Medical Imaging 

The application of AI to paediatric medical imaging presents unique challenges and opportunities compared to adult 

populations. Cheng et al. [24] reviewed deep learning methods for paediatric medical imaging, describing the current state 

and future opportunities in this evolving field. Their analysis highlighted how developmental considerations, limited dataset 

availability, and heightened ethical concerns shape the development and validation of AI systems for paediatric applications. 

Zhou et al. [25] developed hybrid models specifically for segmenting paediatric thyroid nodules in ultrasound images, 

demonstrating how combining multiple approaches could improve performance on the limited datasets typically available 

for paediatric applications. Their work addressed the technical challenges of processing paediatric thyroid ultrasound images, 

which often exhibit different characteristics compared to adult images due to smaller anatomical structures and different 

tissue compositions. 

Addressing the critical challenge of limited data availability, Lin et al. [26] conducted a systematic review of federated 

learning for medical imaging in paediatric applications. They identified this privacy-preserving approach as particularly 

valuable for paediatric research, where data sharing is often restricted by heightened privacy concerns and regulatory 

protections. Their work highlighted how collaborative model training across institutions could enhance the performance and 

generalizability of AI systems for paediatric thyroid imaging without compromising patient privacy. 

2.7 Gaps in Current Research 

Despite significant advances in AI applications for thyroid nodule diagnosis, several critical gaps remain in the current 

literature, particularly regarding paediatric populations: 

1. Limited Paediatric-Specific Optimization: Most existing AI systems for thyroid nodule diagnosis were developed 

primarily using adult data, with limited optimization for the unique characteristics of paediatric thyroid tissue. 

2. Insufficient Interpretability: While various explanation methods have been proposed, few studies have integrated 

complementary approaches specifically calibrated for paediatric thyroid imaging. 

3. Inadequate Uncertainty Quantification: Existing systems typically provide point estimates without reliable 

confidence measures, limiting their utility in high-stakes paediatric decision-making. 

4. Lack of Age-Stratified Analysis: Few studies have examined how AI performance varies across different paediatric 

age groups, despite known developmental variations in thyroid tissue. 

5. Limited Clinical Validation: Most studies focus on technical performance metrics rather than impact on clinical 

decision-making, particularly regarding physician trust and parent-physician communication. 

6. Absence of Comprehensive Frameworks: No previous work has presented an integrated framework addressing 

interpretability, reliability, and clinical integration specifically for paediatric thyroid nodule diagnosis. 

The present study aims to address these gaps through the development of TI-PedThyroNet, a novel framework enhancing 

interpretability and reliability in neural network-based thyroid nodule diagnosis specifically for paediatric populations. 
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3. PROPOSED METHODOLOGY 

The TI-PedThyroNet framework represents a groundbreaking approach to paediatric thyroid ultrasound image analysis, 

combining advanced neural network architecture with specialized interpretability mechanisms. Designed specifically for the 

unique characteristics of paediatric thyroid tissue, this innovative system utilizes a multi-pathway CNN architecture 

enhanced with attention mechanisms to improve diagnostic accuracy. The framework incorporates dual uncertainty 

quantification to address the challenges of rare paediatric presentations, while its comprehensive error analysis pipeline 

enables continuous refinement through expert feedback. With age-specific feature recognition and a clinical interface 

designed for both specialists and parents, TI-PedThyroNet bridges the gap between advanced AI technology and practical 

clinical application. This integrated approach aims to transform paediatric thyroid diagnosis by providing transparent, 

accurate, and developmentally-appropriate assessment tools. Figure-2 shows proposed T1-PedThyroNet Framework for 

Pediatrics Thyroid Ultrasound Analysis. 

3.1 Overview of TI-PedThyroNet Framework: 

The TI-PedThyroNet framework comprises five components tailored for paediatric applications: 

1. Multi-pathway CNN architecture: Optimized with attention mechanisms for paediatric thyroid tissue characteristics. 

2. Complementary interpretability module: Includes age-specific feature recognition for enhanced diagnostic accuracy. 

3. Dual uncertainty quantification system: Calibrated for rare paediatric presentations. 

4. Error analysis and refinement pipeline: Incorporates feedback from paediatric radiologists for continuous 

improvement. 

5. Clinical integration interface: Designed to cater to both specialists and parents, ensuring effective communication. 

3.2 Multi-Pathway Neural Network Architecture 

TI-PedThyroNet processes paediatric thyroid ultrasound images via three parallel pathways: 

1. Texture Pathway: Utilizes small receptive fields (3×3 convolutions) to capture fine-grained texture patterns, 

crucial for the distinct echogenicity of paediatric thyroid tissue. 

2. Shape Pathway: Employs larger receptive fields (7×7 convolutions) to detect boundary characteristics, 

accommodating the well-circumscribed nature of paediatric nodules. 

3. Context Pathway: Incorporates dilated convolutions to analyze the surrounding tissue environment, capturing 

nodule-parenchyma relationships. 

Each pathway utilizes a modified DenseNet-121 architecture with Self-Attention Modules. Paediatric-specific adaptations 

include: 

a) Data Augmentation: Enhances training robustness. 

b) Transfer Learning: Fine-tunes models pre-trained on adult datasets. 

The pathways are fused using a Feature Recalibration Module, dynamically weighting inputs based on their characteristics: 

 

Here, α, β, and γ are input-dependent weights computed through a small neural network. 

3.3 Complementary Interpretability Techniques 

To ensure transparency, the following interpretability methods are integrated: 

1. Grad-CAM Visualization: Generates heatmaps highlighting regions of interest in texture, shape, and contextual 

pathways. 

2. Integrated Gradients: Provides pixel-level contribution maps to address gradient saturation in hypervascular 

paediatric thyroid tissues. 

3. SHAP Values: Quantifies each region's contribution to predictions using cooperative game theory principles. 

Additionally, Concept Activation Vectors (CAVs) connect low-level features with high-level diagnostic concepts, aiding 

paediatric radiologists with age-specific tissue comparisons. 
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Figure-2: T1-PedThyroNet Framework for Paediatric Thyroid Ultrasound Analysis 

 

3.4 Dual Uncertainty Quantification 

Uncertainty estimation is achieved through: 

1. Monte Carlo Dropout: Performs 30 inference passes per image to compute mean prediction, standard deviation, 

and predictive entropy. 

2. Evidential Deep Learning (EDL): Outputs evidence parameters of a Beta distribution to capture model confidence 

levels. 

High-uncertainty cases are flagged for review. Visualizations are provided alongside interpretability outputs, with thresholds 

calibrated for paediatric-specific risks. 

3.5 Error Analysis and Adaptive Refinement 

A systematic pipeline addresses errors with paediatric-specific adaptations: 

1. Structured Misclassification Analysis: Categorizes errors based on age-stratified nodule characteristics. 

2. Expert Feedback Integration: Allows paediatric radiologists to annotate misclassified cases and create "error 

embeddings." 

3. Adaptive Learning Strategies: 

a) Age-stratified focal loss for challenging cases. 

b) Hard negative mining to handle age-specific mimics. 

c) Feature emphasis regularization guided by radiologist feedback. 

d) Developmentally calibrated model adjustments. 

3.6 Clinical Integration Interface 

The interface facilitates seamless clinical adoption with features such as: 

1. Layered Visualization: Presents details suitable for specialists and parents. 

2. Comparative Case Retrieval: Matches diagnosed nodules with age-appropriate examples. 

3. Interactive Exploration: Enables radiologists to query feature contributions. 

4. Feedback Mechanism: Collects insights for iterative improvements. 
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5. Parent Education Module: Provides simplified explanations for shared decision-making. 

4. EXPERIMENTAL RESULTS 

4.1 Dataset and Experimental Setup 

We utilized four paediatric thyroid ultrasound datasets comprising 3,182 total images from patients aged 0-18 years: 

1. Paediatric Digital Database of Thyroid Imaging (PDDTI): 425 images (138 malignant, 287 benign) 

2. PedThyro-SCUI: 893 images (231 malignant, 662 benign) 

3. Paediatric TUD (P-TUD): 854 images (257 malignant, 597 benign) 

4. Multi-Institutional Paediatric Thyroid Dataset (MIPTD): 1,010 images (323 malignant, 687 benign) 

To address the challenge of limited paediatric data, we implemented: 

1. Transfer learning from adult thyroid models with paediatric fine-tuning 

2. Extensive data augmentation techniques including rotation, scaling, and elastic deformations 

3. Age-stratified training and evaluation (0-5 years, 6-12 years, 13-18 years) 

Comparison baselines included ResNet-50, DenseNet-121, EfficientNet-B3, and SOTA Thyroid-CNN, all trained using 

identical parameters and data splits. 

We conducted a paediatric thyroid imaging survey among 52 paediatric radiologists from 18 institutions to identify key 

challenges in paediatric thyroid nodule diagnosis. The survey revealed that 87% of respondents found paediatric thyroid 

nodules more challenging to evaluate than adult nodules, with 92% citing concerns about long-term consequences of both 

over-diagnosis and missed malignancies. Figures-3 to 7 shows the comparison of performance metrics in different aspects. 

4.2 Classification Performance 

Model Accuracy (%) Sensitivity (%) Specificity (%) F1-Score AUC-ROC 

ResNet-50 87.3 ± 1.2 88.1 ± 1.5 86.8 ± 1.3 0.842 0.927 

DenseNet-121 88.5 ± 1.0 89.7 ± 1.3 87.6 ± 1.1 0.861 0.938 

EfficientNet-B3 89.2 ± 0.9 90.8 ± 1.2 88.1 ± 0.9 0.874 0.944 

SOTA Thyroid-CNN 90.5 ± 0.7 91.9 ± 1.0 89.4 ± 0.8 0.889 0.953 

TI-PedThyroNet (Ours) 92.8 ± 0.5 94.3 ± 0.8 91.6 ± 0.6 0.913 0.968 

 

The above table shows, the TI-PedThyroNet achieved superior performance across all metrics, with statistically significant 

improvements (p < 0.05) over the best baseline model. Analysis by age group revealed higher performance in the 13–18-

year group (accuracy 94.1%) compared to the 0–5-year group (accuracy 90.2%), reflecting the challenges in imaging very 

young children. Improvements were most pronounced in nodules with mild hypo echogenicity and smooth margins, features 

often challenging to interpret in paediatric patients. 

 

Figure-3a: Comparison of Classification Performance Metrics 
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Figure-3b: Comparison of Classification Performance Metrics 

4.3 Interpretability Evaluation 

4.3.1 Quantitative Interpretability Metrics 

Method Faithfulness Score Localization Score Stability Score 

Grad-CAM 0.81 ± 0.05 0.73 ± 0.07 0.86 ± 0.04 

Integrated Gradients 0.84 ± 0.04 0.77 ± 0.06 0.83 ± 0.05 

SHAP 0.88 ± 0.03 0.80 ± 0.05 0.80 ± 0.06 

TI-PedThyroNet (Combined) 0.90 ± 0.02 0.82 ± 0.04 0.88 ± 0.03 

 

The above table shows, the combined approach achieved superior performance across all metrics, demonstrating the benefit 

of integrating complementary explanations for paediatric thyroid imaging. Age-stratified analysis showed higher 

interpretability scores in adolescents (13-18 years) compared to younger children, consistent with the higher image quality 

typically achievable in cooperative older patients. 

 

Figure-4: Comparison of Interpretability Metrics 

4.3.2 Paediatric Radiologist Assessment 

Fifteen paediatric radiologists assessed 80 randomly selected test cases on a 5-point Likert scale across four dimensions: 

clarity, relevance, consistency, and utility. TI-PedThyroNet received significantly higher ratings across all dimensions (mean 

improvement 1.4 points, p < 0.01) compared to baseline approaches. Junior paediatric radiologists reported greater benefit, 

suggesting the system's potential as an educational tool in paediatric radiology training. 

Qualitative feedback highlighted the value of age-specific feature highlighting and comparative case retrieval, with one 
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radiologist noting: "The system's ability to show similar cases from age-matched patients is particularly helpful for rare 

paediatric presentations." 

4.4 Uncertainty Quantification Results 

4.4.1 Calibration Assessment 

TI-PedThyroNet's dual uncertainty approach demonstrated superior calibration (Expected Calibration Error = 0.042) 

compared to deterministic baselines (ECE = 0.135) and single uncertainty methods (MC-Dropout ECE = 0.068, EDL ECE 

= 0.061). Age-stratified analysis revealed better calibration in adolescents (ECE = 0.037) compared to young children (ECE 

= 0.053). 

4.4.2 Selective Classification Performance 

Retained Percentage Baseline (SoftMax) MC-Dropout EDL TI-PedThyroNet (Dual) 

100% (All cases) 90.5% 90.5% 90.5% 92.8% 

90% 92.1% 94.3% 94.7% 96.2% 

80% 93.6% 96.1% 96.5% 97.9% 

70% 94.7% 97.3% 97.6% 98.7% 

 

The above table shows, at 80% retention (equivalent to referring 20% of cases for further assessment), TI-PedThyroNet 

achieved 97.9% accuracy on retained cases. This approach is particularly valuable in paediatric settings were reducing 

unnecessary biopsies while maintaining high sensitivity is crucial for minimizing interventions in children. 

 

Figure-5a: Comparison of Selective Classification Performance Metrics 

 

Figure-5b: Comparison of Selective Classification Performance Metrics 
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4.4.3 Out-of-Distribution Detection 

TI-PedThyroNet showed excellent discrimination between in-distribution and out-of-distribution samples (AUROC = 

0.957), significantly outperforming baseline approaches (AUROC = 0.832). This capability is especially important for 

detecting rare paediatric thyroid pathologies not well represented in training data. 

4.5 Error Analysis and Refinement Results 

4.5.1 Misclassification Patterns 

Analysis revealed key age-specific error patterns: 

1. Very small nodules (<5mm) in young children (27% of errors) 

2. Post-inflammatory changes mimicking nodules (21%) 

3. Thyroid developmental variations (18%) 

4. Technical factors related to child cooperation (24%) 

5. Rare paediatric-specific pathologies (10%) 

4.5.2 Adaptive Refinement Impact 

Model Version 
Overall 

Accuracy (%) 

Small Nodule 

Accuracy (%) 

Post-inflammatory 

Accuracy (%) 

Developmental Variation 

Accuracy (%) 

Initial Model 89.3 84.1 80.7 82.5 

Age-stratified 

Focal Loss 
90.5 86.2 82.3 84.1 

Hard Negative 

Mining 
91.7 88.6 85.4 86.7 

Feature Emphasis 92.8 90.3 87.9 89.2 

 

The above table shows, the  refinements yielded substantial improvements in previously challenging cases, with the most 

significant gains in post-inflammatory changes (+7.2%) and developmental variations (+6.7%), areas particularly 

challenging in paediatric thyroid imaging. 

 

Figure-6: Comparison of Adaptive Refinement Impact 

 

4.6 Clinical Validation Results 

4.6.1 Diagnostic Performance with AI Assistance 



Mohsin Khan A, Dr. V K Sharma 
 

pg. 418 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 25s 

 

Condition Accuracy (%) Sensitivity (%) Specificity (%) Time per Case (s) 

Unassisted 85.7 ± 3.6 84.2 ± 4.3 87.3 ± 3.9 46.8 ± 8.1 

Black-box AI 88.3 ± 3.1 87.9 ± 3.8 89.0 ± 3.5 39.5 ± 7.2 

TI-PedThyroNet 91.9 ± 2.4 92.7 ± 3.0 91.2 ± 2.7 30.7 ± 5.6 

 

Figure-7: Comparison of Diagnostic Performance Metrics with AI Assistance 

The above table shows, the TI-PedThyroNet assistance provided significant improvements over both unassisted diagnosis 

(+6.2%, p<0.001) and black-box AI assistance (+3.6%, p<0.01), with most benefit for radiologists with less paediatric thyroid 

experience (9.8% accuracy improvement). 

4.6.2 Trust and Confidence Metrics 

TI-PedThyroNet achieved significantly higher trust scores compared to black-box approaches (mean improvement 2.1 points 

on a 7-point scale, p<0.001). Diagnostic confidence increased by 31% compared to unassisted reading and 17% compared 

to black-box AI assistance, with well-calibrated confidence strongly correlated with accuracy (r=0.85 vs. r=0.64 for black-

box). 

In the paediatric radiologist survey, 94% reported that they would feel more comfortable using an AI system that provides 

explanations specifically adapted to paediatric thyroid characteristics. 

4.6.3 Decision-Making Influence 

Metric Black-box AI TI-PedThyroNet 

Rate of changed decisions 16.8% 26.3% 

Appropriate changes (improved) 61.7% 84.9% 

Inappropriate changes (worsened) 38.3% 15.1% 

Net decision improvement +3.9% +18.3% 

 

The above table shows, the Paediatric radiologists were more likely to change their initial impression with TI-PedThyroNet, 

and these changes were significantly more likely to be appropriate, resulting in a net decision improvement over four times 

greater than with black-box assistance. 

4.6.4 Workflow Integration Assessment 

TI-PedThyroNet reduced average interpretation time by 34% compared to unassisted reading and 22% compared to black-

box AI assistance. Paediatric radiologists rated TI-PedThyroNet's workflow integration significantly more favourably (mean 

rating 4.5 vs. 3.2 on a 5-point scale, p<0.01). 

The parent education module was rated highly (4.7/5) for its ability to communicate findings to families in comprehensible 

terms while maintaining accuracy, with 92% of participating radiologists indicating it would improve the consent process 

for further diagnostic procedures. 

 



Mohsin Khan A, Dr. V K Sharma 
 

pg. 419 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 25s 

 

4.7 Comparative Analysis with State-of-the-Art 

Method 
Accuracy 

(%) 

AUC-

ROC 

Interpretability 

Support 

Uncertainty 

Quantification 

Clinical 

Validation 

Paediatric 

Specific 

Wang et al. [9] 92.1* 0.953* Grad-CAM only None Limited No 

Zhang et al. [21] 91.8* 0.947* None None None No 

Li et al. [18] 90.6* 0.935* SHAP only 
Monte Carlo 

Dropout 
None No 

Park et al. [54] 91.2* 0.942* LRP only Ensemble Limited No 

Mitani et al. 

[55] 
89.5 0.921 None None None Yes 

Vergara et al. 

[56] 
88.7 0.913 Grad-CAM only None Limited Yes 

TI-

PedThyroNet 

(Ours) 

92.8 0.968 Multiple integrated Dual approach Comprehensive Yes 

 

*Performance on adult populations; direct comparison with paediatric results should be made cautiously. 

The above table shows, the TI-PedThyroNet achieves state-of-the-art performance for paediatric thyroid nodule classification 

while providing comprehensive interpretability, reliable uncertainty quantification, and thorough clinical validation specific 

to paediatric applications. 

5. CONCLUSION 

5.1 Summary of Contributions 

This research addressed the critical challenge of enhancing interpretability and reliability in neural network-based thyroid 

nodule diagnosis specifically for paediatric populations. Key contributions include: 

1. Development of TI-PedThyroNet with state-of-the-art diagnostic performance while enabling granular explanations 

tailored to paediatric thyroid characteristics. 

2. Implementation of a complementary interpretability framework integrating multiple explanation methods calibrated 

for paediatric applications. 

3. Introduction of a dual uncertainty quantification system providing reliable confidence estimates for the unique 

spectrum of paediatric thyroid conditions. 

4. Development of an adaptive refinement methodology based on structured error analysis of paediatric-specific 

challenges. 

5. Design and evaluation of a clinical integration pipeline significantly improving paediatric radiologists' performance, 

confidence, and efficiency. 

6. Creation of the largest annotated paediatric thyroid ultrasound dataset to date. 

5.2 Clinical Implications 

Key clinical implications for paediatric practice include: 

1. Enhanced diagnostic accuracy across all paediatric radiologist experiences levels. 

2. Appropriate trust calibration leading to more appropriate decision changes, particularly important given the higher 

stakes of both false positives and false negatives in children. 

3. Significant workflow efficiency improvements without sacrificing accuracy. 

4. Educational value for training in paediatric thyroid imaging, an area with limited specialist availability. 

5. Improved parent-physician communication through accessible, age-appropriate visualizations. 

6. Potential reduction in unnecessary biopsies and interventions in paediatric patients. 
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5.3 Limitations 

Despite promising results, limitations include: 

1. Dataset composition may not fully represent global population diversity or extremely rare paediatric thyroid 

conditions. 

2. Variations in ultrasound equipment and techniques affect generalizability, particularly challenging in paediatric 

imaging where equipment settings often differ. 

3. Explanations provide correlative rather than causative insights. 

4. Clinical validation was conducted in controlled environments rather than actual workflow. 

5. Limited inclusion of children under 3 years old in the training dataset. 

6. Increased computational requirements may limit deployment in resource-constrained paediatric settings. 

5.4 Future Directions 

Promising future directions include: 

1. Multimodal integration of clinical history, laboratory results (particularly thyroid function tests), and cytopathology. 

2. Longitudinal analysis to track temporal changes in paediatric thyroid nodules through developmental stages. 

3. Explainable risk stratification aligned with paediatric-specific clinical guidelines. 

4. Federated learning implementation for privacy-preserving multi-institutional collaboration to expand the paediatric 

dataset. 

5. Prospective clinical trials assessing impact on long-term patient outcomes. 

6. Automated paediatric-specific report generation incorporating key findings and recommendations. 

7. Integration with electronic health records to incorporate genetic risk factors relevant to paediatric thyroid cancer. 

8. Adaptation to other paediatric imaging domains requiring interpretability and reliability. 

This research demonstrates that enhancing interpretability and reliability in AI-based paediatric thyroid nodule diagnosis is 

not only technically feasible but clinically valuable, successfully addressing key barriers to AI adoption in paediatric clinical 

practice. 
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