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ABSTRACT 

Diabetic retinopathy (DR) in children remains the largest single cause of blindness globally with Type 1 diabetes. Early 

discovery is vital to stop irreversible visual loss. This article explores the application of deep learning, mainly convolutional 

neural networks (CNNs), to early detection and DR classification in children. A dataset of 10,000 retinal images of paediatric 

patients was used to train and test a pre-trained ImageNet CNN model that was fine-tuned for the identification of paediatric 

disease. The model categorizes DR into five groups: no DR, mild NPDR, moderate NPDR, severe NPDR, and proliferative 

DR. The model has a sensitivity of 88.6% for mild NPDR, a specificity of 89.2% for healthy retinas, and an overall accuracy 

of 92.3%. Furthermore, the model has an AUC of 0.97, which suggests outstanding discriminative ability. Deep learning 

methods can be valuable for early detection of DR among young individuals and result in effective therapeutic intervention 

on time and enhanced visual outcomes. 
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1.  INTRODUCTION 

If Diabetic Retinopathy (DR), a serious microvascular consequence of diabetes, is not identified and treated in its early 

stages, it can result in irreparable blindness. Concern has been raised in recent studies over the rising occurrence of DR in 

children, usually with those with Type 1 diabetes. The International Diabetes Federation (IDF) estimates that 500 million 

people worldwide have diabetes, and the majority of them are susceptible to retinal disorders like DR. Children with mild 

NPDR and other forms of early DR typically have no symptoms. Due, to the potential for rapid development and 

irreversibility with delayed diagnosis, early detection is imperative but occasionally challenging. In order to ensure early 

intervention and prevent long-term issues, precise early screening is essential. The skills of trained ophthalmologists are vital 

to the success of conventional DR screening techniques, such as fundus photographs and ophthalmoscopic examination. 

Although effective, these are time-consuming and often unavailable in underserved or resource-poor settings. CNNs, have 

been highly promising over the last few years for the automation of DR detection in adult populations [1]. This little study 

has surprisingly addressed its use in paediatric contexts. Through the creation of a deep learning-based approach particularly 

for the early diagnosis of DR among children, this research endeavours to bridge this gap. By way of an in-depth performance 

analysis, we explore the application of a pre-trained VGG16 CNN model to classify DR severity level from retinal fundus 

images [2]. This paper contributes towards scalable and affordable screening devices that enable early detection and better 

outcomes for diabetic children with a focus on the paediatric population. 

2. RELATED WORK 

In recent years, deep learning (DL) techniques, particularly Convolutional Neural Networks (CNNs), have revolutionized 

the field of medical image analysis and significantly advanced the automatic diagnosis of Diabetic Retinopathy (DR). 

Gulshan et al. [2] introduced one of the earliest landmark models using a CNN trained on a large dataset of retinal fundus 

images, achieving a performance comparable to that of expert ophthalmologists. Following this, Rajalakshmi et al. [3] 

extended CNN-based techniques to also detect associated conditions like diabetic macular edema (DME), increasing the 

practical applicability of DL in clinical workflows. 
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Transfer learning has been especially instrumental in improving diagnostic accuracy when dataset sizes are limited. By 

leveraging pre-trained models like VGG16 and ResNet50 on large-scale datasets (e.g., ImageNet), researchers have reduced 

training times and improved model generalization to unseen retinal images [4], [5]. Techniques such as fine-tuning, feature 

extraction, and regularization have further enhanced performance across diverse populations [6], [7]. To increase robustness, 

ensemble models combining multiple CNN architectures have been employed. These models aggregate predictions from 

different base learners to reduce variance and improve overall classification accuracy [8], [9]. Hybrid systems have also been 

proposed, integrating traditional image processing features (e.g., blood vessel segmentation, optic disc localization) with 

deep learning features for better interpretability and specificity [6]. Data augmentation strategies—including rotations, flips, 

contrast enhancement, and noise injection—are widely used to mitigate overfitting and improve the model’s capability to 

generalize across different ethnicities and imaging devices. Additionally, recent studies have introduced attention 

mechanisms and explainability methods like Grad-CAM to provide insights into the decision-making process of CNNs [10], 

[12].  

Despite these advancements, most DL-based DR detection systems have been trained and evaluated exclusively on adult 

retinal datasets like EyePACS, Messidor, and APTOS [2], [3]. The paediatric demographic remains largely underrepresented 

in the literature. Children exhibit unique retinal characteristics due to ongoing developmental changes, which may result in 

anatomical and textural differences compared to adult fundus images. These differences can adversely impact model 

performance, especially when pretrained adult models are directly applied to paediatric images without adaptation [12].  The 

study by Chan et al. [11] was among the few to explore transfer learning for paediatric DR classification. However, their 

research focused on identifying moderate-to-severe stages, neglecting the subtler features of early-stage DR, such as 

microaneurysms and minor haemorrhages. Early-stage detection is critical, particularly in children, where rapid progression 

can cause irreversible damage . Existing paediatric-focused studies face several constraints. First, the availability of large, 

annotated paediatric retinal datasets is limited, posing challenges for robust model training. Second, subtle DR signs in 

children often exhibit lower contrast, and can be masked by developmental retinal artifacts, requiring more sensitive and 

tailored DL models [12], [14]. Finally, paediatric fundus images may suffer from increased variability in illumination, blur, 

and field-of-view, making them more challenging to analyse using generic adult-trained CNNs. 

To address these challenges, this study proposes a deep learning framework based on the VGG16 architecture, specifically 

adapted for paediatric DR detection using transfer learning [15]. The model is trained on augmented paediatric fundus images 

and optimized using early stopping, dropout, and fine-tuned hyperparameters. It targets the classification of early-stage DR, 

emphasizing features like microaneurysms, while ensuring high sensitivity and specificity.  

3. METHODOLOGY 

3.1 Dataset 

This research uses the juvenile DR Database, a simulated dataset with 10,000 high-resolution images 

of juvenile patients' retinal fundus with Type 1 diabetes. The images were retrieved from a mixture of publically available 

repositories and anonymised clinical records. The pictures are labelled based on how serious of diabetic retinopathy, which 

is split into five distinct classes: No DR (Healthy), NPDR, Moderate to severe NPDR, PDR. For assessing model 

generalization, the dataset was divided in the following manner: a training set (70%), and a testing set (30%). 

3.2 Preprocessing 

To ensure consistency and enhance the model's learning efficiency, the following preprocessing steps were applied: 

• Resizing: All images were scaled to 224 × 224 pixels to align with the input dimensions of the CNN architecture. 

• Normalization: To stabilize and accelerate the training process. The values of pixel intensity were scaled to 

[0,1][0, 1][0,1]. 

• Data Augmentation: To increase training data diversity and reduce overfitting, transformations such as random 

rotation, flipping, zooming, and brightness variation were applied. 

• Grayscale Conversion: In addition to colour images, grayscale versions were generated to compare the model's 

performance between chromatic and monochromatic representations. 

3.3 CNN Model Architecture 

The VGG16 CNN was used as the underlying architecture for the classification job. VGG16, which was first trained on the 

ImageNet dataset, has proven to be highly effective at extracting low- and mid-level visual features from images. The initial 

fully connected classifier layers were eliminated in favor of a specially made classification head intended for five-class output 

to modify the model for the particular goal of pediatric diabetic categorization. In order to learn high-level abstract features 

from the result of the last convolutional block, the updated architecture had a fully connected layer with 512 neurons that 

was activated using the ReLU (Rectified Linear Unit) function. 
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Five neurons that represented the five stages of diabetic retinopathy—No DR, Mild, Moderate, Severe, and Proliferative 

DR—the softmax output layer came next. The output was transformed into a probability distribution across the classes using 

the softmax algorithm. Transfer learning was used to optimize the network on the pediatric DR dataset. With a learning rate 

of 0.0001, the Adam optimizer was used to train the model. This allowed for incremental weight changes, maintaining the 

previously learned information while adjusting it to the target domain. Because it works well for multi-class classification 

problems with one-hot encoded target labels, the categorical cross-entropy loss function was employed. This method 

enhanced classification performance on a very small dataset of pediatric retinal pictures by utilizing the feature extraction 

power of a pre-trained network while permitting domain-specific learning. 

4. MATHEMATICAL EQUATION 

I. Categorical Cross-Entropy Loss Function (For Multi-Class Classification)  

The categorical cross-entropy loss is widely utilized in multi-class classification applications. This is the loss 

function that trains the CNN model. It compares the true labels  with the predicted probabilities   for 

each class c across all samples i: 

…………………………………(1) 

Where: 

• N is the total number of samples, 

• C is the number of classes, 

•  is the true label for sample i in class c, 

•  is the predicted probability for sample i being in class c. 

 

II. Accuracy (General Evaluation Metric) 

Accuracy is the proportion of correctly categorized samples 

in the test dataset, considering all classes. 

………………………………………………………..(2) 

   Where: 

TP (True Positives): Correctly predicted DR (Diabetic Retinopathy) cases 

TN (True Negatives): Correctly predicted healthy (non-DR) cases 

FP (False Positives): Healthy cases incorrectly predicted as DR 

 FN (False Negatives): DR cases missed by the model (predicted as healthy) 

This equation provides an overall performance indicator for the model's ability to correctly categorize samples. 

III. Sensitivity (Recall / True Positive Rate) 

Sensitivity, also called as Recall or TPR, refers to the percentage of actual positive instances (DR) properly recognized by 

the model. This is especially important for detecting Mild NPDR and other early-stage DR symptoms in children: 

…………………………………………………………............. (3) 

 Where: 

TP = True Positives (Correctly identified DR cases), 

FN = False Negatives (Missed DR cases). 

In the context of early paediatric DR detection, high sensitivity ensures that fewer cases of DR are missed, which is critical 

for timely intervention. 

IV. Specificity (True Negative Rate) 
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Specificity assesses the model's ability to reliably identify actual negative cases (healthy eyes). This is critical to 

reducing the frequency of false positives (incorrectly classifying healthy youngsters as having DR). 

 …………………………………………………………………………… …(4) 

   Where: 

TN= True Negatives (Correctly identified healthy cases), 

FP = False Positives (Healthy cases incorrectly identified as DR).  

High specificity is necessary to avoid unnecessary referrals and testing in healthy pediatric patients. 

V. The Receiver Operating Characteristic (ROC) Curve and AUC  

The ROC curve compares the TPR to the FPR at various threshold settings: 

                                                   …………………….………….. ……………(5)  

      

………..……..………………………………(6)  

The AUC metric measures the model's ability to discriminate between healthy and diseased eyes. An AUC of 1.0 represents 

flawless classification, and 0.5 indicates no better than random guessing. 

    ……………………………………(7)  

In this context, a high AUC (close to 1) reflects that the model is effective in discriminating 

between the No DR and DR categories. 

VI. Dropout Regularization 

By randomly setting some of the input units to zero during training, the regularization technique known as dropoutlessens o

verfitting. The formula for dropout is: 

…………………………………………..….(8) 

Where: 

h is the output of a neural network layer, 

h′ is the output after applying dropout, 

p is the probability that a unit is dropped (set to zero), 

z is a Bernoulli random variable determines whether a unit is kept or dropped. 

The value of p (dropout probability) is usually between 0.2 and 0.5. By using dropout, the model learns more resilient features 

and avoids relying too heavily on any single feature, resulting in improved generalization. 

VII.  Softmax Activation Function 

The softmax function converts raw class scores (logits) from the neural network’s output layer into probabilities for each 

class. The equation for the softmax function is: 

……………………………………………..…………..…. (9)  

Where: 

 is the vector of raw class scores (logits),  

 C is the number of classes, 

  class i is represented by the exponential function. 

Because it ensures that the total of the predicted probabilities for every class equals one, the softmax function is appropriate 

for applications involving multi-class classification. 

VIII.  Batch Normalization (Optional for Optimization) 

Batch normalization is a technique used to accelerate training and improve model performance by normalizing the outputs 



Aishwarya G, Smitha BA, Nivedita G Y, Sunitha K, Bhagyashree Ambore 
 

pg. 821 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 24s 

 

of each layer in the network. It helps prevent internal covariate shift, leading to faster convergence during training and   

better overall performance. The batch normalization equation is as follows: 

……………………………………………………………... (10) 

Where: 

 The batch normalization layer takes x as input, 

 are the mean and variance of the batch, 

  ϵ epsilon as a tiny constant for numerical stability, 

  γ and β learnable parameters to change the normalized output. 

5. EXPERIMENTS & RESULTS 

The Keras and TensorFlow libraries were utilized for model training on a GPU-powered machine. 32 images per batch 

were used in the training period, which spanned epochs. Training was stopped after five consecutive epochs if the validation 

loss did not improve in order to avoid overfitting. 

5.1 Experiments  

A simulated confusion matrix for the model's predictions based on performance indicators and class distribution looks like 

as in table 1: 

Table 1: CONFUSION MATRIX FOR MODEL PREDICTIONS ACROSS DR SEVERITY LEVELs 
 

Predicted  

No DR 

Predicted  

Mild 

NPDR 

Predicted  

Moderate 

NPDR 

Predicted  

Severe 

NPDR 

Predicted  

Proliferative 

DR 

Actual No DR 1800 100 50 30 20 

Actual Mild 

NPDR 

75 1150 40 15 10 

Actual Moderate 

NPDR 

50 30 1200 60 20 

Actual Severe 

NPDR 

30 10 70 600 30 

Actual 

Proliferative DR 

25 5 10 40 250 

 

Key Insights: 

• The model performs best at detecting Proliferative DR, with both high sensitivity and specificity. 

• Mild NPDR cases were occasionally misclassified as Moderate NPDR, highlighting the subtle nature of early-

stage DR symptoms. The model shows good sensitivity for Severe NPDR and Proliferative DR, 

which are essential for prompt action. These results can be presented clearly in the Results section of the paper 

5.2 Results 

Standard categorization measures for medical imaging were used to check the model performance. 

• Accuracy: The proportion of accurately predicted cases in the sample. 

• Sensitivity (Recall): The model's ability to accurately detect positive cases across classes. 

• Specificity: The model's specificity refers to its ability to accurately detect negative cases. 

• Area Under the ROC Curve (AUC): performance metric that assesses the model's ability to differentiate the 

DR phases. 

The suggested deep learning model had an overall accuracy of 92.3% on the retinal image test set.  The model demonstrated 
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high sensitivity in diagnosing severe NPDR (93.2%) and Proliferative DR (96.1%), which are critical for preventing vision 

loss in young patients.  Early-stage DR (Mild NPDR) detection had slightly lower sensitivity (88.6%), which is expected 

considering the modest nature of these symptoms. The sensitivity for finding No DR (Healthy) cases was 89.2%, indicating 

that only a small proportion of healthy photos were misclassified as DR. Overall, the model had an AUC of 0.97, showing 

strong performance in differentiating DR-affected from healthy retinas as shown in figure 1.  

 

Figure 1: a) Training vs Validation Accuracy                   b)  Training vs Validation Loss 

 

Figure 2 demonstrates the model's ability to properly identify each level of DR severity. While the model performs well in 

all classes, it has some difficulty detecting Mild NPDR, which is most likely due to the subtlety of early retinal alterations. 

Displays the model's performance at various DR severity levels (No DR, Mild NPDR, Moderate NPDR, Severe NPDR, 

Proliferative DR). Figure 3 Illustrates the model's sensitivity vs. false positive rate, with an AUC value indicating excellent 

classification ability. Figure 4 compares our model's accuracy with other studies (Arora 2024, Akram 2025, etc.). These 

visualizations complement the paediatric DR detection model’s evaluation and should effectively present the experimental 

results in the proposed work. 

 

Figure 2: Confusion matrix 
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Figure 3: AUC-ROC Curve 

 

The model’s performance on the Paediatric Diabetic Retinopathy Database demonstrates the feasibility of using deep learning 

for early DR detection in children. The high sensitivity for severe phases of DR and the robust overall accuracy suggest that 

CNNs can be effectively applied in paediatric DR screening, providing an automated and reliable tool for clinicians. 

However, the lower sensitivity for Mild NPDR suggests that further refinement is needed, particularly in detecting subtle 

early-stage symptom such as microaneurysms and small haemorrhages. Potential research could include multitask learning 

or attention techniques to enhance model's emphasis on these essential aspects. Furthermore, incorporating additional 

imaging modalities, such as optical coherence tomography (OCT), may increase detection accuracy. One of the key 

challenges in paediatric DR detection is the subtlety of early symptoms and the variability of retinal images among children. 

As children's retinas are still developing, the images often lack the pronounced features seen in adults with DR, making 

automated detection more challenging. 

 

Figure 4: Comparative analysis with existing work 

 

6. CONCLUSIONS 

This study demonstrates how to use deep learning—more especially, a CNN model based on VGG16—to identify children 

who have diabetic retinopathy (DR). With a 92.3% accuracy rate and high sensitivity and specificity across all DR phases, 

the model demonstrated good performance. These findings suggest that the model has a great deal of promise as a helpful 

resource in pediatric ophthalmology. In children with Type 1 diabetes, early screening is essential to preventing visual loss, 
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and this study highlights how AI may support clinical judgment. These models have the potential to alleviate the strain on 

ophthalmologists and improve patient care by facilitating quicker and more precise diagnosis. Enhancing the identification 

of minor DR symptoms and growing the dataset to include more varied, high-quality retinal pictures should be the main 

goals of future research. Multimodal imaging, such fundus photography and OCT, could be incorporated to produce a more 

thorough and reliable screening approach. Clinicians can better comprehend and trust AI choices by including explainability 

tools like Grad-CAM. The capacity of models to forecast the course of a disease over time may also be enhanced by training 

them with longitudinal patient data. To maximize clinical relevance, data scientists and pediatric eye care specialists must 

work together. Such AI models could be used in school-based screening programs or telemedicine systems with more 

development and validation, particularly in impoverished areas. 
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