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ABSTRACT 

This study presents a comprehensive framework for enhancing tennis performance by optimizing biomechanical postures 

during specific shots, utilizing advanced video analysis and stabilization techniques using 2D and 3D. Recurrent Neural 

Networks (RNNs) are employed in conjunction with pose estimation algorithms to accurately extract skeletal key points 

representing the number of key joints. Joint angles θj are computed using the vector dot product formula Dong et al [1]: 
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⁄ ) where u⃗ and v⃗ are vectors formed by adjacent key points.  

The research systematically addresses challenges inherent to video-based analysis, including motion artifacts, variable 

lighting conditions, low-resolution imaging, suboptimal signal-to-noise ratios (SNR), and limited frame rates. High-SNR 

imaging devices, optimized camera calibration, and daylight capture protocols are employed to mitigate these issues. 

Computational analysis is performed on cloud platforms, leveraging scalable processing power while maintaining strict data 

confidentiality. 

Key contributions include the integration of pose-detection key points into spatial frame coordinate systems for advanced 

kinematic analysis of player movements. The skeletal structure is modelled using part affinity fields (PAFs), represented as: 

where w(p) is the weighting function, and Sc(p) represents the score map for 

a candidate connection. TensorFlow Lite facilitates real-time skeletal visualization, providing immediate feedback on 

biomechanical alignment. Zhe Cao et al [2]. 

In this study, we are able to create both 2D and 3D video analysis and compare them to suggest best use based on scenarios. 

The proposed methodology overcomes the limitations of traditional video analysis by integrating state-of-the-art 

computational algorithms, including Convolutional Neural Networks (CNNs), with tailored hardware solutions. This robust 

approach highlights the critical importance of accurate joint angle computation and motion pattern analysis in refining tennis 

biomechanics and advancing performance optimization. 
 

Keywords: Tennis player pose analysis, Joint accuracy, Frame of force, Frame of stability, 3D image generation, evaluating 

player performance. 
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1. INTRODUCTION 

In the realm of elite sports performance, tennis stands out for its rigorous demands on precision, agility, and biomechanical 

accuracy. The advancement of player training methodologies increasingly hinges on the integration of computational 

technologies, particularly those enabling the simulation and optimization of athlete posture and motion dynamics. This 

research presents a novel framework for the analysis and enhancement of tennis player stances through both 2D and 3D 

video analytics using mobile device cameras based on work done by Kurose et al [3]. The approach democratizes access to 

advanced motion analysis by leveraging ubiquitous, low-cost imaging devices in place of traditional laboratory-based motion 

capture systems. 

The study employs state-of-the-art computer vision techniques, including pose estimation and Recurrent Neural Networks 

(RNNs), to extract and model skeletal keypoints from dynamic player movements. These keypoints serve as the basis for 

calculating joint angles and evaluating the biomechanical effectiveness of various stances. Comparative evaluations between 

2D and 3D analysis modalities are conducted to determine context-specific applicability and accuracy. 

Furthermore, unsupervised learning algorithms—such as k-means clustering—are utilized to classify and interpret stance 

variations, enabling the identification of movement patterns correlated with performance optimization and injury prevention. 

To mitigate the inherent limitations of mobile video input—such as fluctuating illumination, motion blur, and lower 

resolution—the methodology incorporates high signal-to-noise ratio (SNR) imaging and advanced video stabilization 

techniques. 

This fusion of mobile imaging technology, machine learning, and biomechanical analysis not only enhances the accessibility 

of high-fidelity training tools but also extends the analytical capabilities available to coaches and athletes. By moving beyond 

traditional coaching paradigms, this study sets a precedent for the integration of mobile-based, AI-driven biomechanics in 

sports performance enhancement. 

2. PERSPECTIVE VARIATION AND EFFECTS ON VISION ANALYTICS 

In sports analytics, the perspective from which data is captured plays a crucial role in determining the accuracy and reliability 

of the analysis. This is particularly evident in the context of tennis, where the choice of camera angle and positioning can 

significantly impact the quality of motion capture and subsequent data interpretation. This is observed by Shin et al. [8]. 

When capturing motion from a single, fixed perspective—specifically, a court-level view from behind the player—several 

unique challenges and advantages arise. This setup primarily affects the way joint movements are recorded, the visibility of 

specific body parts, and the overall quality of the extracted data. 

Impact on Joint and Pose Estimation 

⚫ Visibility of Joints and Occlusion, like the observations by Sun et al [9]: 

- Back View Characteristics: The back view captures the posterior aspects of the player, including the back, 

shoulders, arms, and legs. While this perspective is ideal for analysing the player’s movement along the court’s 

depth axis, it may not clearly capture the front-facing joints, such as the chest, knees, and elbows, especially if the 

player’s body or racket obscures them. 

- Occlusion Challenges: Joints like the elbows and wrists can be occluded by the body or racket, leading to partial 

or missing data points. This can pose difficulties for pose estimation algorithms, which rely on clear visibility of 

all key points to provide accurate joint coordinates. 

⚫ Accuracy of Angle Calculation, like the observations by Sun et al [9]: 

- Calculating angles such as shoulder and elbow flexion from a back view can be challenging. The depth information 

is limited, and even small deviations in the player’s orientation relative to the camera can significantly impact angle 

measurements. 

- Despite these challenges, the back view provides an excellent opportunity to measure the rotation of the torso and 

the alignment of the spine, which are critical for evaluating the biomechanical efficiency of various tennis strokes. 

Gholami et al [12]. 

3D Reconstruction Technique: 

We employed Mediapipe, a sophisticated computer vision model, to capture the joint coordinates of the human body in 3D 

space. Mediapipe provides coordinates along three axes: X, Y, and Z, which allows for precise inference of joint locations. 

Although the Z-axis calculation is still in its experimental phase and is optimized for cameras equipped with LiDAR 

technology, it has demonstrated satisfactory results with standard cameras as well as observed by Shotton et al [14]. 

To validate the model’s output and develop a robust calculation approach, we utilized Blender—an open-source 3D software. 

Blender enabled us to visualize the joint coordinates from three different perspectives, providing a comprehensive view of 
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the data. This visualization was crucial for assessing the accuracy of the captured data and refining our technique. 

By leveraging Blender’s powerful visualization capabilities, we were able to identify any discrepancies in the joint 

coordinates and make necessary adjustments to our calculation methods. This iterative process of visualization and 

refinement ensured that our 3D reconstruction technique was both accurate and reliable. Additionally, the use of Blender 

allowed us to experiment with different visualization angles and perspectives, further enhancing our understanding of the 

joint movements and improving the overall precision of our model. 

 

Fig 3.3: Snapshot of a shot played                       Fig 3.4: 3D reconstruction of the shot in Front-View 

perspective 

 

Fig 3.5: Side view perspective of the shot                                             Fig 3.6: Top-view perspective of the 

shot played. 
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3. FRAME OF FORCE AND FRAME OF STABILITY 

In the context of tennis biomechanics, we observed that the effectiveness of a player's shot relies heavily on two primary sets 

of joints: the Frame of Force and the Frame of Stability. These sets serve distinct roles in the execution of a shot, 

particularly for a right-handed player, and their coordination is crucial for achieving optimal performance. 

1. Frame of Force: Generating Power and Control 

For a right-handed player, the Frame of Force consists of the following joints: 

• Right Wrist, Elbow, and Shoulder: These joints are directly responsible for controlling the racket and delivering 

the shot. The shoulder provides the main source of power through its rotation, the elbow controls the angle and 

speed, and the wrist adjusts the final shot direction and spin. 

• Left Hip and Right Hip: The hips are pivotal in transferring force from the lower body to the upper body. The left 

hip acts as a counterbalance, while the right hip, in conjunction with the shoulder, facilitates torso rotation, which 

is crucial for generating force. 

• Right Knee and Right Ankle: These joints contribute to the lower body's stability and power. By pushing against 

the ground, they create a force vector that travels through the body to the racket. This "ground reaction force" is 

essential for powerful strokes and enables quick changes in direction after the shot. 

Biomechanical Functions as noted in the study by Manu et al [4]: 

• Force Generation: The Frame of Force joints work in unison to generate kinetic energy. The sequence begins with 

the legs, as the player pushes off the ground. This energy travels up through the hips and torso, culminating in the 

arm and racket. Effective coordination between these joints maximizes shot power and precision. 

• Body Rotation and Flexion: The hip joints play a crucial role in spine flexion and body rotation. The left hip 

provides a stabilizing effect, while the right hip rotates the torso, allowing the player to generate torque, which is 

transferred to the racket arm for powerful shots. 

2. Frame of Stability: Maintaining Balance and Readiness 

The Frame of Stability involves joints that counterbalance the force exerted during the shot, ensuring the player maintains 

a stable posture. For a right-handed player, the stability frame typically includes: 

• Left Wrist, Elbow, and Shoulder: While the right arm generates force, the left arm provides balance. This "non-

dominant" arm helps in maintaining the player's center of gravity and assists in stabilizing the body during and after 

the shot. 

• Left Knee and Left Ankle: These joints support the body's weight as the right leg exerts force. They prevent 

overextension and help absorb the impact, reducing the risk of injury and enabling a quick recovery to a neutral 

position. 

Biomechanical Functions as noted in the study by Manu et al [4]: 

• Maintaining Balance: The Frame of Stability joints counter the rotational forces generated by the Frame of Force, 

preventing the player from losing balance. This balance is essential not only for the current shot but also for 

transitioning efficiently to the next movement. 

• Recovery and Readiness: After executing a shot, the stability frame helps the player return to a balanced stance, 

preparing them for the next shot. This quick recovery is vital for maintaining a competitive edge, especially during 

fast-paced rallies. 

3. Individual Variations in Frames: 

It is important to note that the specific positioning and role of these frames can vary between players and shot types: 

• Player-Specific Differences: Each player has unique biomechanics, influenced by factors such as body type, 

strength, flexibility, and playing style. For example, some players may rely more on their lower body for force 

generation, while others might use their upper body more intensively. Mehta et al. [15]. 

• Shot-Specific Adjustments: Different shots require different frames. For instance, a serve may involve a more 

pronounced use of the shoulder and elbow in the Force Frame, while a backhand may shift the emphasis to the 

opposite hip and shoulder. Similarly, stability frames can shift based on shot complexity and player positioning. 

Mehta et al. [15]. 

4. Dynamic Interplay Between Frames 

• Force Transfer and Balance Coordination: Effective shot execution requires precise coordination between the 
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Frame of Force and the Frame of Stability. As force is generated and transferred through the body, the stability 

frame adjusts to maintain balance, ensuring that the player does not overextend or lose control as quoted in the study 

by Manu et al [5]. 

• Feedback Mechanism: Players constantly adjust their frames based on real-time feedback. If the stability frame 

detects imbalance, it can modify the force frame's movement to compensate, such as adjusting hip rotation or knee 

flexion as quoted in the study by Manu et al [5]. 

5. Implications for Training and Performance Enhancement 

• Targeted Training: Understanding these frames allows coaches to design exercises that strengthen specific joints 

and improve coordination. For example, plyometric exercises can enhance lower body force generation, while core 

stabilization drills can improve the stability frame’s effectiveness. 

• Injury Prevention: Proper coordination between the two frames reduces the risk of overuse injuries. By ensuring 

that the force frame's exertion is adequately supported by the stability frame, players can avoid undue strain on 

joints such as the shoulder or knee. 

4. CRITICAL ANGLES FOR THE FRAMES  

Critical angles are the specific angular measurements between joints that significantly impact a player’s ability to generate 

force and maintain balance during shot execution. These angles play a key role in defining both the Frame of Force and the 

Frame of Stability. By understanding and optimizing these angles, players can maximize shot efficiency while minimizing 

the risk of injury. 

Critical Angles in Frame of Force 

For a right-handed player, the Frame of Force joints—right wrist, elbow, shoulder, hips, knee, and ankle—must work in 

harmony to generate power and control. The following are the critical angles associated with these joints: 

• Right Elbow Angle  

• Right Shoulder Angle 

• Left Upper Hip Angle 

• Right Lower Hip Angle 

• Right Knee 

 

Fig 4.3: Visualization of the observed Frame of Force and Frame of Stability for a right handed player 
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Fig 4.2: Visualization of the critical angles for the frames for a right-handed player. 

 

Critical Angles in the Frame of Stability 

The Frame of Stability involves joints that counterbalance the force exerted by the Frame of Force, helping the player 

maintain equilibrium. For a right-handed player, the key joints are on the left side of the body, with the following critical 

angles: 

• Left Elbow Angle  

• Left Shoulder Angle 

Frame Of Force Angles 

F-1: Right Elbow Angle 

F-2: Right Shoulder Angle 

F-3: Left Upper Hip Angle 

F-4: Right Lower Hip Angle 

F-5: Right Knee Angle 

 

Frame Of Stability Angles 

F-1: Left Elbow Angle 

F-2: Left Shoulder Angle 

F-3: Right Upper Hip Angle 

F-4: Left Lower Hip Angle 

F-5: Left Knee Angle 
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• Right Upper Hip Angle 

• Left Lower Hip Angle 

• Left Knee 

Variability and Adaptability of Critical Angles. Each player’s biomechanics and playing style can introduce variability in 

critical angles. 

Player-Specific Adjustments: Professional players may have slightly different optimal ranges for certain joints, depending 

on their flexibility, strength, and technique. For example, a player with greater shoulder flexibility may have a wider shoulder 

angle range than average. 

Shot-Specific Adjustments: Different shots (forehand, backhand, serve) may require adjustments in critical angles. For 

instance, the elbow angle on a backhand may be more acute compared to a forehand. 

5. CLUSTERING (DIFFERENT ALGORITHMS) AND CENTROID DISTANCES 

In our analysis of tennis shots, we utilized joint angles extracted using the Mediapipe library to differentiate between various 

player types (left-handed, right-handed) and the shots they play (forehand, backhand, and serve). These angles were 

processed and structured to allow us to employ several clustering algorithms to group similar shots together as seen by studies 

quoted by Manu et al [6]. After extracting the joint landmarks using the Mediapipe library, the joint angles were calculated 

from three consistent dimensions: front view, side view, and top view. These angles provided the necessary data points for 

analysis. The following steps were performed to clean and structure the data: 

Combine Data for Players and Shots: Left-handed and right-handed players were combined separately. The shots 

(forehand, backhand, and serve) were also separated and analyzed individually. Gholami et al. [10].  

Check for Null Values: Each combined DataFrame was checked for any missing or null values, and appropriate imputation 

techniques were applied to clean the data. 

Select Joint Angles with Minimum Standard Deviation: To reduce noise in the data, we identified and selected joint 

angles with the lowest standard deviation. This ensured that only the most consistent joint movements were considered for 

clustering. Wang et al [13]. 

Standardization: The selected joint angle data was standardized to have zero mean and unit variance. This ensured that all 

angles contributed equally to the analysis, regardless of their scale or range. 

Dimensionality Reduction with PCA: Principal Component Analysis (PCA) was used to reduce the dimensionality of the 

data. By transforming the data into principal components, we retained the most significant variance while simplifying the 

dataset. This reduction allowed for easier clustering and visualization. Baoa et al. [11] 

To group the players’ shots into distinct clusters, we applied several clustering algorithms, each offering a unique approach 

to partitioning the data: 

• K-Means Clustering 

• Gaussian Mixture Model (GMM) 

• Spectral Clustering 

Centroid Distance and Analysis 

After clustering the data, one of the key steps in analyzing the players’ performance was calculating the distance of a new 

player's shot from the cluster centroids. This distance represents how close the new player’s shot is to the ideal shot (as 

defined by the centroid of each cluster). 

Centroid Calculation: For each cluster, the centroid represents the "average" position of the shots in that cluster. This is the 

mean position of the joint angles for all shots in the cluster. 

Distance Metric: The Euclidean distance was calculated between the new player's shot and each cluster centroid. This 

distance quantifies how far the shot is from the centroid, with smaller distances indicating a shot closer to the cluster’s ideal. 

Shot Analysis: By calculating the distance to the nearest centroid, we could determine the quality of the shot. Shots closer 

to the centroid were considered more technically sound, while shots farther away indicated deviations from the optimal form. 

Finally, the clustered data was visualized using 2D scatter plots. Each cluster was represented by a unique color, and the 

centroids were marked distinctly. By visualizing the data in this way, we were able to: 

• Compare Cluster Boundaries: The scatter plots allowed us to visually assess how well-separated the clusters were. 

Tight, well-defined clusters indicated homogeneity in playing technique, while more dispersed clusters suggested 
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greater variability. 

• Analyze Player Positioning: The relative position of a player’s shot within or outside a cluster provided insights 

into their technique. Shots within the core of the cluster were more consistent with the group, while shots near the 

periphery indicated variation. 

6. RESULTS  

Based on our analysis of the joints and their role in the shot, we calculated key angles for each frame. Below is a sample 

table representing the critical joint angles for both frames during specific shot types: 

 

Perspective and Joints → TopView FrontView SideView 

Forehand Player shots RightElbow RightShoulder LeftUpHip RightDownHip RightKnee 

TestPlayer_001.png 137.265 42.087 63.891 110.64 172.23 

TestPlayer_002.png 176.492 24.005 65.872 92.322 179.134 

TestPlayer_003.png 147.898 49.256 61.296 116.68 174.85 

TestPlayer_004.png 171.397 55.148 59.074 127.223 171.568 

TestPlayer_005.png 133.675 64.559 58.93 110.499 167.704 

TestPlayer_006.png 170.121 71.84 61.223 114.177 174.424 

TestPlayer_007.png 171.518 41.912 61.837 115.615 179.846 

TestPlayer_008.png 165.519 83.376 65.399 105.615 172.877 

TestPlayer_009.png 179.656 45.533 56.906 122.476 162.91 

TestPlayer_010.png 158.805 64.942 70.87 91.817 164.368 

Table 6.1: Sample data of right handed players’ forehand frame of force’s selected critical angles 

To simplify and analyze the angle data, we applied Principal Component Analysis (PCA). This technique reduces the 

dimensionality of the data while retaining the most significant variance, which helps in revealing patterns between players 

and their shot techniques. 

 

Player shots FOF-PCA1 FOF-PCA2 FOS-PCA1 FOS-PCA2 

TestPlayer_001.png -0.22 0.904 -1.468  -0.275  

TestPlayer_003.png 0.228 0.535 1.045  0.948  

TestPlayer_004.png 1.133 -0.401 1.887  -0.020  

TestPlayer_005.png -0.824 -0.281 1.370  0.215  

TestPlayer_006.png 0.131 0.053 1.345  0.816  

TestPlayer_007.png 1.23 1.072 0.298  -1.113  

TestPlayer_008.png -0.887 0.312 1.541  1.015  

TestPlayer_009.png 1.619 -0.923 -0.453  0.240  

TestPlayer_011.png 0.774 0.244 1.080  0.062  
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TestPlayer_013.png -0.522 0.109 -0.005  -1.818  

Table 6.3: Sample data of PCA performed on table with outliers removed. 

After applying PCA to the angle data from the Frame of Force (FOF) and Frame of Stability (FOS), we reduced the 

dimensionality to two principal components. These components capture the maximum variance in the data, making it easier 

to visualize the underlying patterns. The primary objective of plotting the PCA values is to identify clusters or groups of data 

based on joint angles. We perform 3 clustering algorithms to reveal natural groupings, indicating differences in shot tecniques 

among players. 

 

 

Fig 6.1 Kmeans, GMM and Spectral Clustering for FOF right handed players 

 

Once the data is clustered using KMeans, the centroids of each cluster are calculated. These centroids represent the "mean" 

or "central point" of each cluster in the PCA-transformed space. Calculating and analyzing these centroids is critical for 

understanding the ideal shot techniques and evaluating player performance. The purpose of centroid calculation is that it acts 

as a benchmark for analysis. Centroids act as reference points that represent the ideal or most common shot characteristics 

within each cluster. The distance of a player's shot from the nearest centroid provides insights into how closely they align 

with the ideal shot technique for that cluster. Centroids help confirm the distinctiveness of clusters, ensuring meaningful 

segmentation of data. 
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Fig 6.2 FOF and FOS Plots for right handed players for the three type of shots played with clusters and their 

centroids. 

 

Evaluating a New Player’s Alignment with Established Clusters - To evaluate how well a new player's technique aligns 

with the established clusters of ideal techniques, we follow a structured approach that leverages machine learning methods. 

This process enables us to quantify the similarity between the new player’s performance and the ideal characteristics of the 

technique, highlighting areas for potential improvement. The steps are outlined below: 

1. Data Extraction and Consistency Across Datasets: 

o In the first step, the joints and key features relevant to the player’s shot technique extracted from the 

training dataset is used to extract from the test dataset (representing the new player's performance). 

o The same set of features such as angles will be extracted from both the training and test datasets to ensure 

consistency. This guarantees that we’re comparing similar data points from both the old and new players. 

2. Dimensionality Reduction with PCA: 

o The PCA model trained on the training dataset, capturing the primary components that define the variations 

in shot techniques is applied to the new player's test data, ensuring that both datasets are mapped onto the 

same reduced feature space. 

o The resulting PCA-transformed data provides a simplified representation of the player’s shot technique, 

focusing on the most significant characteristics. 

3. Classifying the New Player Using K-Nearest Neighbors (KNN): 

o To determine which established cluster the new player belongs to, we apply a K-Nearest Neighbors 

(KNN) classifier as conclude din the study by Manu et al [7]. 

o KNN compares the new player's shot technique (in the reduced PCA space) with the centroids of the 

existing clusters formed from the training data. By calculating the distance between the new player’s shot 

and the nearest cluster centers, KNN assigns the new data point to the most similar cluster. 

o KNN is ideal for this task since it’s a non-parametric method that makes decisions based on the proximity 

to other data points, making it well-suited for identifying how similar the new player’s technique is to the 
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established patterns. 

4. Cluster-Center Distance Calculation: 

o Once the new player’s shot is classified into a cluster, the next step is to calculate how closely it aligns 

with the ideal shot in that cluster. 

o This is done by measuring the distance from the new player’s shot to the centroid (the center) of the 

assigned cluster. The centroid represents the "ideal" shot for that cluster, which is a composite of all the 

data points within that group. 

o The distance between the new player's shot and the centroid serves as an indicator of how much the new 

player's shot deviates from the ideal technique. A smaller distance indicates a shot that is very similar to 

the ideal, while a larger distance suggests significant deviation. 

5. Actionable Feedback for Improvement: 

o The calculated distance provides valuable insights into areas where the new player's technique diverges 

from the established ideal. 

o If the new player's shot is far from the centroid, this could point to specific technical aspects that need 

improvement. For example, certain joint angles, movements, or timing might differ from the optimal 

pattern. 

o Based on these deviations, targeted feedback can be generated, helping the new player focus on refining 

their shot technique to align more closely with the ideal model represented by the clusters. 

 

 

Fig 6.3 KDE Contours to visualize the new data points for right hand forehnad shots 

 

This process of evaluating a new player's alignment with established clusters provides a systematic way to assess their shot 

technique. By utilizing PCA for dimensionality reduction, KNN for classification, and distance calculations for deviation 

analysis, we can effectively compare the new player’s performance against the ideal clusters and offer actionable feedback 

for improvement. This approach not only facilitates the identification of technique gaps but also aids in guiding the player 

toward more optimal performance. 

Scoring / Evaluating the performance of the shot played 
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Fig 6.4 Spider / Radar graph of means of training set against the test set 

 

The spider graph provides a critical visual representation of the player's joint flexion during the shot, highlighting the 

difference between the test player’s performance and the optimal or ideal body mechanics. The graph uses a red shade to 

represent the test player's data and a blue shade to show the average flexion of professional players, providing an immediate 

comparison. From this visualization, it becomes evident that the test player’s body frame, particularly in terms of joint 

flexion, is not aligned with the optimal range during the shot. One notable observation is the test player's right elbow, which 

shows insufficient flexion compared to the ideal positioning seen in professional players. This lack of optimal flexion in the 

right elbow is a key factor that likely contributed to less effective shot execution. If the test player had flexed the right elbow 

more, it would have improved their overall shot mechanics, bringing their body posture closer to the professional standard. 

This discrepancy is further validated by the KDE (Kernel Density Estimate) plot, where some of the test points are found to 

be significantly distant from the centroid. These outliers represent instances where improper joint flexion, like in the right 

elbow, negatively impacted the shot’s performance, leading to deviations from the optimal trajectory. 

7. CONCLUSION 

Mastering the correct stance for each tennis shot is fundamental to enhancing performance and minimizing the risk of injury. 

The open stance for forehands facilitates greater power generation, improved topspin, and better reach, making it ideal for 

modern aggressive play. For backhands, selecting the appropriate stance based on grip—closed for one-handed and neutral 

for two-handed—ensures balance and precision during execution. The serve stance, particularly the platform stance, provides 

a solid base for efficient weight transfer and rotational power, crucial for accuracy and consistency. So based on the results 

of the study, we can conclude the following: 

Forehand Shot: 

Correction: For a forehand shot, use an open stance. Stand sideways to the net with your non-dominant shoulder pointing 

toward the net. Your feet should be shoulder-width apart. Shift your weight to your back foot as you prepare, then transfer 

your weight forward as you swing. 

Importance: An open stance allows you to generate power, topspin, and reach for balls effectively. 

Backhand Shot: 

Correction: The stance for a backhand depends on whether you're using a one-handed or two-handed grip. For a one-handed 

backhand, use a closed or semi-open stance, with your non-dominant shoulder pointing toward the net. For a two-handed 

backhand, a neutral stance with both shoulders facing the net is common. 

Importance: The appropriate stance for your backhand grip allows you to maintain balance and control during the shot. 

Serve: 

Correction: The serve stance can vary, but the platform stance, where your feet are parallel to the baseline, is a good starting 

point. Keep your feet shoulder-width apart, with your non-dominant foot slightly in front. As you initiate the serve, transfer 

your weight from your back foot to your front foot and rotate your hips and shoulders for power. 

Importance: The correct serve stance ensures power and control over the direction and placement of your serve. 
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