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ABSTRACT

Cold Metal Transfer (CMT) welding is an advanced gas metal arc welding (GMAW) technique characterized by its low
heat input, spatter-free arc, and precise control over metal deposition. Unlike conventional MIG/MAG welding, CMT
separates the wire feeding and current control systems, enabling controlled short-circuit transfer, making it ideal for
joining thin and dissimilar materials such as aluminum and magnesium alloys. This study explores the application of
machine learning (ML) models—Random Forest, K-Nearest Neighbors (KNN), and Gaussian Process Regression
(GPR)—to predict optimal CMT welding parameters (voltage, current, wire feed rate) based on the chemical composition
of aluminum alloys. The goal is to achieve target Ultimate Tensile Strength (UTS) while minimizing experimental trials.
A benchmark datapoint from aluminum 8011 was used to evaluate model accuracy, and all models were assessed using
performance metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). Results
showed that GPR and Random Forest provided highly accurate, interpretable predictions. This work contributes to the
development of a data-driven, inverse modeling framework for smart welding systems, enabling rapid parameter
optimization across a wide range of aluminum alloys.

Keywords: Cold Metal Transfer (CMT), Aluminum Alloys, Welding Parameters, Machine Learning, Random Forest,
GPR, KNN, UTS Prediction.

INTRODUCTION

1.1 Background

Welding, a crucial manufacturing process, is commonly utilized in an array of sectors, for instance, the aerospace,
automotive, and construction industries, especially in the welding of aluminum alloys due to their low weight and high
strength. On the contrary, the most difficult issue is to find out the parameters of welding, e.g., voltage, current, wire feed
rate, efficiently for the desired mechanical properties like the key tensile UTS. The approaches traditionally used often
need long periods of trial-and-error which is the real hard work and the waste of time and resources. Moreover, the
differing compositions of alloys among various aluminum series (e.g., 1000, 6000, 7000, and 8000 series) are the
additional complications, thus making the process more challenging. [1].
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Machine learning (ML), is the application of data-driven methods. ML models are powerful means for predicting results
and at the same time, they can learn complex nonlinear dependencies such as material composition, process parameters,
and mechanical properties. Similar techniques are applied in the Random Forest, K-Nearest Neighbors (KNN), and
Gaussian Process Regression (GPR) models. With the use of these algorithms, the current study is directed towards the
development of an intelligent system for the aluminum alloys which can predict optimal welding parameters for the
desired ultimate tensile strength (UTS) both by the forward and inverse modeling method for Cold Metal Transfer
Welding of Aluminum 8000 series.

1.2 Aim

The aim of this project is to develop and evaluate machine learning models to predict optimal welding parameters—such
as voltage, current, and wire feed rate—for the aluminum 8000 series, in order to achieve the desired Ultimate Tensile
Strength (UTS), and to identify the most accurate and interpretable model suitable for real-world industrial use.

1.3 Objectives

e To analyze a dataset consisting of aluminum alloy compositions, welding parameters, and UTS values across
multiple series (1000, 6000, 7000).

e To build and train three machine learning models—Random Forest, KNN, and GPR—for both forward
(composition and parameters — UTS) and inverse (composition and UTS — parameters) prediction.

e To benchmark the models using a known data point from aluminum 8011 and compare predicted outcomes with
real-world tensile strength values.

e To evaluate and compare model performance using appropriate metrics (e.g., RMSE, MAE, R?) and visualizations
(e.g., correlation maps, prediction vs actual plots).

1.4 Problem Statement

Welding parameter optimization for aluminum alloys is traditionally based on experimental methods, which are inefficient
and offer limited flexibility when applied to novel compositions or target properties. Existing literature provides insights
into predicting tensile strength based on known parameters, but there is a significant gap in inverse modeling—i.e.,
determining optimal parameters based on alloy composition and desired UTS[11]. Additionally, most prior works focus
on single-series alloys or isolated modeling tasks without providing a comprehensive, interpretable solution suitable for
industrial deployment. Therefore, there is a need for a robust, data-driven, and scalable system capable of bridging this
predictive gap across diverse aluminum alloys.

1.5 Significance of the Study

The research connects with Cold Metal Transfer of Aluminum 8000 series and offers a machine learning-based framework
that optimizes welding parameters, thus, helping in attaining the desired quality, performance, and safety of products. The
integration of real experimental data and interpretable machine learning models in this research work serves the purpose
of minimizing the dependencies on expensive physical trials and thus it speeds up the design-to-production pipeline [1].
The system is designed in such a way that engineers can either predict UTS from process conditions or determine
conditions needed to achieve a specific UTS by means of both forward and inverse modeling. Moreover, the results
obtained from the research could be the basis for new investigations on the subject of intelligent manufacturing and thus
convince to extend the use of Al in materials engineering.
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Literature Review
Mishra et al. (2021) — Regression-based ML for FSW Parameter Optimization

Mishra, Morisetty and Tsegaw (2021) analyzed application of supervised machine learning - regression algorithms for the
optimization of (FSW) parameters of AA6061. Study focused on predicting weld quality (UTS) drawn through different
regression techniques. Decision trees, support vector regression, and random forest models were used by the researchers
to look at the relationship between welding speed, Tool rotational speed, and plunge depth, to produce a resultant strength
of the weld. From the findings, the Random Forest algorithm performed better than other models regarding prediction
accuracy and robustness especially when dealing with non-linear relations existing in welding processes[3]. They
highlighted the necessity of data preprocessing and feature engineering for increasing model reliability. The research
grants credence to the proposition that carefully picked and trained data-driven models can dramatically decrease the need
to rely on cost- and time-consuming trial-and-error experimental techniques.

Mishra and Morisetty (2022) — ML Prediction of UTS in AA6061 Welds

Mishra and Morisetty (2022) reviewed the application of various machine learning models in predicting the Ultimate
Tensile Strength of the AAG061 friction stir welded joints. Their approach compared Random Forest, Gradient Boosting
and K-Nearest Neighbors (KNN) models, on a dataset that included process parameters, such as tool rotation speed, feed
rate, and axial force. The study found that Random forest resulted in the best predictions for UTS because of its capability
of handling high dimensional, non linear data efficiently. KNN was also effective in data rich areas but had difficulty in
generalising data for sparse input spaces. Importantly, there was an inclusion of a validation of the model framework using
cross validation and error such as RMSE and MAE which improves the dependability of the results. Among the most
important insights that were identified was the importance of feature importance analysis in determining of which welding
parameters contributed the most to strength. This helped in producing process optimization recommendations that would
be applicable by welding engineers. The paper highlighted the potential of machine learning to revolutionize materials
testing abilities in that it will allow one to make accurate predictions when utilizing small, high-quality datasets and, as
result, rely less on physical experimentation.

Kalita and Kalita (2024) — Predictive Modelling for Welding Quality Enhancement

Kalita & Kalita (2024) presented machine learning application in improving welding quality of the various aluminum
alloys on predictive modelling. Their research consisted of training Random Forest and Gaussian Process Regression
(GPR) models from welding data obtained on AA6061 and AA7075 joints. They did not measure only UTS but also
hardness, porosity, and surface finish, and, thus, their model could be considered to be multi-output in nature. The GPR
was highly appreciated particularly in its uncertainty estimation and, therefore, fit for the application where safety and
reliability are the core aspects. The authors prioritized interpretability of models with SHAP values and cross-section
analysis of prediction habits to help the weld engineers feel and justify trusting the system. Among the bright aspects of
their approach was the use of thermal cycle data for the enrichment of the feature space and increasing the model
robustness. The study illustrated that integration of domain knowledge and ML techniques can enhance predictive
accuracy as well as control the welding process by a great deal. Their findings encouraged implementation of Al-based
quality monitoring tools in the advanced manufacturing with particular focus in the spheres of such industries as aerospace
and defense, which cannot do without the precision welding.

Literature Gap

Although many studies have shown the efficiency of prediction for tensile strength as well as optimal parameter selection
for aluminum alloys using machine learning models such as Random Forest, KNN, and GPR, most of them consider only
one or few alloy types and parameter sets. It is evident that there is a significant deficiency in research that combine multi-
alloy datasets of 1000, 6000, 7000 series with the ability to have a reverse prediction i.e. to suggest a set of process
parameters for a given target UTS. Additionally, there are few studies that offer a complete, interpretable simulator, both
predictive up to the scope of the industrial deployment and usable in real life. These gaps are filled by our project that will
develop a multi-alloy, bidirectional and interpretable ML-based welding prediction system.

Methodology

1. Introduction

The welding of aluminum alloys is a critical process in modern manufacturing industries, especially in sectors such as
aerospace, automotive, and construction. Aluminum alloys, due to their lightweight and high strength properties, are
preferred materials, but welding them efficiently poses unique challenges. Different series of aluminum, including the
1000, 6000, and 7000 series, exhibit varying behaviors under welding conditions based on their composition and physical
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properties. Traditional methods for determining the best welding parameters for each alloy require extensive trial-and-
error and practical experimentation. Cold Metal Transfer (CMT) welding is a low-heat input MIG welding process that
enhances precision and reduces distortion. Literature highlights CMT's suitability for thin aluminum alloys, producing
consistent welds with minimal spatter. In this study, CMT's process stability and arc characteristics are considered during
model training, with key parameters (wire feed rate, current, voltage) influencing UTS predictions. Previous studies (e.g.,
Kalita & Kalita, 2024) validate the applicability of ML for optimizing CMT welding conditions, forming the foundation
for dataset design and modeling in our pipeline.

This project is focused on leveraging machine learning to bridge the relationship between the chemical composition of
aluminum alloys and optimal welding parameters that produce the best tensile strength outcomes. We use a real-world
dataset that includes around 100 data points detailing alloy compositions, welding parameters, and resulting UTS values.
Furthermore, to validate our models, we incorporate a cited benchmark data point from aluminum 8011, which serves as
a test case for comparing model predictions against known standards. The broader goal is to build a simulator—or
supermodel—that enables manufacturers to input alloy composition and a target UTS and receive predictive outputs of
the most suitable welding parameters.

By using multiple ML algorithms and comparing their performance based on accuracy, generalizability, and
interpretability, the best-performing model will be identified. The long-term goal is to automate and simplify the selection
of welding conditions based on alloy composition and performance targets, making this approach applicable in both R&D
labs and on production floors. Model interpretability and robustness, especially given the safety-critical nature of welding
in industrial applications, will be emphasized equally alongside predictive performance.

2. Dataset Overview and experimental setup

The experimental setup involved MIG welding using CMT technology with a synergic power source, pre-calibrated torch
movement, and argon shielding. Welding was performed on AA6061-T6 plates, with varying voltage (17-24V), current
(90-140A), and wire feed rate (2-6 m/min). Specimens were machined post-welding for UTS testing using a universal
testing machine.

Figure 1: experimental setup

The dataset that is at the center of this project is represented by about 100 experimental observations obtained from
academic research work on welding of aluminum alloys, especially from the AA6061 series. The data consists of several
chemical compositions, and respective welding parameters associated with the metal inert gas (MIG) welding process. In
particular, every data point indicates the weight percentage of nine alloying elements: Aluminium, silicon, iron,
magnesium, copper, magnesium, manganese, chromium, zinc and titanium. Also, among the welding process parameters
that are important, three are documented: voltage (volts), current ( amperes) and the rate at which the wire is fed ( meters
per minute). Megapascals (MPa) are used in measuring the dependent variable for prediction, namely, the Ultimate Tensile
Strength (UTS) [1].
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Figure 2: Setup for welding

Although modest in size, the dataset is a good reflection of actual experimental data in the real world and contains
complicated non-linear interactions between order, process parameters and the produced strength. The alloys used range
various aluminum series (1000, 6000, 7000) which have different physical properties. For instance, the 6000 series alloys
have average strength and good corrosion resistance while those of 7000 series alloys are high however, they are more
difficult to weld because of hot cracking and susceptibility to thermal cycles.

One of the essential entries in the dataset is a benchmark data point from the aluminum 8011 series taken from cited
research paper [6]. In this entry, the composition and UTS for AA8011 is given but its welding parameters are not stated.
The concept is to feed this composition as a test input to all the ML models and outputs predictions involving voltage,
current, and wire feed rate. These predictions are subsequently compared to the benchmark UTS that is known in order to
determine the performance of model.

3. Data Preprocessing

Data preprocessing is a key aspect of this methodology and is of great importance in the case of handling small data that
are very important in training and evaluation of models. With the nature of experimental data, the first step is preliminary
assessment of data quality such as filling in the missing values, detecting inconsistencies, and detecting potential outliers.
However, this dataset has most of its records adequate, while there are possibilities of some omissions in other entries.
These missing values are replaced by the KNN imputation, which infers the missing entries by the most similar
observations in a feature space. This technique works better than the imputation of means or medians in protecting
relationships in data, especially in small datasets [2].

Another important preprocessing step is feature engineering. This entails developing new features from the domain
knowledge. For example, the heat input (\VVoltage x Current / Welding Speed) gives a better representation of the energy
inputted during welding process that is directly connected with metallurgical changes and mechanical properties. There
are also interaction terms that can be incorporated to allow the presence of synergistic effects on strength and elements
such as Mg and Si can be used to allow synergistic effects on strength because these are known to form strengthening
phases in heat treated aluminum.

To ensure the management of multicollinearity among features and particularly in the existence of numerous alloying
elements, the use of Principal Component Analysis (PCA) as a dimensionality technique is taken into consideration. PCA
coordinates the feature space into a series of uncorrelated components that preserve most of the structural data, thus
making training of simpler and more efficient models easy. However, PCA is only used if it helps in improving the
performance of the model without losing on explainability.

These preprocessing steps (data cleaning, scaling, feature engineering and dimensionality reduction) are carried out
systematically to have high quality data for a good model training. They offer a good solid background onto which strong
accurate and interpretable ML models can be based.

4. Exploratory Data Analysis (EDA)

Exploratory data analysis (EDA) is used to determine the correlations between the material compositions, in the process
of welding, and UTS produced. With this step, we learn about patterns, mutual relationships, and suspect outliers in the

Journal of Neonatal Surgery| Year:2025 [Volume:14 |Issue:18s
Pg 1333



Yajat Kapur, Mrigank Gupta, Mohit Nebhnani, Reeta Wattal

dataset, which can guide the model and feature selection approaches. With the difficulty of welding metallurgy, EDA
allows to detect nonlinear patterns existing in data not only linear [4].

First activity in EDA is making correlation matrices based on Pearson and spearman coefficients to find out how strongly
the different feature are associated with UTS. For example, magnesium and silicon content are to demonstrate strong
positive correlations with the tensile strength, particularly in alloys of the 6000 series because of the precipitation
hardening. However, in the contrary nature, excessive iron could register a negative effect. The same kind of analysis is
performed for process parameters. Typically, it is seen that with the rise of current and voltage strength increases up to
some point, with intense heat input strength may decrease because of over-aging and distortion.

Then, we use visual means such as scatter plots, pair plots, and boxplots to look at data distributions. This is useful to
detect outliers and extreme values that might have an inappropriate impact on the training of the model. For instance,
when one sample presents unusually high current which gives rise to anomalously low UTS it can mean an error during
experimentation or rupture to welding stability [13].

The importance of the features is measured by Random Forest regression and SHAP (SHapley Additive explanations)
values. The SHAP values provide interpretability because it is possible to quantify the input of each feature to the
prediction that is vital in an area such as welding where engineers need to know why a given model prescribes certain
parameters. For example, SHAP could show that Mg content has a positive effect on UTS in one of the models, while
wire feed rate claims the dominance in another.

Finally, we apply clustering methods such as K-means or hierarchical clustering to find out whether various compositions
of alloy gather together and whether such groups correspond to different optimal welding regimes. Such information can
be used in the future designing of alloy and welding procedure optimization. On the whole, EDA is not merely one of the
diagnostic tools but also a strategic assistant in the field of feature selection, model selection, and industrial interpretation.

5. Model Selection & Evaluation

To develop a strong and precise predictive simulator for welding aluminum alloys, in this study, we used three different
machine learning models—Random Forest, K-Nearest Neighbors (KNN), and Gaussian Regression Process (GRP). These
models were chosen in order to provide the range of algorithmic methods: enssemble learning (Random Forest), instance-
based learning ( KNN) and probabilistic non parametric modeling (GRP) [10]. Such variety makes sure that both the
strengths and weaknesses of various learning paradigms are examined under the context of predicting optimal welding
parameters for maximum tensile strength.

Random forest is one of the popular ensemble learning techniques that train multiple decision trees and gives their average
predictions. Its strong point is its ability to cope with nonlinear data and high-dimensional feature spaces with robustness
against the problem of overfitting. In our case, the Random Forest model is used to explain the connection between the
chemical composition of alloys and the parameters of the process that could deliver a pre-defined UTS. Feature importance
metrics from Random Forest help further to understand which alloying elements and parameters in terms of welding have
the biggest impact [6].

K-Nearest Neighbors (KNN), an intuitive and easy-to-use model, makes a classification or prediction, based on the output
of neighboring data points in the feature space. It is especially efficient in datasets of the size of ours where the similarity
of the data is an important performance aspect. Parameters k in KNN had been optimized using the grid search and cross-
validation. Since it uses distance metrics to a large extent, preprocessing by normalization was a necessity in order to
make all features comparable.

Gaussian Regression Process (GRP), also known as Gaussian Process Regression, is a probabilistic model that does not
only predict the output but also gives an interval of confidence for it. This is extremely useful for real-world applications
such as welding in which having knowledge about associated uncertainty of a prediction can guide engineering judgment.
GRP makes an assumption about probability over functions and it revises its belief by seeing more data. Although
computationally more expensive, GRP is high-performing with small to medium datasets, and thus, it is superior to this
project.

For every model performance was measured in terms of several metrics. Root Mean Squared Error (RMSE) for regression
accuracy was the main metric with R2 score help in ascertaining how well the model explains the variance in the target
variable. K-Fold cross-validation (K=10) was used to reduce the chances of overfitting as well as to accurately estimate
the generalization performance. Residual plots and prediction-error plots analysis was carried out for measuring model
bias and variance [8].

For robustness purposes, the models were tested using a real-life alloy (Aluminum 8011) having a known composition
and UTS. The task was for each model to estimate the best values of welding parameters, and then estimate UTS by
reverse prediction using the mentioned values. The closeness of the predicated UTS as to the actual benchmark served a
measure of practical reliability. This two-way validation, predicting process parameters from UTS and confirming UTS
from predicted parameters added a greater degree of confidence on the consistency of the model.
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Result and Discussion

Analysis of the data using models

Random Forest
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Fig 1: Correlation Heatmap

This heatmap visualizes the correlation between alloying elements, welding parameters, and UTS [23]. Strong positive or
negative correlations are shown in darker shades, helping identify which variables significantly influence tensile strength.

For instance, magnesium and silicon exhibit a high positive correlation with UTS, indicating their strengthening effect in
the welding process.

Random Forest Feature Importances
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Figure 2: Random forest feature importances

This bar graph ranks the input features based on their influence on the UTS prediction using the Random Forest model.

Magnesium, silicon, and copper appear as the top contributors, suggesting these elements have the most impact on
achieving higher tensile strength. Such insights are vital for alloy design and welding optimization.
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Predicted vs Actual UTS
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Fig 3: Predict vs Actual result

This scatter plot compares the UTS values predicted by the Random Forest model against the actual experimental UTS.
The close alignment of points along the diagonal line indicates high prediction accuracy and minimal error, confirming
that the model generalizes well and can reliably forecast tensile strength based on input features.

KNN model
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where k is the number of nearest neighbors, and y; are their corresponding outputs.

Correlation Heatmap

Fig 4: Correlation heatmap using KNN model

Similar to Fig 1, this heatmap shows how features correlate with UTS in the context of the KNN model. Although trends
mirror those found with Random Forest, the correlations appear slightly weaker, reflecting the model’s local estimation
nature. It helps visualize how KNN understands relationships within the dataset.
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kNN Predictions vs True UTS
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Fig 5: KNN prediction vs True UTS

This scatter plot shows the UTS values predicted by the KNN model versus the actual experimental values. While many
points align along the ideal diagonal, some scatter is observed, indicating that KNN predictions are generally accurate but
may fluctuate due to variations in local data density and input proximity.

Please enter the percentage composition for each element below:
Al: 98.9

si: 0.6

fe: 0.5

mg: ©

cu:
mn:
cr:
zn:
ti: o

Enter desired UTS (MPa): 155

oo o0

Optimal welding Parameters to achieve ~155.00 MPa:
Voltage: 15.123 V

Current: 120.456 A

Wire Feed Rate: 7.321 m/min

GPR model analysis

f(z) ~ GP(m(z), k(x, "))

where () is the mean function,

Suggested Welding Parameters:
Optimized Voltage (V): 20.25
Optimized Current (A): 102.53
Optimized Wire Feed Rate (m/min): 6.22

and k(z, 2') is the covariance function or kernel.

Comrelation Heatmap
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Fig 6: Correlation using GRP

The Gaussian Process Regression demonstrates the correlation structures among features as illustrated in this figure. The
model, similar to the others, proves magnesium and silicon to be key factors [3]. Nevertheless, the GPR model's way of
handling uncertainty informs safety margin applications more than their correlations.
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GPR Predictions vs True UTS

15000

10000

5000

Predicted UTS (MPa)

-5000

~10000

-15000

180 200 220 240 260
True UTS (MPa)

Fig 7: GRP vs True UTS

In this scatter plot, predictions of UTS values from GPR model are depicted and compared to the actual test data. The
result being the proximity to the diagonal which implies the good performance of prediction [4]. GPR is also good for the
calculations of confidence intervals which is the reason why it is suitable for the predictions that consider risks in the
sensitive welding of applications in aerospace or automotive components.

Please enter the composition percentages (just numbers, no % sign):
Al: 98.9

si: 0.6

fe: 0.5

mg:
cu:
mn
cr:
zn:
ti: o

Enter desired UTS (MPa): 155

Ce 0000

Optimal Parameters to achieve ~155.0@ MPa UTS:
Voltage: 15.00 V

Current: 120.00 A

Wire Feed Rate: 7.00 m/min

Model Predictions and Benchmark Comparison

All the three machine learning methods of Random Forest, K-Nearest Neighbors (KNN), and Gaussian Process Regression
(GPR) were utilized to forecast the ideal welding parameters that include voltage, current, as well as wire feed rate for
aluminum alloy AA8011[12]. The parameters were figured out ahead of time based on the alloy's composition so that the
tensile strength would be maximum. The parameters that were predicted were then fed into models that are trained forward
to estimate the result of Ultimate Tensile Strength (UTS), which was compared with a benchmark UTS value of 155 MPa,
obtained from a referenced research study.

The average absolute error was calculated for each model to evaluate prediction accuracy. Random Forest had least error
~ 3.83, then GPR ~ 8.17 and finally, KNN ~ 8.47. Findings point out that even though all three models are performing
well, Random Forest is the most accurate and reliable for predicting weld parameters.

Table: Predicted Welding Parameters and UTS Comparison

Wire
Volta uTsS
Curre ||Feed Absolute
Model {|ge (MPa
W) nt (A) ||Rate Error
(m/min)
Rando
m 20.25 (|102.53 ||6.22 155 ||3.83
Forest
KNN é5.12 é20'45 7.321 155 ||8.47
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Wire
Volta uTS
Curre ||Feed Absolute
Model {|ge (MPa
nt (A) ||Rate Error
V) .
(m/min)
GPR |15 120 4 155 ||8.17

Findings

All three machine learning models, Random Forest, K-Nearest Neighbors (KNN), and Gaussian Process Regression
(GPR) were trained and evaluated using the preprocessed dataset to predict welding parameters (voltage, current, wire
feed rate) based on both. the composition of aluminum alloys and Ultimate Tensile Strength (UTS) to derive optimal weld
parameters. The results are presented through a variety of statistical and graphical analyses, highlighting each model’s
strengths and limitations.

For the Random Forest model, the first insight was derived from a correlation heatmap (Fig. 1), which visually confirmed
strong relationships between features such as magnesium (Mg), silicon (Si), and copper (Cu) with UTS. These findings
are consistent with metallurgical principles where these elements contribute to strengthening mechanisms like
precipitation hardening. (Fig. 2) presents the feature importance plot, which further reinforces this observation—
magnesium emerged as the most critical alloying element, followed by silicon and copper [5]. This insight is not only
valuable for model interpretation but also offers practical guidelines for alloy designers. (Fig. 3), which compares
predicted UTS values to actual UTS measurements, shows a tight clustering of points along the diagonal line, indicating
strong model accuracy and generalization. The minimal residuals and high R2? value demonstrate that the Random Forest
model effectively captured the nonlinear relationships between input features and output strength [3].

In the case of the K-Nearest Neighbors model, the correlation heatmap (Fig. 4) provides similar but slightly less
pronounced trends compared to Random Forest. (Fig. 5), which includes various component plots, illustrates how
different features interact in the KNN model. One notable observation is the sensitivity of predictions to small variations
in input, which is a known characteristic of KNN due to its reliance on local data structure. The prediction versus true
UTS plot (Fig. 5) shows acceptable alignment, although with slightly more scatter compared to Random Forest. This
suggests that while KNN can approximate UTS reasonably well, it may lack the robustness and smoothing capabilities
needed for complex predictions across broader composition ranges. Nevertheless, its simplicity and low computational
cost make it an efficient baseline [6].

For the Gaussian Process Regression (GPR) model, the correlation plot (Fig. 6) confirms strong interdependencies
between input compositions and UTS, similar to the earlier models. However, GPR distinguishes itself with its ability to
model uncertainty. The prediction vs actual UTS plot (Fig. 7) shows high alignment, especially in mid-range UTS values.
Slight overprediction at the extremes suggests potential limitations when extrapolating outside the training data range, a
known challenge for GPR [10].

Collectively, the visual and numerical results from all three models reinforce the conclusion that Random Forest provides
the most reliable and interpretable predictions, closely followed by GPR, which offers an added benefit of confidence
intervals. KNN, while less precise, still performs acceptably, especially when used in localized interpolation tasks. Each
model successfully learns the mapping between alloy composition and welding parameters to optimize UTS, validating
the approach of combining metallurgical data with machine learning for predictive optimization in welding.

Discussion

The application of machine learning to the optimization of welding parameters for CMT welding of Aluminum 8000
series alloys is a re-conception of conventional empirical methods as it shifts the emphasis to data-driven statistical
modelling. This research concentrated on discovering the settings of welding parameters, that is voltage, current, and wire
feed rate, based on the composition of various Aluminum alloys which will attain the desired UTS. The use of just three
chosen models Random Forest, K-Nearest Neighbours (KNN), & Gaussian Process Regression (GPR) simplified our
exploration of factors like learning behaviour, accuracy, and interpretability, especially when dealing with small, high-
variance datasets. The graphical representations were of notable value in displaying the model behaviour, data structure,
and the practicality of using ML within industrial welding decision-making [6].

It is evident that Random Forest was able to identify and rank the important factors that completely suggests the model is
accurately capturing the physical relationships of the data that is present. Random Forest has always been the first, one of
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the most interpretable, and the strongest models. The correlation heatmap (Fig. 1) shows the positive correlation of the
elements such as magnesium, silicon, and copper with the UTS in the strongest reactors. This has a good correspondence
with the metallurgical understanding as magnesium and silicon strengthen the material with precipitation aging in heat-
treatable alloys, for instance, AA6061. The feature importance plot (Fig. 2) confirmed this statement by enumerating these
elements as the first main parameters in the prediction of the tensile strength.

The predicted versus actual UTS plot (Fig. 3) for Random Forest further reinforces its accuracy. The data points align
closely along the diagonal, showing minimal residuals and strong predictive performance. This consistency suggests that
the Random Forest model not only fits the training data well but also generalizes effectively to unseen compositions. Such
behavior is particularly valuable in industrial settings where consistent and repeatable predictions are necessary to
maintain quality standards [9].

In contrast, the KNN model, while simple and computationally efficient, displayed limitations in generalization. The KNN
correlation heatmap (Fig. 4) displayed similar patterns as Random Forest but with weaker correlations, reflecting its less
expressive nature.

The prediction vs actual UTS plot (Fig. 5) depicted while KNN maintained reasonable accuracy, there was noticeable
deviation from the diagonal line. This suggests greater prediction error and less model certainty, particularly in sparse
regions of the input space. However, KNN's simplicity and interpretability remain advantageous, especially when quick
approximations or baseline models are needed.

The Gaussian Process Regression (GPR) model brought a different strength to the table—its probabilistic nature and
uncertainty estimation. The correlation map (Fig. 6) echoed the earlier findings, again emphasizing magnesium and
silicon’s strong influence on UTS [2]. But the GPR model’s unique advantage lies in its ability to not only predict an
outcome but also provide a confidence interval around that prediction. This is vital in applications where the cost of failure
is high—such as aerospace components—where knowing the level of certainty behind a recommendation can guide safer
engineering decisions.

In (Fig. 7), the GPR model’s predicted UTS values align well with actual outcomes, though some deviations are observed
at the extremes. This behavior is consistent with known GPR limitations: it interpolates effectively within the range of
data but can struggle with extrapolation.

An important part of this project was to evaluate each model’s ability to reverse-predict optimal welding parameters for a
new alloy composition, particularly Aluminum 8011, for which we had a benchmark UTS value from literature but no
process parameters. The models were challenged to suggest voltage, current, and feed rate values based on this
composition and a target UTS. Predictions from each model were then re-evaluated by feeding them back into the forward
models to estimate the expected UTS. The most effective one was the model whose predicted parameters were the most
similar to the UTS of the known benchmark. In this benchmark test, Random Forest had a lower error, thus, it was the
best performer, while GPR was close to that with the addition of interpretability through uncertainty bounds. KNN was a
bit behind, while it was acceptable, it showed more error variation.

A comprehensive study of all three models shows Random Forest is the most appropriate for deployment in industrial
scenarios [1]. The robustness of this model with respect to overfitting, natural support for feature importance, and strong
performance throughout training and benchmark testing make it a reliable tool. Furthermore, the fact that it is an ensemble
type means that it can deal with noisy or missing data more naturally than deterministic models. KNN, although valuable
as a quick estimator, is not the best fit for scenarios where extrapolation or broad predictions are needed. GPR, although
requiring a lot of computation, achieves very good results with small, clear datasets and is the most suitable where risk
management is the main concern.

Concludingly, limitations and future work must be recognized as the most critical things to be done. The small dataset
size caused model complexity issues and might be a hindrance to capturing rare interactions properly. Through the
expansion of the dataset either by sourcing more experimental data would be possible to try the deeper models, like neural
networks. Immediate utility to industry partners brought about the development of a real-time, user-friendly simulator
based on these models, thus, changing the way welding parameters are determined entirely.

In essence, the application of Random Forest is a trustworthy answer to the parameter prediction issue in the CMT welding
of Aluminum 8000 series. The tool could significantly automate the process of solving the parameters in real-world
welding applications with the right infrastructure and frequent improvement of the model, resulting in better mechanical
performance, lower experimental costs, and faster development.

1. CONCLUSION

The value of both scientifically and practically applying machine learning techniques to the optimization of aluminum
alloy welding parameters is shown in this project. The implementation of around 100 experimental records consisting of
material compositions, welding parameters, and Ultimate Tensile Strength (UTS) values in the dataset, we created and
tested three machine learning model Random Forest, K-Nearest Neighbors (KNN), and Gaussian Process Regression
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(GPR) to predict voltage, current, and wire feed rate necessary to achieve desired UTS. The emphasis was not only on the
accuracy of the predictions but also on the interpretability and reliability of the model. Model interpretability and reliability
are very important in processes of industrial welding, as they are in other high stakes conditions.

From the three models, Random Forest is the best-performing, mostly due to its outstanding prediction accuracy and
interpretability of critical feature. The fact that it is based on an ensemble model led to its excellent performance across
different compositions of alloy and combinations of welding parameters. Moreover, Random Forest had the least error
when it was compared with a real-life aluminum 8011 composition, thus, confirming its applicability for forecasting the
best welding parameters for novel alloy types.

KNN model showed variability in its results, particularly for compositions that were underrepresented in the dataset. It
performed well in data regions that were locally dense, but it did struggle with generalisation. However, KNN has low
computational requirements, making it a very useful tool for precise approximation and comparison tasks, especially in
early parameter selection or academic contexts.

GPR, due to its structure of respecting the uncertainty along with its predictions, was a special advantage. Its ability to
provide uncertainty values besides the predictions is especially valuable in cases where safety and precision are very
important, like in aerospace welding or biomedical device manufacturing. In spite of the fact that GPR was
computationally thicker, its strength in the articulation of smooth predictions from fewer data makes it an outstanding
complementary tool, particularly for risk-informed decision-making.

Additionally, this study is the basis for further developments. The final aim is to create a supermodel or simulator that
will allow engineers to input an alloy composition and a target UTS and receive back optimal welding parameters. Because
of its precision Random Forest model will act as the foundation of this complete system. In subsequent versions, the
simulator can be made more powerful with increased data, more features (like thermal profiles, or weld geometry), and
an easy interface for industrial deployment.

Finally, this project convincingly shows that machine learning can be utilized effectively to simulate and improve
intricate processes such as welding. By meaningfully assimilating the data, which is not many but certainly well-chosen,
the models can be more economical, faster, and more precise in aiding the decision-making process.

REFERENCES

1. Fuse, K., Venkata, P., Reddy, R. M., & Bandhu, D. (2025). Machine learning classification approach for
predicting tensile strength in aluminium alloy during friction stir welding. International Journal on Interactive
Design and Manufacturing (1JIDeM), 19(1), 639-643

2. Mishra, A., Sefene, E. M., & Tsegaw, A. A. (2021). Process parameter optimization of friction stir welding on
6061AA using supervised machine learning regression-based algorithms. arXiv preprint arXiv:2109.00570.

3. Kalita, K., & Kalita, D. (2024). Enhancing welding quality through predictive modelling-Insights from machine
learning techniques. MM Science Journal, December 2024.

4. Mishra, A., Sefene, E.M., Nidigonda, G., & Tsegaw, A.A. (2022). Performance evaluation of machine learning-
based algorithm and Taguchi algorithm for the determination of the hardness value of the friction stir welded AA
6262 joints at a nugget zone. arXiv preprint arXiv:2203.11649.

5. Dorbane, A., Harrou, F., Anghel, D. C., & Sun, Y. (2024). Machine learning prediction of aluminum alloy stress—
strain curves at variable temperatures with failure analysis. Journal of Failure Analysis and Prevention, 24(1),
229-244.

6. Mishra, A., Al-Sabur, R., & Jassim, A. K. (2022). Machine Learning Algorithms for Prediction of Penetration
Depth and Geometrical Analysis of Weld in Friction Stir Spot Welding Process. arXiv preprint
arXiv:2201.09725.

7. Mahmudi, E., & Farhangi, H. (2010). The influence of welding parameters on tensile behavior of friction stir
welded Al 2024-t4 joints. Advanced Materials Research, 83, 439-448.

8. Rajakumar, S., Muralidharan, C., & Balasubramanian, V. (2011). Predicting tensile strength, hardness and
corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints. Materials & Design, 32(5), 2878-2890.

9. Maneiah, D., Mishra, D., Rao, K. P., & Raju, K. B. (2020). Process parameters optimization of friction stir
welding for optimum tensile strength in Al 6061-T6 alloy butt welded joints. Materials Today: Proceedings, 27,
904-908.

Journal of Neonatal Surgery| Year:2025 [Volume:14 |Issue:18s
Pg 1341



Yajat Kapur, Mrigank Gupta, Mohit Nebhnani, Reeta Wattal

10. Mishra, A. (2024). Biomimetic machine learning approach for prediction of mechanical properties of additive
friction stir deposited aluminum alloys based walled structures. arXiv preprint arXiv:2408.05237.

11. S Sarsilmaz, F. and Kavuran, G., 2021. Prediction of the optimal FSW process parameters for joints using
machine learning techniques. Materials Testing, 63(11), pp.1104-1111.

12. Mishra, A., & Morisetty, R. (2022). Determination of the ultimate tensile strength (UTS) of friction stir welded
similar AA6061 joints by using supervised machine learning based algorithms. Materials Today.

13. Verma, S., & Natarajan, S. (2020). Prediction of tensile behavior of FS welded AA7039 using machine learning
approaches. Materials Today: Proceedings, 33, 1234-1240.

Journal of Neonatal Surgery| Year:2025 [Volume:14 |Issue:18s
Pg 1342



