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ABSTRACT 

Cognitive Radio Networks (CRNs) have been recognized as an enabler of dynamic spectrum access, aimed at mitigating 

spectrum underutilization by permitting unlicensed users to access idle licensed bands opportunistically. For such access to 

be reliable, accurate spectrum sensing is essential to avoid interference with primary users (PUs). In recent years, deep 

learning (DL) models have emerged as potent alternatives to traditional sensing methods due to their adaptability in noise-

prone environments and high detection performance [1][4]. This paper presents a comparative analysis of three state-of-the-

art deep learning architectures: Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and 

Deep Q-Networks (DQNs). A review of their standalone capabilities, followed by the assessment of hybrid combinations 

such as CNN-LSTM and LSTM-DQN, is provided. The evaluation is supported through architectural illustrations, theoretical 

insights, and simulated benchmark results.. 

 

Keywords: Cognitive Radio Networks, Spectrum Sensing, Convolutional Neural Networks, Long Short-Term Memory, Deep 

Q-Networks, Deep Learning, Reinforcement Learning 

1. INTRODUCTION 

The increasing proliferation of wireless devices and the growth of the Internet-of-Things (IoT) ecosystem have intensified 

the demand for spectrum resources, leading to congestion and inefficient spectrum utilization. [1]. At the core of CR 

functionality lies spectrum sensing, which allows secondary users (SUs) to detect vacant channels without causing harmful 

interference to PUs. 

Energy detection, matched filtering, and cyclostationary detection are examples of conventional spectrum sensing methods 

that have been extensively studied. However, these approaches are constrained by inadequate performance under low signal-

to-noise ratio (SNR) circumstances and dependence on PU signal knowledge [2] [5]. In contrast, deep learning-based 

techniques offer data-driven solutions by learning directly from raw or preprocessed input signals, enabling accurate, robust, 

and adaptive spectrum sensing in complex environments [3] [6]. 

In this study, a detailed analysis is carried out on CNN, LSTM, and DQN-based architectures for spectrum sensing in CRNs. 

A comparison is presented in terms of detection accuracy, false alarm rate, computational complexity, and adaptability. 

Furthermore, hybrid architectures that integrate spatial and temporal learning or reinforcement-based decision-making are 

also reviewed. The explosive growth of wireless devices and Internet-of-Things (IoT) applications has intensified the demand 

for wireless spectrum, leading to congestion and inefficiencies in spectrum allocation. In order to address this issue, Cognitive 

Radio (CR) technology has been developed, which makes dynamic use of the underutilized licensed spectrum. Spectrum 

sensing, the core function of CR, allows secondary users (SUs) to identify unused bands without interfering with primary 

users (PUs).     Even while standard spectrum sensing techniques like energy detection, matching filter detection, and 
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cyclostationary feature recognition have been extensively researched, they operate poorly at low signal-to-noise ratios (SNR) 

and necessitate prior knowledge of the characteristics of PU signals.. In contrast, deep learning (DL) models offer a learning-

based paradigm that leverages large datasets to discover hidden patterns in spectrum data, enabling highly accurate and 

adaptive spectrum sensing. 

This paper expands on prior research by conducting a detailed investigation of CNN, LSTM, and DQN architectures for 

spectrum sensing in CRNs. We compare these models using evaluation metrics such as detection accuracy, false alarm rate, 

computational complexity, and adaptability in real-world environments 

2. DEEP LEARNING BACKROUND FOR SPECTRUM SENSING 

Deep learning has transformed several domains by providing automated feature extraction and decision-making capabilities. 

In CRNs, DL models are trained on labeled signal samples such as in-phase/quadrature (IQ) data, fast Fourier  transforms 

(FFT), or time-frequency  representations to classify spectrum states [7], [8]. 

A. Convolutional Neural Networks (CNNs) 

CNNs operate by applying trainable convolutional filters over the input data to detect local spatial patterns. For spectrum 

sensing applications, CNNs have been effectively employed on spectrograms or covariance matrices to identify signal 

presence [1] [3] [9]. 

B. LSTMs, or long short-term memory networks 

Recurrent neural networks (RNNs) of the LSTM type are particularly good at simulating temporal dependencies. In 

the context of spectrum sensing, they are employed to capture time-varying PU activity patterns, especially in dynamic or 

mobile radio environments [2] [10]. 

C.  Deep Q-Networks (DQNs)  

DQNs use deep neural networks and reinforcement learning to discover the best spectrum access strategies. These models 

are particularly suited for autonomous decision-making under uncertain conditions and can optimize long-term access 

strategies by learning from environmental feedback [4][11].  

 

     Fig. 1. CNN-LSTM Architecture [1] 

 

Fig. 2. LSTM-DQN Network Architecture [3] 
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3. SYSTEM MODEL AND PROBLEM DESCRIPTION 

This study examines a situation in which several secondary users (SUs) carry out spectrum sensing in a shared frequency 

environment using a cognitive radio network (CRN). Each SU is assumed to observe a specific frequency band and determine 

its occupancy status depending on the properties of the signal that was received.  The main goal is to reduce the number of 

false alarms and increase the likelihood of accurate detection, which is critical in avoiding interference with primary users 

(PUs) [3] [6].  

The signal detection process is formulated as a binary hypothesis testing problem, described as follows: 

H₀: PU is absent (only noise is received) 

H₁: PU is present (PU signal plus noise is received) 

Mathematically, the received signal x(t) at any given time t is modeled as: 

H0: x(t)=n(t) 

H1: x(t)=s(t)+n(t)  

where n(t) denotes the additive Gaussian noise and s(t) denotes the PU signal. The goal of the deep learning-based spectrum 

sensing model is to learn a mapping function from signal inputs to binary class labels indicating the presence or absence of 

PU activity, without relying on fixed thresholds or prior statistical knowledge [1] [4] [10]. 

4. PERFORMANCE COMPARISION 

To evaluate the effectiveness of deep learning models for spectrum sensing in cognitive radio networks, several key 

performance metrics are analyzed, including detection accuracy, false alarm rate, adaptability to environmental changes, and 

computational complexity [3][5][11]. These parameters are essential for real-world deployment in CRNs, especially under 

variable channel and noise conditions. 

Both standalone and hybrid deep learning architectures are assessed: 

Standalone Models: CNN, LSTM, DQN 

Hybrid Models: CNN-LSTM, LSTM-DQN 

CNNs have been shown to be proficient in extracting spatial features from spectrograms and covariance matrices, which are 

commonly used as visual representations of spectrum activity [1] [7]. Their moderate complexity makes them suitable for 

environments with static or moderately noisy characteristics. 

LSTM networks, by contrast, are specialized for temporal pattern recognition, allowing them to capture variations in PU 

activity over time. Their sequential learning nature yields higher detection accuracy in dynamic environments, though with 

a higher computational cost due to recurrent layers [2] [5] [10]. 

DQN models are grounded in reinforcement learning and are capable of learning optimal sensing and access policies over 

time. Despite slightly lower immediate detection accuracy, they exhibit strong adaptability in uncertain or multi-user 

environments by learning from interaction feedback [4] [6] [8]. 

Hybrid architectures such as CNN-LSTM and LSTM-DQN are designed to combine spatial, temporal, and policy-based 

strengths. The CNN-LSTM architecture combines the strength of LSTMs' temporal learning with the feature extraction 

capabilities of CNNs, producing in superior performance across most evaluation metrics. Similarly, the LSTM-DQN hybrid 

integrates decision-making capabilities with temporal feature tracking, offering enhanced adaptability [3] [6] [7]. 

 

Model 
Detection 

Accuracy 

False            

Alam 

Rate 

Adaptability Complexity 

CNN 94.6% 4.1% Moderate Medium 

LSTM 96.3% 3.2% High High 
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DQN 91.7% 5.6% Very High Very High 

 CNN-       

LSTM 
97.2% 2.8% High High 

LSTM-

DQN 
95.8% 3.5% Very High Very High 

 

A comparative summary of the observed performance based on synthetic and benchmark datasets (e.g., 

RadioML2016.10a/10b) is presented in Table I. The table includes estimated detection accuracy, false alarm rates, 

adaptability scores, and computational complexity based on existing literature. 

These values reflect trends reported in simulation studies conducted using standard datasets and channel models under varied 

SNR conditions [1]–[6][8]. 

 

 

Fig.3 LSTM-based model for spectrum sensing [5] 

5. DISCUSSION AND FUTURE DIRECTIONS 

Based on the comparative analysis, it has been observed that hybrid In terms of detecting accuracy, adaptability, and 

robustness under various cognitive radio settings, deep learning models perform better than standalone systems. [1] [3] [6], 

[9]. While CNN models are efficient in learning spatial features, they are limited in temporal sequence analysis. LSTM 

architectures address this gap by capturing time-dependent variations in PU activity, especially in mobile or fading channels 

[2] [5][10]. 

DQN-based models, although less accurate in immediate sensing, demonstrate considerable potential in decision-making 

environments through their reinforcement learning framework. These models are capable of formulating long-term sensing 

and access strategies by learning from delayed rewards and environmental transitions [4] [8]. The fusion of CNNs and 

LSTMs allows spatial and temporal data patterns to be jointly modeled, which significantly enhances sensing reliability in 

both static and dynamic environments. Similarly, LSTM-DQN models integrate sequential data handling with reinforcement-

based policy learning, making them particularly suitable for decentralized or multi-agent CRN setups [3] [6]. 

Future research in this domain may focus on several promising directions: 

Online transfer learning can be utilized to modify trained models to fit new spectrum environments without full retraining 

[6]. 
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Federated learning frameworks may allow multiple devices that allow users to train models together without exchanging 

raw data, protecting privacy and using less bandwidth. [11]. 

Multi-agent reinforcement learning (MARL) could be used to optimize spectrum access in decentralized networks where 

multiple SUs interact simultaneously [4] [9]. 

Edge computing and hardware acceleration, including FPGA and AI-enabled processors, can significantly reduce 

inference latency and power consumption during real-time spectrum sensing tasks [7] [12]. 

6. CONCLUSION  

This study investigated how deep learning models can improve cognitive radio networks' spectrum sensing capabilities. 

Through comparative analysis, standalone and hybrid architectures were assessed based on multiple performance metrics. It 

has been shown that CNNs, LSTMs, and DQNs each offer unique advantages in handling spatial, temporal, and strategic 

aspects of sensing, respectively. 

Hybrid models, such as CNN-LSTM and LSTM-DQN, exhibit superior overall performance by combining these individual 

strengths. These architectures achieve higher detection accuracy, improved adaptability in dynamic spectrum environments, 

and more informed decision-making capabilities, albeit at increased computational cost. 

With the continuous evolution of CRNs and the growing demand for efficient spectrum usage, deep learning techniques are 

anticipated to be crucial to the development of scalable, intelligent, and adaptive spectrum sensing systems 
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