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ABSTRACT

One of the most important steps in clinical diagnosis and treatment planning is the automated and precise segmentation of
brain tumors using magnetic resonance imaging (MRI). Deep learning-based solutions are required since manual
segmentation is laborious and subject to inter-observer variability. Three sophisticated convolutional neural network designs
for brain tumor segmentation are compared in this paper: AGRESU-NET (Attention-Gated Residual U-Net), SERESU-NET
(Squeeze-and-Excitation Residual U-Net), and BTIS-NET (Brain Tumor Inception Segmentation Network). The BraTS 2021
dataset, which consists of multi-modal MRI images with tumor subregion annotations, was used to assess the models.
Sensitivity, Hausdorff Distance (HD), and Dice Similarity Coefficient (DSC) were used to evaluate performance. With an
average DSC of 0.91 for total tumor segmentation and decreased HD, the experimental findings showed that AGRESU-NET
performed better than the other models, demonstrating the usefulness of residual encoding and attention processes in
segmenting complicated tumor geometries. The paper emphasizes how architectural developments have improved automated
brain tumor segmentation systems' accuracy and dependability.
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1. INTRODUCTION

One of the most serious neurological conditions, brain tumors have high rates of morbidity and death all around the world.
For clinical diagnosis, treatment planning, and surgery, accurate brain tumor segmentation using magnetic resonance imaging
(MRI) is essential [1]. Nevertheless, manual segmentation is a subjective and time-consuming procedure that differs greatly
amongst radiologists. Medical image analysis has been transformed by the emergence of artificial intelligence, especially
deep learning, which offers potential automated techniques for tumor segmentation with excellent accuracy and repeatability
[2, 3].

In computer vision tasks, Convolutional Neural Networks (CNNs) have shown impressive performance, especially in
semantic segmentation. Because of its symmetric encoder-decoder design and skip connections that preserve spatial
resolution, U-Net, which was introduced by Ronneberger et al., has emerged as the mainstay of medical picture segmentation
among other designs [4]. By including residual connections, attention modules, and multi-scale feature extraction techniques,
U-Net has undergone further improvements and revisions that have attempted to solve its shortcomings [5, 6].

Research in this field has been continuously fueled by the BraTS (Brain Tumor Segmentation) competitions, which provide
well-annotated multimodal MRI datasets for training and benchmarking algorithms, such as T1, Tlce, T2, and FLAIR
sequences [7][8]. To improve tumor segmentation performance, researchers have created a variety of topologies. For
example, nnU-Net, an adaptive framework that self-configures preprocessing and training pipelines based on the dataset
attributes, was introduced by Isensee et al. [9]. Despite its versatility, the intricate variety of tumor subregions may be
addressed with innovative architecture.

One such development is BTIS-NET (Brain Tumor Inception Segmentation Network), which successfully captures multi-
scale characteristics by integrating inception blocks into U-Net's encoder [10]. This model, which was inspired by
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GoogleNet's inception modules [11], allows the network to learn contextual and fine-grained information, which is especially
useful for defining tumor borders of different intensities and forms. Prior research has demonstrated enhanced resilience in
medical segmentation tasks by utilizing inception-inspired designs [12].

Another well-known improvement is SERESU-NET, which incorporates residual units and squeeze-and-excitation (SE)
blocks into U-Net [13]. By modeling interdependencies, SE blocks—which were first presented by Hu et al. [14]—adaptively
recalibrate channel-wise feature responses, enabling the network to concentrate on useful features. Residual connections,
which were first used in ResNet [15], facilitate gradient propagation and enable a deeper and more expressive network.
Combining SE and residual units has been shown to enhance the segmentation of brain tumors by avoiding vanishing
gradients and capturing pertinent tumor characteristics [16, 17].

Due to its ability to replicate human-like focus on certain regions of interest, attention-based methods have gained popularity.
By adding attention gates and residual routes, AGRESU-NET (Attention-Gated Residual U-Net) expands on the traditional
U-Net [18]. The model may reduce unnecessary background and more accurately highlight the tumor region thanks to the
attention gates, which filter the characteristics propagated by the skip connections [19, 20]. Attention U-Net was initially
introduced by Oktay et al., who showed notable improvements in liver and pancreatic segmentation tasks [21]. AGRESU-
NET is particularly good at segmenting complicated tumor shapes with significant variability because it combines attention
and residual learning to make sure that important characteristics are highlighted throughout segmentation process [22]. The
effects of architectural modifications in deep learning networks have been examined in a number of comparative studies.
Jiang et al. [23], for example, tested attention U-Net and ResU-Net variations using BraTS data and found that attention-
based models performed better in terms of generalization and Dice scores. The idea that integrating spatial and contextual
attention enhances model focus and lowers false positives is supported by the success of attention gates in multi-organ
segmentation [24] and brain lesion identification [25].

There are still difficulties in spite of these developments. The segmentation job is made more difficult by the presence of
edema, overlapping intensities with normal tissues, and variations in tumor morphology [26]. In order to assess the efficacy
of three sophisticated deep learning architectures for automated brain tumor segmentation, this study compared and designed
BTIS-NET, SERESU-NET, and AGRESU-NET using the BraTS dataset. The use of multi-scale features, channel-wise
recalibration, and attention methods in this work provides a thorough evaluation of the effects of each architectural
improvement on segmentation resilience, sensitivity, and accuracy.

2. METHODOLOGY
2.1 Data Source and Description

The BraTS 2021 dataset, a benchmark multimodal MRI dataset for brain tumor segmentation tasks, was used in the
experimental investigation. Four MRI sequences—T1-weighted, FLAIR, T2-weighted, and contrast-enhanced T1-weighted
(T1ce)—as well as segmentation masks annotated by experts comprised each subject's data. Three tumor subregions were
identified by these masks: the total tumor (WT), the tumor core (TC), and the enhancing tumor (ET). Ten patients from the
dataset, including both high-grade glioma (HGG) and low-grade glioma (LGG) instances, were chosen as a representative
sample for this investigation.

2.2 Preprocessing

All MRI scans underwent standardized preprocessing before the model was trained. After being skull-stripped, the volumes
were resized to 240 x 240 x 155 pixels. To lessen intra-patient and inter-modality variability, intensity equalization was
carried out within each modality. During training, data augmentation techniques including elastic deformation, affine
transformations, and horizontal flipping were performed at random to enhance generalization.

2.3 Model Architectures

BTIS-NET captured multi-scale tumor traits, this model used parallel convolutions with varying kernel sizes in an encoder
block inspired by Inception. Prior to downsampling, each encoder level combined feature maps from 1x1, 3x3, and 5x5
convolutions. Squeeze-and-Excitation (SE) blocks were included into every U-Net encoder stage in the SERESU-NET
paradigm. Every SE block improved tumor-sensitive features by recalibrating channel-wise feature responses. Furthermore,
residual units were used to help with gradient flow in deep learning. Attention gates were utilized in the skip connections of
the AGRESU-NET paradigm. Based on their applicability to tumor locations, these gates selectively selected the feature
maps that were sent from the encoder to the decoder. To preserve semantic information, residual connections were preserved
in both the encoder and the decoder.

2.4 Training Protocol

The Keras APl was used to implement each model in TensorFlow. With a batch size of eight, each model was trained across
100 epochs. Starting with 0.001, the learning rate was lowered to a plateau. Region overlap and class prediction were both
optimized using a hybrid loss function that included categorical cross-entropy and dice loss. f1=0.9 and p2=0.999 were
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utilized using the Adam optimizer.
2.5 Evaluation Metrics

The performance of each model was evaluated using Dice Similarity Coefficient (DSC) to measure overlap between
predicted and ground-truth regions, Hausdorff Distance (HD) to assess spatial agreement of boundaries and Sensitivity and
Specificity to analyze detection rates of tumor voxels. All evaluations were performed on an unseen validation set comprising
20% of the total data, ensuring model generalization.

3. RESULTS AND DISCUSSION
3.1. Performance Metrics Analysis

The BraTS 2021 dataset was used to assess the performance of the suggested deep learning architectures, BTIS-NET,
SERESU-NET, and AGRESU-NET. Preprocessed multimodal MRI images with matching ground truth labels were used to
train each model in the same way. Three tumor subregions were examined: the enhancing tumor (ET), tumor core (TC), and
entire tumor (WT). To evaluate segmentation quality statistically, performance measurements such as Sensitivity, Hausdorff
Distance, and Dice Similarity Coefficient (DSC) were used. Visual examination of typical segmentation outcomes was
another method used for qualitative evaluations. Fig. 1, 2 and 3 showed the dice score, hausdorff distance and sensitivity
results respectively.

Dice Score Comparison by Tumor Region

1.00r
WT
mm TC
0.95f [

o
©
o

o
o)
0

Dice Similarity Coefficient
=] o
~ oo
u o

o
~
o

BTIS-NET SERESU-NET AGRESU-NET

Fig. 1 Dice score comparison
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Fig. 2 Hausdorff distance for all models used

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 26s



Subhash Maskawade, Sachin Yele

Model Sensitivity Comparison
1.000

0.975
0.950
0.9251

0.900

Sensitivity

o
0
~
w

0.850¢

0.825¢t

0.800

BTIS-NET AGRESU-NET

SERESU-NET

Fig. 3 Hsensitivity comparison for all models used

The main metric for assessing the spatial overlap between the ground truth and anticipated masks was the Dice Similarity
Coefficient (DSC). Because DSC is insensitive to small misalignments and efficiently captures agreement between
anticipated and real tumor borders, it is very pertinent in medical picture segmentation. The DSC values for each of the three
models in each of the three tumor subregions are shown in Table 1. With DSC ratings of 0.91 for WT, 0.86 for TC, and 0.82
for ET, AGRESU-NET had the greatest results. These results showed that the attention-gated residual architecture had better
region-wise prediction accuracy than SERESU-NET (0.89, 0.83, 0.79), and BTIS-NET (0.86, 0.78, 0.74).

Table 1: Segmentation Performance Comparison

Model DSC (WT) | DSC(TC) | DSC (ET) | HD (mm) | Sensitivity
BTIS-NET 0.86 0.78 0.74 4.9 0.87
SERESU-NET | 0.89 0.83 0.79 37 0.9
AGRESU-NET | 0.91 0.86 0.82 3.1 0.93

The geometric correctness of the segmentation was shown by the Hausdorff Distance (HD), which calculates the greatest
separation between the borders of the predicted and ground truth areas. BTIS-NET (4.9 mm), SERESU-NET (3.7 mm), and
AGRESU-NET (3.1 mm) had the lowest HD values. In radiation and surgical planning, where accuracy is crucial, a lower
HD suggests that the anticipated limits are closer to the actual tumor form.

The model's sensitivity, which is the true positive rate, was also calculated to evaluate how well it identified tumor voxels.
With the maximum sensitivity of 0.93, AGRESU-NET proved to be strong in identifying even the smallest and irregular
tumor areas. However, with a sensitivity of just 0.87, BTIS-NET showed a propensity for under-segmentation and the
removal of minor tumor characteristics, especially in the ET area.
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(1) BTIS-NET Segmentation Out- (2) SERESU-NETegmentation Output
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Fig. 4 Tumor segmentation using BTIS-NET, SERESU-NET and AGRESU-NET

A visual comparison of the segmentation outputs is shown in fig. 4. The reference input is the original MRI scan, which is
shown in the top-left quadrant (1). The SERESU-NET data is shown in quadrant (2) with distinct segmented areas: blue for
enhancing tumor, red for non-enhancing core, and yellow for edema. The model shows some over-segmentation into nearby
normal tissues, despite its ability to distinguish between subregions. The segmentation outcomes of AGRESU-NET on two
distinct patient scans are shown in quadrants (3) and (4). Particularly in regions with expanding tumor and edema, their
results exhibit outstanding region separation and border conformity. By connecting segmentation markers to tumor anatomy,
the color caption beneath the picture aids with understanding.

The performance of each network is examined separately in order to have a better understanding of model behavior. The
inception-like multiscale convolution blocks used by BTIS-NET were able to provide respectable overlap for bigger tumor
masses. Nevertheless, it produced fragmented forecasts for the enhancing tumor area due to its incapacity to highlight fine-
grained characteristics. Furthermore, it was vulnerable to false negatives in the FLAIR modality's low-contrast zones due to
the absence of residual or attention-based correcting pathways.

By using squeeze-and-excitation (SE) modules, SERESU-NET showed enhanced channel-wise attention, which allowed it
to successfully adjust features. In the tumor core, where signal intensity heterogeneity frequently misleads simpler networks,
it specifically enhanced segmentation. However, because SE blocks were not enough to remove unnecessary background
signals, hyperintensities in the edema area occasionally deceived SERESU-NET.

Due in large part to its attention gates integrated into skip connections, AGRESU-NET proved to be the most effective
design. These gates exclusively focused on tumor-relevant activations by filtering encoder characteristics before sending
them to the decoder. Both false positives and false negatives were reduced as a result of the cleaner, more localized
segmentations produced by this selective filtering. Furthermore, residual connections helped to balance the depiction of both
small and coarse tumor structures by preserving important properties across layers.

Performance across tumor grades was compared in order to do further analysis. Because each of the three models had unique
boosting areas, they all did quite well for high-grade gliomas (HGG). However, AGRESU-NET shown exceptional
adaptability in low-grade gliomas (LGG), where enhancing tumors are frequently missing. The network was able to detect
subtle tumor margins that traditional models would have missed because to its attention-based methodology. This
demonstrates AGRESU-NET"'s therapeutic suitability for treating a variety of tumor types.

The trade-off between computing complexity and accuracy is a crucial factor in segmentation tasks. Compared to BTIS-
NET, AGRESU-NET used more GPU RAM and training time because of its attention layers and residual encoding. However,
particularly in applications requiring high diagnostic accuracy, the notable improvements in DSC and HD outweigh the
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expense. With only a little increase in complexity, SERESU-NET outperformed BTIS-NET, providing a compromise.

By contrasting false positive and false negative voxels across the test set, an error analysis was also carried out. Because it
missed areas in the ET and TC subregions, BTIS-NET had the highest false negative rate (13%) of any system. AGRESU-
NET demonstrated its superior localization skills by achieving the lowest rate of 6%, whereas SERESU-NET decreased this
to 9%. In SERESU-NET, false positives were more prevalent in the vicinity of the peritumoral edema area, most likely as a
result of hyperintensity overlaps with white matter.

Lastly, visual overlay plots were used to qualitatively confirm the findings. The segmentations produced by AGRESU-NET
were consistently the most anatomically realistic. It was clearly clear that the model could distinguish between overlapping
tumor subregions with intricate borders. In clinical situations where millimetric precision in border identification might
change treatment results, such as tumor excision or radiation planning, this was very crucial.

Even though the study shows how much better AGRESU-NET is, it's vital to recognize some of its shortcomings. First,
performance may differ on bigger cohorts because all models were demonstrated on a very small subgroup of 10 individuals.
Second, only the BraTS dataset was used for assessment; external validation on actual clinical scans is necessary to verify
generalizability. Third, more research is required on runtime performance in clinical settings and interaction with PACS
(Picture Archiving and Communication System) operations.

4. CONCLUSION

Using the BraTS 2021 dataset, this study assessed the segmentation performance of three deep learning models: BTIS-NET,
SERESU-NET, and AGRESU-NET. AGRESU-NET integrated attention gates with residual learning for spatially-aware
segmentation, SERESU-NET improved feature recalibration using SE blocks and residual connections, and BTIS-NET
introduced multi-scale feature learning with Inception modules. AGRESU-NET outperformed the other three in terms of
Hausdorff Distance, Sensitivity, and Dice Similarity Coefficient. These findings show how important deep residual encoding
and attention processes are for effectively capturing the spatial complexity of brain tumors. Although encouraging, more
testing on outside datasets and incorporation with 3D volumetric learning techniques may improve practicality. The results
indicate that in order to better manage the heterogeneity and irregularity of glioma subregions, future models should
concentrate on combining attention with multi-scale learning.
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