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ABSTRACT

In this paper, we investigate the higher order impulsive integro-differential equations with anti periodic boundary value
problems on time scales. The Contraction mapping principle and Leray Schauder's fixed point theorem are used to determine
sufficient conditions. Finally, we present an example to demonstrate the main results.
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1. INTRODUCTION

The theory of impulsive differential equations affords adequate mathematical models for describing evolution processes
characterized by the combination of continuous and jump fluctuations in their state. In recent years, impulsive differential
equations have become a significant area of exploration that serves the needs of modern technology, engineering, economics,
physics, and so on. Impulsive differential equations with several boundary conditions are studied by many authors
in[6,11,12]. At the same time, the theory of boundary value problems with antiperiodic boundary conditions for differential
equations arises in different areas of applied mathematics and physics. But the corresponding theory for impulsive integro-
differential equations on time scales is yet to be developed. Integro-differential equations are typical of those processes where
a function at each point is not determined by its value near the point, but also depends on the function distribution all over
the domain. Impulsive Integro-differential equations with boundary conditions also studied by several researchers in
[2,5,10,12]. Periodic and Antiperiodic boundary conditions with different type of equations are established by the researchers
in [5,9,10].

The calculus of time scales was initiated by Stefan Hilger, in order to create a theory that can unify discrete and continuous
analysis. A time scale T is an arbitrary nonempty closed subset of the real numbers. Higher order Differential equations are
studied by the several authors in [1,3,4,7,13,14]. Motivated by above, this study consider the following nt" order impulsive
integro differential equations with antiperiodic boundary conditions on time scales:

27 (1) = (6 x(0), x2(®), -, x2"7 (0), j tg(t, 5,X(s), x2(s), -+, X" (s))As),
0

(n-1)

A oy, = Ie(x (), t € [01]p, t # t, k= 1,2,+,m, (1

2P 0) = =x2(o(T),i = 0,1,2,+,n — 1.
Where f: [0, Ty X R® X R* X -« X R* > R", @:[0,T]y X [0, T]p X R* X R* X - X R® > R® and [,:R" > R" are
continuous and AxA” ™V |_, = x4 () — xA TV (1) Here x4V (1), xA™ ™ (ti0) represent the right hand limit and

left hand limit of x2™ " (M att =t,,k =1,2,---,m,m isafixed positive integer with0 < t; <t, < <t, < <t, <
1.
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The article is organized as follows. In Section 2, we present some lemmas and concepts to prove the main results. Section 3
contains the main results of the paper. In section 4, an example is given to illustrate how the main results work.

2. PRELIMINARIES
In order to define the solution of problem (1), we will consider the following space.
Let/' = J\{ty, t,, -, t,} and

PC™1[0,1]y = {x € C[0,1]p: x4

(n-1) ,, _ (n-1)
ltetis) € Cltio tien), x5 (1) = x4 (), k= 1,2, ---,m}.

Then PC™ 1[0,1] is a real Banach space with norm

||xA“‘1|

1] s = ma {1l ]| |x27)

(oo}

Where ||xAn_1||oo = su]p |xAn_1(t)| n=12--
te

2.1 Definition

A time scale T is an arbitrary nonempty closed subset of the real numbers. And the forward and backward jump operators
o,p: T - T are defined by

o(t) =inf{s € T:s>t},p(t) =sup{s€T:s<t}

respectively. The pointt € T isthe called left dense, left scattered, right dense or right scattered if p(t) = t, p(t) < t,o(t) =
t or o(t) > t respectively. Points that are right dense and left dense at the same time are called dense.

If T has a left scattered maximum m, define T* := T — {m}; otherwise, set T = T. The symbols [a, b], [a, b) and so
on, denote time scales intervals, for example,

[a,b] = {t e T: a <t < b},
wherea,b € Twitha < p(b).
2.2 Definition

A vector function f : T — R™ is rd-continuous provided that it is continuous at each right dense point in T and has a left-
sided limit at each left dense point in T. The set of rd-continuous functions f : T — R™ will be denoted in this paper
by Cq(T) = Cra(T,R™).

2.3 Definition

Assume f : T — R is a function and lett € T,. Then we define f2(t) to be the number (provided it exists) with the
property that given any e > 0 there exists a neighborhood U of t(i.e., U = (t —4,t +6) N T for some § > 0) such
that

f(0(0) = f(5)- FA®I(®) - s]| < ela(®) - sl,Vs € U
We call f2(t) the delta (or Higher) derivative of f at t.

2.4 Definition
If FA(D) = f(b), then we define the delta integral by
t
j f(s)As = F(t) — F(a).
a
2.5 Lemma

Assume that f, g: T — R are differentiable at t € T* and «, § are two constants, we have:
l.ifaf +Bg: T — R is differentiable at t, then (af + Bg)2(t) = af>(t) + Lg°(t),
2.if f4 exists, then f is continuous at t.

2.6 Lemma

If a,b,ce T,a € Rand f,g € C,4 then:
b

b b
1.f[f(t) + g(t)]At = ff(t)At + Jg(t)At

a

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 27s
pg. 180



Arunkumar D, Kannan K, Anitha K, Sujatha B, Gnanavel M G

b b

2. f af (DAt = f f(t)At
b a

3. af f(H)At = — bf f(t)At
b c b

4, f f(H)At = f f(HAt + f f(t)At

5. f f(H)At = 0

2.7 Theorem

Let E be a real Banach space, A : E — E isacompletely continuous operator. Iftheset{x : x € E,x = 14x,0 < 1 <

1} is bounded, then A has at least one fixed point in the closed ball T € E, where
T={x:x€EIlxI<RLR =sup{llxl: x = 14x,0 < A < 1}.
2.8 Lemma
Forany h(t) € PC([0,T],R™), x(t) solves
() = h(),
A" s = L(x()) t € [0,1]pt # tik = 1,2,--,m, 2)
2?00y = Y@ (M),i = 0,1,2,-,n — 1.
if and only if x(t) is the solution of integral equation

a(T)
KO = [ GoEMs— D 61N -
0 0<tp<t
Where
o(T) (t— s)" 2 t—s\*"1  (t—-s)t
_ ) 4 (n-2) +( 2 ) “mopr  0ssstsad),
G(t,s) = o(T) (b= )2 gt — s\n-1
1 (n—2)!+(2 ) 0<t<s<a(,

Proof: Assume x(t) is a solution of (2). Then by integrating xA® (t) = h(t), t # t, (k =1,2,---,m) step by step from 0

to t, we have

t
xA(n—l) (t) = xA(n—l) 0) — J h(s)As + Z Ik(X(tk)).
0

o<ty<t

Integrating the equation (4) again step by step from 0 to t, we get

22D (1) = 2" (0) 1 18" 0y — J(t — o(s))h(s)As + Z L (x(ti)) (t — tyo).
0

0<tp<t
By using Antiperiodic boundary conditions in (4), we get
o(T)
a0 o1
x (0) = 3 h(s)As — Ik(x(tk)) .
0 0<tp<t

Similarly, by using Antiperiodic boundary conditions in (5), we get

)

)

(6)
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a(T)
n-2 1 n-1
xA¢ )(0)=5l—xﬁ\( ') (o(M) + f (o(T) — o(s))h(s)As — Z L(x(t)) ((T) — t0). 7)
0 0<tp<t

Substituting (6) and (7) in (5), we get

o(T)

X0 2)( t) = J- [J(T) A ) ]h( )As —J.(t — a(s))h(s)As

- Y ) [P E Y ). @)

0<tp<t 0<ty<t

In the same way, we get

a(T) 2
xA(n—3)(t) — f [(@ (t - U(s)) + (t _;T(S))
S e |E)

o<tp<t

t 2
h(s)As —f@h(s)m
0

Z Le(x(t0) (- tk) :

o<tp<t

Similarly, we get

a(T) 2
_ oM\ (t—0a()"" [(t—a(s)\" (t—a(s))"
x(t) = Of ( 2 ) =2 +( > ) ]h( )As —jil)lh(s)As
T _ n-2 _ _ n-1
- Z Ie(x(t)) [(J( )>(t t";y +(t Zt") ]+ Z Ik(X(tk))%.

0<tp<t 0<tp<t
If we choose G (¢, s), then (3) is true.

Conversely, if we differerentiate (3) and by using boundary conditions, we get
(&) = h(t)

So AxA(n_1)|t=tk = L(x(t), k = 1,2,---,m,and itis easy to verify that x2900) = ¥ (T),i = 0,1,2,+,n —
1

and the lemma is proved.

3. MAIN RESULTS

In view of Lemma2.8, we define a fixed point problem related to problem (1) as Fx = x, where F : C([0,T]y, R™) -
C([0, T]y, R™) is defined by

a(T) T n-2
-T2y
0

(n—2)!
¥ (t — (S)) l X0, + x| 805X, 5@, 1" (©)a)As
- f % £t x(0, X2 (®), -, x" (0, f tg(t, 5,x(5), x2(s), -+, x2" ' (5))As) As
a(T) —t)" 2 t—t\" )t
_0<Zk:<t L (x(t) [( ) kz)! +< 5 k) ] O;Q Ik(X(tk))—kl)! :

We give the following hypothesis:
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(H,): For the subsequent analysis, we define ||x||PCn_1 = A {|IXI L A2, -, ||xA“_1|

_ a(T) (t—a()"" [(t—o(s)\" (t—o(s))""
77 o {f [ (n—2)! +< 2 ) l f (1) }
a(M)\ (=t )"?  t—t\" tk)n !
ﬁi:[s%%T{‘ >, 1oe)|(%0) 2+ (5 ]+ 3 e T }

o<tp<t 0<tp<t

} and

(H,): The functions f, g and I, are continuous.
(H3): The functions f, g and I, satisfying the Lipschitz condition:
£ (¢, x,x, X% xAn_l) - f(t,y, 9% yAz,---,yAn_1)| <L[lx—yl+[x* =y + -+ |XAH_1 - yAn_1|],
|9(t,5,2,x%, %57, x8"7) = g(£,5,5,¥2, y2%, -,y )| < M[Ix — yl + [x& = y2| + - + [x2" T = y2" 7],
| (x(t) — L(¥(t)| < QIx—yl,L,M,Q > 0,Vx,y € R", t € [0, Tly.
(H,): There exist a positive constant N,R such that
£ (%0, X2, -, %27 (), [ gt 5, x(5), x4(), x4 () As) | < N,
| (x(ti))| < R, for each t € [0, T]; and all x € R™.
3.1 Theorem

Assume that (H,) and (H5) holds. Then the boundary value problem (1) has a unique solution if Ly + LMy + Qf <
1, where y and S given by (10).

Proof: In the first step, we show that FB, - B.,, Where F s the operator defined by (14) and B, =

{x € C([0, Tly, R™:[Ixl|,, <€ } with ¢ > %,d = Sup. If(t,0)| and e = Sup |Ik(x(0))|

Using f(t, x(t), x2(0), -+, x2" " (1), fot g(t,s,x(s), x2(s), -+, x2" 7 (s))As) =
[f(t, x(t), x2 (1), -+, XAn_l(t), fot g(t,s,x(s), x2(s), -+, xAn_l(s))As) — f(t,0) + f(t, 0)|

< |f(t, x(1), x2 (1), ~-~,>(An_1(t),f0t g(t,s,x(s), x2(s), o, xAT

An—l

())As) — f(t, 0)] + |f(t, 0)]
ID] +d

< L[]+ |21 + 4 (A7 |+ M)+ ]|+ e+ ]
SL||x||PC 1+LM||x||PC 1+dSLc+LMc+dand
n— n—

Ik(x(tk)) = Ik(x(tk)) + Ik(x(O)) — Ik(x(O)) < |Ik(x(tk)) — Ik(x(O))| + |Ik(x(0))| < Q||x||1>cn_1 +e<Qc+e for
any x € B, t € [0, T]y, we obtain

o(T) o
|(Fx)(t)| = sup { f (0(T)>(t—a(s))
te[0,T]t )

4 (n—2)!
t—a(s)\" "
(=) ]

3 f (t — a(s))n_1
(n—1)!

f<t, x(t), ~~,xAn_1(t),jtg(t, s, x(s), ~~,xAn_1(s))As) As
0

As

f(t, x(t), x2 (1), -+ XA (), jtg(t, s, x(s), x2(s), -+, xA" (s))As)
0

= |1k(x(tk))|[<am)(t tk;§;2+(t;t")n_] > Ilk(x(tk))|t_k)“_}

0<tp<t 0<tp<t
SLc+LMc+d)y+ Qc+e)f<c

which implies that ||Fx|| < c. In consequence, it follows that FB, c B..Next for x,y € C([0, T]y, R™) and for each t €
[0, T], we have that
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|(Fx)(®) — (Fy) (O

a(T)
< sup f
te[o, Tl 2
N t—a(s)\" "
2

—f(t, y(@®,y2(@®, -+, y2" (), f g(t,s,y(s), ---,yA“*(s))As) As
0

(t-o(s)"
B (n—1)!

(cr(T)) (t—o(s))"

4 (n—2)!

f<t, x(t), x2(t), ---,xAn_l(t),ftg(t, s, x(s), ---,xAn_l(s))As>

f(t, x(0), x2(0), -, x2" 7 (0), f tg(t, s, x(s), x2(s), -+ ,XA"‘l(s)) As
0

- f(t, y(®,y2®, -,y (®, f g(t,s,y(s), ,yA“*(s))As) As
0

T _ n-2 _ n-1
- > ) - (5 g+ (5|

0<tp<t

(t—t)n 1t
+ Z I (x(t) — L (y(t))| ﬁ}

0<tp<t

< Ll = 3]s + LM1x = Y], s Sup

a(T) n-2 n—1
o(T) (t — a(s)) t—o(s)
e[0Tl {Of [( 4 ) -2 ( 2 > l As

(t—a(s)) oM\ (t =t )% t—tp\"
f o (el sup —Mqu[( 7 ) n—2)! +(=) ]

(t—t)"!
+ Z =1 }

0<tp<t

Taking maximum over the interval [0, T]y. We get
1(Fx) = EDI| < Ly|lx =yl +LMy|lx=yl|,.  +@Bllx =], .

Where y and g is given by (10). By the assumption: Ly + LMy + Qf < 1, we deduce that F is a contraction. Hence, by
the contraction mapping principle, (1) has a unique solution.

3.2 Theorem
Assume that (H,) and (H,) holds. Then the problem (1) has atleast one solution on [0, T].

Proof: We show that the operator F denoted by (9) satisfies the hypothesis of Schauder's fixed point theorem. This will be
done in several steps.

Step 1: F is continuous.

Let {x,} be a sequence such that x,, - x in C([0, T]y, R™). Then, for each t € [0, T], we have

[(F)(xi) () = (F x)(t()TI)
3 f oM\ (t —o(s))""
- 4 (n—2)!

t—a(s)\" "
(=)

f<t.xk(t).xﬁ(t),--- A" (), f g(t, s, % (), _1(5))As>
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—f(t,x(t), x2(0), ---,xAn_l(t),ftg(t, s, x(s), ---,XAn_l(s))As) As
f (t — a(s))

- 1!

(t,xk(t).xﬁ(t).---,xﬁ“‘1<t), f 8(t, 5, xi(s), Xk (5), -+, e 1(s>>
- f(t,x(t),xA(t),---,xAn_l(t),ftg(t, S, x(s),---,xAn_l(s))As) As

T\ (t =t )%t —t\"!
- % ) - ) () g+ (5|

o<ty<t

+ Z T (xx (i) — Ik(X(tk))| 0= tk) }

0<tp<t

<IIf( ()
cr(T) (t—a()"" [(t—0a(s) (t=a)™
- f(,xC ))|Ites(1)1% {J I D) +( ) As —f oD }

¥ [P ) 5 ]

+||Ik(xk(-)) - Ik(x(-))“ sup §—
te[0, Ty 0<tp<t 0<tp<t
<y |IF (o xe)) = FCxO| + B |11 (D) = L (x(O)]| » 0 as k > o,
Therefore F is continuous.
Step 2: F maps bounded sets into bounded sets in C([0, T]y, R™).

Indeed, it is enough to show that for anyn* > 0, there exists a positive constant P such that for each
x € By = {x € C([0, T, R™): [Ixl|ppes < 77},
we have ||Fx|| < P. For each t € [0, T]y by the condition (H,), we have

< T n-2 n-1
Fo1= | [(“i ))(t_"(s)) +(=29)
0

t
f(t,x(t),---,xAn_l(t).f g(t,S,X(s),---,xAn_l(s))As> As
0

(n —2)! 2

t n—-1 .
_f % X, XA(t)’”"XAn_l(t)’Lg(t' 5,X(s), x2(s), -+, X2 (8))As) | As
0
o(T) tk)n_z t— e\ — )" 1
_0<tzk<t|1k(x(tk))| [( ) R +< - ) ] 0<Z<t|1k(x(tk))| —

Taking the norm for ¢ € [0, T]y, the above inequality yields ||F(x)|| < (y + B), where y and § is given by (10).
Step 3: F maps bounded sets into equicontinuous sets of C([0, T]¢, R™).
Letty, ty € (tr, tisr), t1 < ty and B,- be a bounded set in C([0, T]y, R™) as in Step 2. Then for € B+ , we have
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|F(x()T()tz) — F(x)(ty)]
3 ‘ f [<0(T)> (& — o))" = (& — 0 ()" (tz - a(s)>”‘1
- 4

(n—2)! 2

n-1 t
3 (tl - 0(5)> lf<t'x(t)' ...,XA“‘l(t),f g(t,s,x(s), ---,xA“'l(s))As> As
2 0

) f (= o) = (= o)

(n—1)

f(t, x (1), x2(0), -+, x2" 7 (D), f tg(t, 5,x(5),x2(5), -+, x2" " (s))As) As
0

0

f %f(t’ X(t). XA(t), - XAn_l (t)’ ftg(t, S, X(S), XA(S); Y XAn_l (S))AS)AS

ty

YT G DEREEEE e S

ik (n—2)! 2 2
_ n-1 _ _ n-1 _ n—-1
+ Ie(x(tw)) (2~ 8 = 1(;1 2 + Z Ik(X(tk))%
0<tk<t1 £ <tg<tz
a(T) (t,—0®) = (t—0®)"" [(t—a\"' [(ti—o©\""
SN[ [ (n—2)! +< 2 ) _< 2 > fs
(t,—0()" " = (tr —0(s))" (t, —a(s))"™
—Nf =D As +f =D ———As
oM\ (t, =t )" 2= (t; — )" 2ty =\t — e\
R OZJ(z} ) (n—2)! +( 2 ) _< 2 ) ]
(t; =t )™ = ( — )"t (t, — )"t
i 0<tz<t (n—1)! ’ t Z« W) (n —1)!
a(T) n-2 n-2 n-1 n-1
oM\ (t;—0(s)) "= (ts —0(s)) t, —o(s) t, —o(s)
o[ | e () ()
51
N n o n em oM\t =t )" 2 = (s =t "% | = t\"
— 206 — )"+ 1ef - el - Z[( - ) o + (25
_ n-1 R
(3 ety X e -

0<ty<ty

Clearly the right hand side of the above inequality tends to zero independent of x as (t, — t;) — 0. In view of the above
three steps, the Arzela-Ascoli theorem applies and consequently the operator F:C([0,T]y, R™) - C([0, T]y, R™) is
continuous and completely continuous.

Step 4: To obtain priori bound of the set € = {x € PC([0, Ty, R™): x = AF(x), A € (0,1)} is bounded. Let x € ¢, then
x = AF(x) forsome 0 < 1 < 1. Then for each t € [0, T]y, we have
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o (T)
x(t) = A{Of

(J(T)) (t—o(s))"

4 (n—2)!

t—a(s)\" " S
+< - ) £(t, x (1), XA (1), -+, xA (t),f g(t,s,x(s),x2(s), -+, X2 (s))As)As
0
_f(t - U(S))n_1 £(t, x (1), x2(0), -+, x2" 7 (©) ft (t,5,%(s), X2(s), -, x2" " (5))As)As
A o B HISE
T _ n-2 _ n-1 - n
_ Z L (x(6) [(0( )) (t tk;)! +<t Ztk) ]+ Z Ik(X(tk))%}
0<tp<t 0<ty<t

Using the condition (H,), it is easy to shows that ||F(x)|| < Ny + RB This shows that € is bounded. Thus, it follows by
Schauder's fixed point theorem the operator F has a fixed point, which is a solution of a problem (1).

4. EXAMPLES
4.1 Example
Consider the problem

¢ 2

5 - 1
x4 (t) —t 3x(®) —2) + 1s ft s*x(s)As | ,t €[01]p,t # >
0

x(0) = —x(a (1)), x2(0) = —x2(a(1)),

1\* 1, 1 /1 1\* 1 1 /1
- — - - - A - — LA (Z LA
x((z)) x(2)+5x<2)’x ((2)) * (2>+5x (2)
Solution: Here n =2, f(t, xy) =1t3(x—2)+%y2. Using the given data, we find L=i,M=§ and Q =§ as
If(t,x2,¥2) — f(tx, y)l < - ||x2 x1|| +§||J’2 _J’1||: |Ik(x2(tk)) - Ik(xl(tk))| S%“xz(tk) _xl(tk)”'y =
0.25and § = 0.1.

Obviously Ly + LMy + QB = 0:103333 < 1. Thus all the conditions of Theorem (3.1) are satisfied. Hence, by the
conclusion of Theorem (3.1), problem (11) has a unique solution on[0,1].

4.2 Example
Consider the problem

e~ ® 4 2sin(1 + 3x(t)) + cos(3 + 5x3(t)) + 3x*
14+ x2(t) ’

x(0) = —x(a(1)),x2(0) = —x2(a(1)), x4 (0) = —x2*(0(1)), x2*(0) = —x**(a(1))
(@) )6+ =(G) )= +6)
(@) )= @)+ 0= (6) )= G+ ()

_ ~2%(®) 42 sin(1+3x(t))+cos(3+5x3(£) ) +3x* . .
Solution: Here f(t,x(t)) = £ sin( sz(:)os( = W)+sx . Clearly f(¢t,x(t)) is continuous and |f(t,x(t))] <N

with N = 7 foreacht € [0,1] and all x € R. Thus the conclusion of Theorem 3.2 applies and the problem (12) has a solution
ont € [0,1].

XA () = € [0,1],

5. CONCLUSION

In this study, we investigated and built a system of higher order impulsive integro-differential equations on time scales
subject to antiperiodic boundary value problems on time scales. The integral term has been included to the system of
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equations to make the equation more clear. We arrived at the distinctive solution by applying the green's function technique
and deduced the existence of solutions by utilizing the Contraction mapping principle and Leray Schauder's fixed point
theorem. In addition, an example is provided to demonstrate the effectiveness of the result.
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