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ABSTRACT 

The creation of controlled release systems enables drugs to be delivered at a specific and expected rate in a programmed 

manner, thereby regulating the optimal concentration and ensuring a consistent concentration at a particular site or receptor. 

Matrix tablets represent a widely used type of controlled release drug delivery system, which releases medication through 

mechanisms of diffusion or dissolution control. The active ingredients are evenly integrated within the material that regulates 

the release rate, for example, polymers can be hydrophilic, plastic, lipid-based, or composed of minerals, among others. 

Polymer can be  either man-made or naturally-derived, but the appeal of natural polymers in pharmaceutical uses lies in their 

cost-effectiveness, accessibility, and non-toxic nature. Chitosan, alginate, starch, and collagen are examples of naturally 

occurring polymers that are used in tissue engineering matrix, regenerative pharmaceuticals, detergents, adhesives, 

packaging, biodegradable plastics, textiles, and rubber. Because they are relatively safe, biocompatible, and readily 

metabolized by the body's enzymes. Biopolymers are the organic materials derived from natural sources. Because the 

biopolymers are biocompatible and biodegradable, they have various uses, including in the food industry. for edible films 

and emulsions, as well as in the pharmaceutical industry for tissue scaffolds, wound healing, dressing materials, drug 

transport materials, and medical implants such as organs. Since natural polymers are essentially polysaccharides, they have 

no negative effects and are biocompatible. The advantages of natural polymers over synthetic ones, as well as their use in 

creating innovative drug delivery systems, are covered in this paper.  
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1. INTRODUCTION 

One of the popular and traditional oral solid dose forms is tablets. In 1843, the first tablet was produced using a equipment 

which is hand operated. Solid dosage form such as tablet are   classified into several categories, including buccal tablets, 

chewable tablets, dispersible tablets, core (uncoated) tablets, modified relaese tablets (which include delayed release, long 

lasting sustained release, and controlled release formulations), sublingual tablets(under the tongue), effervescent tablets, 

coated tablets (which in turn encompass both sugar-coated and film-coated varieties).(1,2) There are two kinds of tablets:  
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immediate-release and extended-release tablets. Extended-release pills are additionally divided into controlled and sustained 

release tablets, while immediate release tablets release medications immediately after consumption within thirty minutes. 

Whereas sustained release tablets have no control over the medication release rate, controlled release tablets 

release the medicine at a set pace for a predetermined amount of time.(3) The creation of controlled release systems enables 

drugs to be delivered at a specific and expected rate in a programmed manner, thereby regulating the Curative level and 

ensuring a constant proportion at a particular binding site or recognition molecule.(4) Controlled release tablet 

formulations provide several benefits, including improved adherence to medication schedules, consistent drug levels in the 

bloodstream, reduced frequency of dosing, fewer complicacies, and a greater margin of safety for powerful medications. By 

the whole of various controlled release drug delivery systems (CRDDS), matrix-based formulations are most commonly 

favoured because of straightforward and affordable production system (5) 

MATRIX SYSTEM 

Matrix tablets represent a widely used type of controlled release drug delivery system, which releases medication through 

mechanisms of dissolution or diffusion control. The Therapeutic components are evenly incorporated throughout the 

substance that controls the release rate, including various kinds of polymers such as plastic, hydrophilic, lipid-based, or 

mineral materials, among others. (6) This polymer material functions as a retardant for release rates. Therefore, it regulates 

the drug levels in the bloodstream, ensuring a consistent therapeutic range while minimizing fluctuations that could lead to 

excessively low or toxic concentrations, thereby reducing the risk of local or systemic side effects. Different matrices display 

varying release patterns, and the unique characteristics of respective matrix have an influence on in total pharmacokinetic 

release profile. (7) 

Positives of oral controlled-release matrix tablets 

1. Increase patient adherence 

▪ The oral administration method is considered more dependable and user-friendly 

▪ Decrease the frequency of dosage 

2. Benefits of Therapy 

▪ Maintains the therapeutic level over an extended duration 

▪ Lessen medication level fluctuations 

▪ Maintain a steady blood medication level and steer clear of elevated blood levels. 

▪ An increase in bioavailability (8) 

3. Diminished Negative Impacts 

▪ Because of poor medication absorption, drug fatalities have decreased. 

▪ Reduce systemic and local medication adverse effects while maintaining a reasonable level of effectiveness. 

▪ Reduce drug build up through long-term dosage (9). 

4. Economical 

▪ Simple to produce 

▪ Reduce medical expenses, such as nursing time (10). 

5. Enhanced dosage form stability is achieved by safeguarding the active pharmaceutical ingredient from hydration 

reaction and breakdown (11). 

6. Efficiently deliver a large-sized molecule 

Negatives of oral controlled release matrix tablets 

1. When compared to conventional tablets, these formulations exhibit reduced systemic availability because of heightened 

pre-systemic metabolism, increased instability, insufficient drug liberation, region-specific absorption, insufficient 

residence in the stomach and stability that is dependent on pH (12). 

2. Meal and stomach emptying time can alter the rate of medication release (13). 

3. Tablet breakdown results in the loss of the controlled release feature. 

4. The use of costly excipients and specialist equipment raises development costs. 

5. It was essential to conduct a thorough assessment of in-vitro/in-vivo correlation (IVIVC) (14) 

6. It becomes challenging to modify the dosage of medications administered in varying strengths (15). 
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Natural Polymer 

Macromolecules (which contains large molecules) are known as polymers, made up of persistent structural elements. The 

chemical bonds present in these components' subunits are covalent bonds. Polymers can originate from either natural sources 

or be artificially synthesized, although the appeal of natural polymers in pharmaceutical uses lies in their cost-effectiveness, 

accessibility, and non-toxic nature. They can undergo chemical modifications, possess the capability to be eco-friendly, and 

aside from a few cases, are generally biologically acceptable. (16)(17) Material derived from plants present several challenges 

including their production in quantities and as complex mixtures, which may diverge based on the plant's locations and 

climatic fluctuations. This complexity can lead to lengthy and costly processes for isolation and purification. Additionally, 

the issue of intellectual property rights has become increasingly significant. (18)(19) The particular use of polymers derived 

from plants in pharmaceutical formulations encompasses their role in creating nanoparticles, beads, implants, systems that 

can be inhaled or injected, microparticles, thick liquid formulations films, and solid monolithic matrix systems. (20)(21)(22) 

In these dosage forms, polymeric substances have served various purposes, including acting as binders, forming matrices or 

modifying drug release, creating film coatings, enhancing thickness or viscosity, stabilizing, aiding disintegration, promoting 

solubility, functioning as emulsifiers, serving as dispersing agents, Gel-forming agents, and biocompatible adhesives. (23) 

ADVANTAGES OF PLANT-BASED POLYMERS 

1. Biocompatible and safe - In chemical terms, most of these plant-based materials primarily consist of carbohydrates 

made up of repetitive Simple sugar units. Therefore, they are thought to be toxic-free. 

2. Biologically degradable- Biodegradable materials are polymers found in nature Generated by all living organisms. They 

do not cause any harmful effects on the environment or humans. 

3. Cost-effective - They are more affordable, and the costs associated with their production are lower than those of artificial 

materials. 

4. Safe and free from complication-They originate from natural sources and are therefore safe and without adverse effects. 

5. The widespread accessibility of these products is evident, as many countries manufacture them due to their use across 

various industries. (24) 

DISADVANTAGES OF PLANT-BASED POLYMERS 

1. Unintentional introduction of microbial agents occurs when products are produced and thus come into contact with the 

external environment, increasing the risk of exposure to harmful microbes. 

2. Water uptake speed can be unpredictable - Variations in the procurement of natural substances over different periods, 

combined with factors such as location, species, and climatic conditions, can lead to differences in the chemical 

composition found in a particular material. 

3. Batch-to-batch variations occur because synthetic manufacturing involves a regulated process utilizing fixed amounts 

of ingredients. In contrast, the production of natural polymers relies on environmental conditions and various physical 

factors. 

4. The production of natural polymers occurs at a slow pace due to its dependence on environmental conditions and various 

other factors, which cannot be altered. Therefore, the rate of production for these materials is inherently low. 

5. Metallic impurity presence - The presence of metallic impurity presence is a potential concern frequently linked to 

herbal excipients. (25) 

THE CLASSIFICATION OF POLYMERS THAT ARE NATURAL 

1. Sources from plants include substances such as aloe vera gel, karaya gum, locust bean gum, rosin, pectin, glucomannan, 

cellulose, tragacanth, acacia, guar gum, inulin, starch as well as hemicellulose also. 

2. Sources from animals encompass xanthan gum, carrageenans, chitin, psyllium, and alginates. 

NATURAL POLYMERS FROM PLANT ORIGIN 

Cellulose 

Cellulose is a naturally abundant biopolymer, readily available due to its renewable nature, decomposable and safe. The 

chemical formula (C6H10O5)n, where n indicate the total count of glucose units, represents the extent of polymerization. It is 

an extended linear polymeric carbohydrate composed of repeating units of β-(1-4)-linked D-anhydro-glucopyranose (AGU). 

(30, 31) It is found in higher concentrations in plants and in trace levels in the cell walls of some organisms. (32) The 

commercial sectors of pharmaceuticals, cosmetics, food production, paper manufacturing, textiles, and engineering all make 

extensive use of Cellulose derivatives, which include cellulose acetate, carboxy methyl cellulose, methylcellulose, hydroxyl 

propyl methyl cellulose, ethyl cellulose, and microcrystalline cellulose. (33, 34, 35, 36, 37) Cellulose exists in four distinct 

polymorphic forms: cellulose I, cellulose II, cellulose III, and cellulose IV. The natural form of cellulose is called cellulose 

I, or native cellulose (NC). And is the most prevalent form found in nature. Through procedures like regeneration (where 

solubilization is followed by recrystallization) or mercerization (which involves alkali treatment), this form can be changed 



Pratibha, Ridhima Sharma, Unnati Rajput and N. G. Raghavendra Rao 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 2 

pg. 214 

 

 

into Cellulose II, also referred to as alpha cellulose.[38]. Compared to cellulose I, cellulose II has greater thermodynamic 

stability. Amorphous cellulose III is obtained by treating cellulose I or II with amines, while cellulose IV is formed by treating 

cellulose III with glycerol. (39) The odourless, tasteless, and white powder known as alpha cellulose is insoluble in water. It 

is a common raw material used to make cellulose derivatives, electrical cable insulators, paper, paperboards, textiles, and 

propellants, among other products. (40). 

Alpha cellulose is the source of microcrystalline cellulose (MCC), a refined, partially depolymerized cellulose derivative. 

Fibrous material made from wood pulp is the most widely used commercial source of microcrystalline cellulose. MCC highest 

prevalent kind of cellulose. In the food processing, it acts as an emulgents, stabilizing material and free-flow agent; in the 

pharmaceutical and cosmetics sectors, it acts as an emulsion stabilizer, disintegrant, adhesive, abrasive, bulking, binding, 

adsorbent, and anti-caking. (41, 42, 43, 44). 

Hydroxy propyl methyl cellulose is a cellulose ether derivative that is moderately modified with O-methyl and O-(2-

hydroxypropyl) groups. Because of its gelling ability, As an additive in systems intended for controlled-release drug 

administration, it has been the focus of a great deal of research. To control how much of the soluble drug diltiazem is released, 

two cellulose ethers that is carboxy methylcellulose and hydroxyl propyl methylcellulose. They were used in matrix type 

tablets as a polymeric carrier material. It was found that in these systems, drug release may be sustained for a significant 

period of time by each polymer alone. More significantly, the combination of two cellulose ethers within matrix-type tablets 

enabled drug release kinetics to follow a zero-order rate at two distinct pH levels, namely pH 6.8 and pH 4.5. (45) The 

dissolving characteristics of hydroxyl propyl methylcellulose monolithic matrix systems were comparable to those of a 

Commercialized osmotic drug delivery system for the poorly soluble medication glipizide. Furthermore, it was demonstrated 

that the gel structure of hydroxyl propyl methylcellulose matrix systems is stronger than that of polyethylene oxide ones, 

"which might offer enhanced in vivo performance regarding the matrix's ability to withstand the disruptive forces present in 

the digestive tract (46) 

 

Fig .1: Structure of cellulose 

Hemicellulose 

Hemicelluloses, which are heteropolymers (matrix polysaccharides) like arabinoxylans, found alongside cellulose in nearly 

all plant cell walls. The structure of hemicellulose is amorphous and irregular and is weak, whereas cellulose is resistant to 

hydrolysis, crystalline, and robust. Hemicellulose, another polysaccharide, i.e, composed of 500–3,000 sugar units, less than 

cellulose's length. Furthermore, cellulose is an unbranched polymer, whereas hemicellulose is a branched one. Hemicellulose 

polysaccharides, such as xylans, xyloglucans, and mannans, can be procured from cell walls of plant using a strongly alkaline 

compound. Their backbones consist of dglycans that are β-1,4-linked. With the exception of three out of every four glucose 

monomers having xylose branches, the backbone of xyloglucan is comparable to that of cellulose. The structure of 

arabinoxylan features a backbone of D-xylan connected by β-1,4 linkages, with branches of arabinose. (47,48) 
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Fig. 2: Structure of Hemicellulose 

Glucomannan 

It is considered that glucomannan is a dietary fiber.(49). Although the Source-dependent variations exist in the 

mannose:glucose ratio, Glucomannan is a polysaccharide belonging to the mannan family, characterized as a hydrocolloid. 

It consists of monomers of D-mannose and D-glucose linked together by β-1,4 bonds, with some backbone units featuring 

acetyl side chains. The acetyl groups help make it a natural polymer which is soluble, with the maximum viscosity and water 

retention ability, as well as contributing to its swelling and solubility. Plant bulbs, roots softwood, tubers, and are the specific 

sources of this polysaccharide, which is found in great abundance in nature. The type of glucomannan that is most frequently 

used is konjac glucomannan, a polysaccharide that shows great promise for application in drug delivery systems. It is 

extracted from Amorphophallus konjac tubers. Konjac glucomannan has been studied as a beneficial element in controlled-

release drug delivery systems when paired with different polymers or altered at the molecular level, since on its own it creates 

relatively weak gels. Additionally, it is a soluble fiber that has been explored for its potential role in alleviating constipation. 

In order to alleviate constipation, glucomannan can reduce the transit time of bowel movements. (22,50,51) For eight hours, 

Konjac glucomannan gel systems have been demonstrated to preserve the stability of theophylline and diltiazem while 

regulating their release. However, this response differed according to the region of origin—whether America, Japan, or 

Europe attributed to variations in the acetylation levels of konjac glucomannan. The availability of β-mannanase in the colon 

notablyexpedited the release of cimetidine, yet matrix tablets made solely of konjac glucomannan exhibited the capability to 

maintain drug release under typical physiological conditions found in the stomach and small intestine. The tablet’s gel 

structure is strengthened through a network of hydrogen bonds formed between the two polymers, which significantly restricts 

the diffusion of the drug. For that reason, combinations of xanthan gum and konjac glucomannan in matrix type tablets 

showed great promise for controlling and maintaining drug release. (52) Hydrophilic cylinders and particles were created 

using konjac glucomannan to allow for the controlled release of DNA. (53) Trisodium tri metaphosphate-cross linked konjac 

glucomannan produced hydrogel systems that, depending on the polymer network density and enzyme-catalyzed degradation, 

might maintain the release of hydrocortisone. (54) 

 

Fig. 3: Structure of Glucomannan 

Agar 

Agar, commonly referred to as agar-agar, is a desiccated gelatinous material obtained from the red algae species Gelidium 

amansii (Gelidaceae) as well as a number of others varieties of rhodophyta, such as Gracilaria (Gracilariaceae) and 

Pterocladia (Gelidaceae). (58) Depending on the form, it can be yellowish grey, white, or almost colorless. It is available in 

sheets, flakes, strips, and coarse powder, among other forms. It does not dissolve in cold water, but when boiled and 

refrigerated, it turns into a gooey mass. It is also insoluble in organic solvents. (55) Agrose and agaropectin are two distinct 

polysaccharides that make up agar. Agaros, which is made up of D-galactose and three to six anhydro Lgalactose units, gives 

agar its gel strength. About 3.5% of it is cellulose, while 6% is made up of materials that include nitrogen. Agaropectin is 

what gives the agar solution its viscosity. Galactose and uronic acid units undergo partial esterification with sulfuric acid, 
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leading to the creation of this sulfonated polymer. On account of its strong gel strength, agar serves as an effective 

disintegrant. (56, 57, 58) Pankaj Bhardwaj et al. utilized this polymer as a naturally derived super disintegrant to formulate 

an ODT of metformin hydrochloride, aiming to enhance bioavailability, disintegration time, dissolution efficiency, and 

patient compliance. When compared to other formulations, it was discovered that the one containing 6% super disintegrant 

produced superior outcomes. 11.03 seconds was the disintegration time, and 98.5% of the medication was released in less 

than 30 minutes. (59). Agar serves as a gelling agent in suppositories, an emulsifier, a surgical lubricant, a laxative, a pill 

disintegrant, a bacterial culture medium, and a suspension or gel-forming agent. 

 

Fig. 4: Structure of Agar 

Starches 

Amylum, commonly referred to as starch. It is a carbohydrate made up of several glucose units linked together by glycosidic 

bonds. This type of polysaccharide is synthesized through every autotrophic plant as a means of storing energy. It acts as the 

main carbohydrate source in green plants and is mainly located in underground parts and seeds. Granules, or starch grains, 

are a type of starch. Several starches are known to have medicinal use. These consist of rice (Oryza sativa), potatoes (Solanum 

tuberosum), maize maize (Zea mays) (Zea mays), and wheat (Triticum aestivum). (60) It is composed of 2 polymers: 

amylopectin, which is extensively branched and comprises both alpha-1,4 and alpha-1,6 linked D-glucose monomers, along 

with amylose, a linear helical polymer formed of alpha-1,4 linked D-glucose basic units. 

  

(A)                                                                                        (B) 

Fig.5: Structure of a) Amylopectin and b) Amylose 

Modified Starch 

The extensive applicability of a newly developed pre-gelatinized starch for incorporation into directly compactable 

controlled-release matrices have been assessed. This product is produced by the enzymatic breakdown of potato starch, 

Subsequent to a series of procedures including filtration, precipitation (retrogradation) and ethanol washing. It represents 

various benefits, such as easier tablet formulation, the potential to provide sustained zero-order drug release over an extended 

duration, and the capacity to handle high drug concentrations with diverse physicochemical properties. The tablet release 

rates formulated from retrograded pre-gelatinized starch can be adjusted to meet specific release profiles by manipulating 

various factors, including compaction force, tablet shapes, and the addition of other additives. (61) 

 

Fig. 6: Structure of Modified Starch 
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Native Starch 

Because of its significant swelling and quick enzymatic breakdown, which causes many medicines to release too quickly, it 

might not be appropriate for application in drug delivery systems that require controlled release. As a result, starch derivatives 

that demonstrate greater resistance to enzymatic degradation, along with methods such as crosslinking and co-polymerization, 

are being considered, are currently being utilized. Acetyl esterified starch acetate has demonstrated delayed enzymatic 

degradation, suggesting its possible application as a targeted drug delivery system for the colon. (62) In controlled-release, 

directly  compressible matrix systems, Spray-dried high-amylase carboxy methyl starch demonstrated a significant capability 

for loading the soluble drug acetaminophen. (63) Microcapsules incorporating a protein compound and a protein-degrading 

enzyme inhibitor were developed to improve the oral delivery of protein or peptide-based drugs. The mixed-walled 

microcapsules, made from bovine serum albumin and starch, were produced using terephthaloyl chloride to facilitate 

interfacial cross-linking. Throughout the cross-linking process, protease inhibitors were added to the aqueous phase to 

encapsulate either native or amino-protected aprotinin. In vitro studies demonstrated that aprotinin-containing microcapsules 

provided a protective effect on bovine serum albumin. (64) 

Pectin 

Citrus peels, such as Citrus Aurantium or Citrus Simon, include an inner portion called pectin, which is a refined carbohydrate 

product that is generated by acid hydrolysis (Rutaceae). The principal element of pectin is a straight-chain polymer made up 

of 1,2-linked L-rhamnose residues that break up alpha-1,4-linked D-galacturonic acid residues. Because each molecule is 

made up of hundreds to thousands of building units, its mean molecular mass falls between 50,000 to 1,80,000. (65) Neutral 

saccharide like glucose, rhamnose, galactose, arabinose, xylose are abundant in galacturonic-containing polysaccharides. On 

the basis of plant origin, pectin's composition might change. For instance, pectin from citrus has a smaller molecular size and 

fewer neutral sugars than pectin from apples. (66,67) In a bid to mask the unpleasant flavor of oral chloroquine, the potential 

of amidated pectin as a matrix patch for transdermal delivery were investigated. The results indicate that the pectin-

chloroquine patch formulation may be beneficial for malaria treatment and for administering chloroquine through the skin. 

(68) 

 

Fig. 7: Structure of Pectin 

Inulin 

A large number of plants naturally possess inulin, which is a polysaccharide that serves as a carbohydrate for storage, 

primarily composed of fructose monomeric units with a glucose terminal, unlike starch, the most common glucose storage 

polymer. It is found in over 30,000 plant species, with its key commercial origins being the tubers of Jerusalem artichokes 

(Helianthus tuberosus) and dahlias (Dahlia pinnata), as well as the roots of chicory (Cichorium intybus) and yacon (Polymnia 

sonchifolia). (69, 70) Inulin naturally occurs in plants as a blend of fructose oligosaccharides and polysaccharides, varying 

from two to hundred units depending on the plant extraction process, age and species. (71) Valentine Rose, a German scientist, 

identified inulin as a plant carbohydrate from the roots of Inulin helenium in the 1800s, and it was given its name in 1817.Rose 

discovered this unusual polysaccharide as a water-soluble extract and used boiling water to separate it from plant sources. 

Julius Sachs, a german plant physiologist and a pioneer in fructans, demonstrated the spherocrystalline structure of inulin 

from several plant roots later in 1864. For many years, people with diabetes have used inulin as a sweetener. (72) The molecule 

is typically terminated by an alpha-D-glucosyl group linked via a (1↔2) bond. Inulin belongs to the fructan carbohydrate 

family (fructose-based polymers) and primarily consists of beta-D-fructosyl subunits connected through (2→1) glycosidic 

linkages. (73). Fructose chains vary in length; for inulin, they typically range from two to sixty monomers, however they can 

exceed one hundred. The general formula GFn,in which G stands for glucose units, F for fructose units, and n for the number 

of fructose molecules joined to create the entite carbohydrate chain, is frequently used to represent fructans. (74) By changing 

the inulin's cooling temperature in solutions, two distinct morphologies-obloid and needle-like-can be created from its fivefold 

helical crystalline structure. (75). While the obloid crystals enhance food lubrication (mouthfeel), the needle-like crystals 

increase viscosity. The degree of polymerization affects inulin's solubility, much like it does for many other polymers. As the 

degree of polymerization increases, inulin becomes less soluble. It was also noted that solubility increased with heat. (76) 
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Fig. 8: Structure of Inulin 

Guar Gum 

Guar gum, which belongs to the Leguminosae family, is obtained from the ground endosperm of the seeds of Cyamopsis 

tetragonolobus Linn.  (58) Other names for guar gum include guaran, clusterbean, Guyarem, Gum cyamposis, Gum lucern, 

Cyamopsis gum, and Guarina. beta-D-mannose monomers that are (1→4) di-equatorially linked make up galactomannans, a 

linear polymer, some of these connections involve single glucose side group composed of alpha-D-galactose. (77) The 

fundamental structure of guar gum is made up of β-1,4-linked D-mannopyranose units, where every other mannose is 

generally bonded at  the 1–6 position to α-D-galactose. (78) The FDA has classified guar gum as generally recognized as 

safe. (79) Recently, there has been increased interest in guar gum as a cost-effective and versatile system for delivering oral 

extended-release medications. (80) Guar gum is particularly advantageous for delivering drugs to the colon because it can be 

broken down by specialized enzymes present there. It shields the medication from the acidic conditions of stomach and small 

intestine, facilitating its transit to the colon, where it is either degraded by microbial enzymes or absorbed by certain 

microorganisms. Guar gum itself shows substantial promise as a carries for oral controlled-release matrix systems. 

Additionally, it was shown that excipients can be added to these matrix systems to regulate the release of drugs. (81) Guar 

gum, formulated as tri-layered controlled-release tablets can serve as a carrier for the development of oral prolonged-release 

drug systems, particularly for high-aqueous solubility drugs like trimetazidine dihydrochloride. (82) A model medication 

with high solubility, metoprolol tartrate, was used in the same investigation. When developing oral controlled drug delivery 

methods for drugs that are extremely soluble in water, such as metoprolol tartrate, The research results indicated the potential 

for guar gum to serve as a carrier in the design of three-layer matrix tablets. (83) Diltiazem HCl, another water-soluble drug, 

the release profile of this formulation is carefully designed to be similar to that of commercially available sustained-release 

diltiazem hydrochloride tablets (D-SR tablets), which are created using a matrix that incorporates guar gum and are 

manufactured through the wet granulation method. (84) 

 

Fig. 9: Structure of Guar Gum 

Locust Bean Gum 

The seeds from the leguminous plant Ceratonia siliqua Linn (Leguminosae) are processed to produce locust bean gum, also 

referred to as carob bean gum. Rather than being extracted directly from the plant, it is made by grinding the endosperms that 

are present in the locust bean tree's brown pods or beans. The primary element of this substance is a neutral galactomannan 

polymer, which consists of D-mannopyranosyl units joined by 1,4 bonds. Every fourth or fifth unit along the chain is replaced 

with a D-galactopyranosyl unit at the C6 position. Due to its neutral nature, locust bean gum maintains stable solubility and 

viscosity across a pH range of 3 to 11. (85) Matrix tablets formulated with locust bean gum, both with and without 

glutaraldehyde as a cross-linker, exhibited drug release characteristics comparable to those of scleroglucan and guar gum 

across various model drugs. (76) A study revealed that minimatrix systems formulated with locust bean gum could enable 
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the extended release of diclofenac sodium. Additionally, Penwest Pharmaceuticals developed a commercially available tablet 

formulation (TIMERx®) using a fusion of xanthan gum and locust bean gum, which exhibited prolonged release properties 

both in vitro and in vivo. (87) 

 

Fig.10: Locust Bean Gum 

Gum Arabic 

The stem and branches of the wild Acacia Arabica plant, a member of the Leguminosae family, are used to extract the dried 

sticky material known as gum acacia or gum Arabic. It is known that the gum is an acidic polymer made up of L-arabinose, 

D-glucuronic acid, L-rhamnose and D-galactose. In oral and topical medication formulations, acacia is mostly used as an 

emulsifying and suspending component, usually in conjucation with tragacanth. Additionally, it is also utilized as a tablet 

binder and in the manufacturing of pastilles and lozenges. (88) Gum Arabic proved to be a successful matrix 

microencapsulating material for the endoglucanase enzyme, increasing its stability and allowing for a gradual release of the 

encapsulated enzyme. (89) To create a monolithic osmotic tablet method, In monolithic osmotic tablet formulations, gum 

arabic has been employed as suspending, expanding and osmotic agent. For up to twelve hours at pH 6.8, an optimized system 

in one research released the hydrophobic medication naproxen at a rate of about zero orders of magnitude. (90) In another 

investigation, gum arabic pellets were utilized to attain a sustained release of ferrous sulfate over a span of seven hours. When 

these pellets were coated with polyvinyl acetate or ethylene vinyl acetate, the duration of release was extended to almost 12 

hours. The gelling characteristics of gum arabic played a crucial part in this process: a higher concentration of gum arabic in 

the pellets formed a gel layer that functioned as a Obstacle, thereby reducing thediffusion rate of ferrous sulfate. (91) 

Karay Gum 

Sterculia urens (Sterculiaceae) is the source of karaya gum, a polymer that is moderately acetylated and includes galactose, 

glucuronic acid, rhammnose was utilized. Matrices were created through direct compression using hydrophilic swelling 

natural gums, specifically xanthan gum and karaya gum , which served as agents for controlling release. Caffeine and 

diclofenac sodium were chosen for studies on drug release, gum erosion and hydration, owing to their varying solubilities in 

water, utilizing a dissolution testing eqipment with the basket method at 2 different agitation rates. The findings indicate that 

the release of the drug from matrices containing xanthan and karaya gum is affected by the quantity of the gum present, the 

solubility of drug and agitation speed. Notably, in karaya gum matrices, the erosion process plays a dominant role in achieving 

near zero-order drug release. (92) Studies show that mucoadhesive tablets designed for buccal use, which are made with 

karaya gum, demonstrate better adhesive qualities compared to those produced with guar gum. These karaya gum-based 

tablets can achieve zero-order drug release; however, to attain an appropriate sustained release profile, concentrations 

exceeding 50% w/w may be necessary. (93) 

Tragacanth 

The stems and branches of many trees that grow in Turkey, India, and the northern and western parts of Iran are used to make 

the natural gum known as tragacanth.  Tragacanth gum is available in 2 primary forms: ribbons and flakes. Ribbons, 

considered the superior grade, exhibit higher viscosity but lower surface activity compared to flakes. (94, 95, 96) In general, 

TG is regarded as an anionic polysaccharide that is viscous, odorless, and tasteless and that is neither carcinogenic, allergic, 

or mutagenic.(97) Methoxy content, soluble and insoluble components, and sugar composition make up TG. Seasonal 

changes, geographic variance, environmental and growth circumstances, and the place of extraction all affect the proportional 

variances. With several side chains made up of L-fructose, D-xylose, and minute quantity of D-glucuronic acid, D-galactose, 

single strand chains of 1,4-linked alpha-D-galacturonic acid traces joined to the acidic bakebone from the complex 

heterogeneous polymer known as TG.(98) With the advantages of superb rheological behavior, remarkable heat stability, 

biocompatibility, high hydrophilicity, and non-toxicity, Among the natural gums, Tragacanth is the most aggressive vicious. 

(99,100,101) 

Tragacanth, whether used alone or in combinationwith other polymers, effectively extended drug release when employed as 

a carrier in the formation of single- and triple-layer matrices. (102) Some initial findings also suggest that consuming 

tragacanth alongside a high sugar intake may help reduce blood sugar levels in diabetic patients. (103), similar to other water-

soluble gums. However, this effect has not been consistently demonstrated (104), and more research is required to completely 
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understand it. While gum tragacanth increases stool bulk and reduces gastrointestinal transit time, similar to other soluble 

fibers, it seems to have no impact on triglyceride, serum cholesterol or phospholipid levels over a twenty-one day 

supplementation timeframe. (103,105) Traditionally, tragacanth has been used as a thickening, emulsifying and suspending 

agent. (106) 

Aloe Gel 

The interior Aloe vera (L.) Baum. F. (Aloe barbadensis Miller) leaves is made up of parenchyma tissue that contains a 

gelatinous mucilage(107). In an experiment, diclofenac sodium was utilized as a test drug; the Aloe Vera gel was extracted 

from the leaves, filtered, and subsequently underwent acetone precipitation. The mucilage obtained was directly compressed 

into matrix type tablets, which displayed favorable swelling characteristics and sustained drug release. (108)The carbohydrate 

polymer observed in gel of Aloe vera leaves are linked to numerous health advantages. These biological functions include 

promoting healing of wounds, demonstrating hypoglycemic or antidiabetic effects, exhibiting antifungal activities, potential 

anticancer effects, immunomodulatory properties, and gastroprotective benefits. Furthermore, liquid formulations obtained 

from the entire leaves or the inner fillet gel of A. vera can improve skin penetration, intestinal uptake, and the bioavailability 

of drugs delivered alongside. An additional important pharmaceutical use involves utilizing dried Aloe Vera gel powder as 

an additive in sustained-release pharmaceutical formulations. (109) 

 

Fig. 11: Structure of Aloin 

NATURAL POLYMER FROM ANIMAL ORIGIN 

Chitin 

Researchers and industry participants are interested in two biopolymers: chitin and chitosan. This is because of their potential 

applications in textile production, bioengineering, agriculture, papermaking, and the food industry. (110,111). Because of 

their abundance, no-toxic properties, and high biocompatibility, Chitin and chitosan possess versatile functionalities. 

(112,113). The isolation of this polymer from variety of sources has been extensively researched and explored in numerous 

studies over the last 20 years. These sources include crustacean shells, medicinal fungi, colorado potato beetle larvae and 

adults, spider species (114,115), insect cuticles, Melolonthamelolontha, bat guano (116,117), Orthoptera species (118), 

Daphnia magna resting eggs (119), and at last green algae and fungal cell walls. Nonetheless, studies have shown that the 

source selection affects the yield as well as the physiocochemical properties of chitosen and chitin that are extracted. 

However, this assessment noted that none of these researchers' methods have reached the industrial level. N-trimethyl chitosan 

and mono-N-carboxymethyl chitosan are two examples of chitosan and its derivatives that are reliable and effective for 

improving absorption, facilitating the delivery of hydrophilic macromolecules through mucosal routes (nasal and oral). This 

includes various peptide and protein medications as well as heparins. Chitosan promotes the intercellular pathway of 

macromolecular medications by means of opening intercellular tight cell junctions, which increase absorption. For regulated 

drug release, chitosan nanoparticles and microparticles are also appropriate. Vaccines associated with certain particle systems 

have demonstrated the ability to increase the absorption of antigens by mucosal lymphoid tissues. This enhancement 

subsequently triggers robust mucosal and systemic immune reactions to the antigens. The formulation type and the level of 

deacetylation appear to influence the non-specific adjuvant properties of chitosans. This polymer and its derivatives are 

favorable polymeric additive for the delivery of vaccines and mucosal treatments, according to the reviewed literature. (120) 
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Fig. 12: Structure of Chitin 

Alginate 

The polymer alginate naturally occurs in the cell walls of algae & bacterial capsules of Azotobacter and Pseudomonas species. 

Brown algae, sometimes referred to as brown seaweeds, have cell walls that contain alginate, which gives them flexibility 

and a strong structure while shielding them from potential damage from strong ocean waves. (121) It helps bacteria develop 

protective capsules, forms biofilms (122) and promotes bacterial colonization and adherence. (123) Since its discovery from 

kelp by Stanford in 1881, alginate has gained widespread recognition as a stabilizing agent, thickening, gelling agent, and 

emulsifier (124) due to its propensity to create hydrogel. Following the patent issuance for alginate extraction from algae in 

the 1930s, alginate was extensively extracted from brown algae (Phaeophyceae sp.), including Macrocystis pyrifera, 

Laminaria japonica,Laminaria hyperborea, Ascophyllum nodosum, & Laminaria digitata. (124) To evade first-pass 

metabolism, function as an injectable alternative, and enhance treatment effectiveness for angina pectoris and hypertension, 

bioadhesive microspheres of sodium alginate incorporating metoprolol tartrate wew developed for intranasal systemic 

administration. The microspheres were formulated using the emulsification-crosslinking method. Comparing metoprolol 

from microspheres to oral and nasal drug solution delivery, in vivo trials showed a markedly enhanced therapeutic efficacy, 

with prolonged and regulated suppression of isoprenaline-induced tachycardia. (125) A comparative analysis indicated that 

the alginate formulation was more effective than the polylactide-co-glycolide(PLG) preparation in increasing the rate and 

extent of absorption of the anti-fungal drugs econazole & clotrimazole. Nanoparticles were created using the cation-induced 

controlled gelification technique for alginate and the emulsion-solvent evaporation method for PLG. (126) 

 

Fig. 13: Structure of Alginates 

Carrageenans 

Carrageenan, often known as Irish moss, is a sulphated polysaccharide extract of the seaweed known as carrageen, which is 

derived from the red algae Chondrus Crispus (Rhodophyceae). (58) The human body cannot absorb seaweed-derived 

carrageenan, which gives the body weight but no nourishment. Carrageenan comes in three primary varieties: iota (ι), lambda 

(λ) and kappa (κ) (47) While kappa-type carrageenan produces a delicate gel, lambda-type carrrageenan generate thick 

solutions that do not solidify into a gel. Elastic gels are produced by iota-type carrageenan. (79)  The capacity of compaction 

of one iota-carrageenan (Gelcarin®GP-379 NF) and two kappa-carrageenan (Gelcarin®GP-911 & GP-812 NF) was assessed, 

demonstrating their ability to produce robust compacts with significant elastic recovery. According to the study’s findings, 

the studied carrageenans were relevant additives for formulating controlled-release medicine (127) To produce hydrogel 

beads with a smoother surface morphology than single-polysaccharide network beads, cross-linked alginate and potassium 

were combined with κ-carrageenan. The hydrogel’s carrageenan elements significantly improved the thermal stability of the 

polymeric framework. Initially, these beads were employed as carriers in advanced drug delivery systems.  (128) 

                   

(A)                                                                                                   (B) 

 

(C) 
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Fig. 14: Structure of A) iota-carrageenan, B) lambda-carrageenan and C) kappa-carrageenan 

Psyllium 

To obtain the psyllium mucilage, the seeds of Plantago ovata are ground to break down their outer layer. Additionally, Its 

ability to bind tablets and to create hydrogels via radiation-induced cross-linking for the controlled release of 5-Fluorouracil 

as a prototype medication, as its capacity to bind tablets. (129,130) For the preparation of methacrylamide and psyllium 

hydrogels a cross-linker N, N’-methylenebisacrylamide is used, which were subsequently loaded with insulin. By relaxing 

the polymer chain during swelling, these cross-linker containing hydrogels demonstrated a predetermined release of active 

component via not following the fick’s law of diffusion. (131) Using psyllium husk in conjunction with various additives 

such as HPMC(Hydroxy propyl methylcellulose) for the preparation of unique sustained release, mucoadhesive and swellable 

gastro-retentive drug delivery system for ofloxacin was developed.(132) 

 

Fig. 15: Structure of Psyllium 

Xanthan Gum 

The gram-negative bacterium Xanthomonas campestris ferments to yield xanthan gum, an extracellular biopolymer with a 

macromolecular structure. Its fundamental structure consists of a cellulose backbone composed of beta-D-glucose units and 

a trisaccharide side chain of beta-D-mannose, beta-D-glucuronic acid and alpha-D-mannose that joins to alternating glucose 

units in the primary strand. One study indicated that xanthan gum was more effective than the synthetic polymer hydroxyl 

propyl methylcellulose at slowing down medication release. Hydroxy propyl methylcellulose and xanthan gum were both 

used as hydrophilic matrixing agents in the production of modified-release diltiazem HCl tablets. The drug release from the 

tablets made using the direct compression technique was notably affected by the ratio of these two polymers. The study 

concluded that by optimizing the combination of hydroxyl propyl methylcellulose and xanthan gum, the desired modified 

drug release profile can be attained. (133) 

 

Fig. 16: Structure of Xanthan Gum 

Biopolymer 

Organic molecules are naturally found in biopolymers. Originating from the 2 Greek terms "bio" & "polymer," which denote 
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life & natural materials, the term "biopolymer" was created. High molecular weight polymer made up of multiple repeating 

units are called biopolymers. (134, 135). Biopolymers are used in the pharmaceutical industry for wound healing, tissue 

scaffolds, dressing materials, drug transport materials & medical implants like organs. They are also used in the food sector 

for edible films and emulsions. This is due to the biopolymers' biocompatibility and biodegradability. This review aims to 

provide insight into biopolymers and the uses they have in food and pharmaceutical sectors. Proteins, carbohydrates, lipids, 

nucleic acids & huge non-polymeric substances such as macrocycles and lipids are examples of biopolymers, which are 

among the most prevalent macromolecules. (136). In contrast, synthetic high molecular weight polymer embrace materials 

like plastics, synthetic fibers & experimental substances such as carbon nanotubes. (137) 

Need for Biopolymers 

Biopolymers have garnered significant interest in applications that demand sustainable and biodegradable solutions. 

Improvements in this area are crucial, as methods for drug delivery continue to be a fundamental approach in increasing the 

efficacy of bioactive compounds for disease treatment. In this context, drug delivery methods are frequently developed using 

natural, synthetic and semi-synthetic polymers (138). Numerous environmental issues are brought up by the food and medical 

industries' extensive usage of synthetic and chemical-based polymers. The development of packaging materials based on 

biopolymers is being propelled by growing awareness of sustainability, pollution prevention, and municipal solid waste 

management. (139) Incorporating biopolymers helps reduce reliance on petroleum-based resources, minimizes municipal 

solid waste, and lowers carbon dioxide emissions. (140). 

Sources of Biopolymers 

Natural biological sources of biopolymers include agricultural waste, plants, microbes, and animals. Biopolymers can also 

be chemically synthesized from monomeric components such as amino acids, oils, & sugars, utilizing plant sources like 

sorghum (141), maize, rice (142), yams (143), wheat (144), banana (145), cassava (146), tapioca (147), potatoes (148), cotton 

(149), corn (150), and barley (151). Cats are the most prevalent animal source, but the most common marine sources include 

fish, shrimp, corals, lobsters, and sponges. The most frequent microbiological sources are algae, fungus and yeasts. 

Agricultural waste, paper trash, crops, green garbage, and wood waste are eaxmples of biomass sources that are high in 

carbohydrates. Triglycerides are found in vegetable oils such as castor, rapeseed, safflower, jojoba, sunflower, soyabean and 

meadowfoam oil. (152) Vegetable oils purchased from food producers are great substitutes for the manufacturing of natural 

polymers. These biopolymers can be melted and shaped similarly to synthetic and chemical thermoplastics, they are naturally 

synthesized and degraded through microbial metabolism. (153) 

 

 

 

Properties of various Biopolymers 

Biopolymer Properties Reference 

Agar Swelling Agent (154) 

Guar gum Thickening agent (155) 

Pullulan Film Formation (156) 

Xanthan gum Foam stabilizer (157) 

Pectins Adhesive (158) 

Carboxymethyl cellulose Coating, Emulsifying agent (159) (160) 

Gellan Inhibitor (161) 

Gum karaya Syneresis inhibitor (162) 

Alginate Gelling agent (163) 

Starch Stabilizer (164) 

Hemicellulose Binding agent (165) 
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CONCLUSION 

With a number of benefits, including biocompatibility, biodegradability, and adjustable drug release profiles, matrix tablets 

made with biopolymeric components have become a viable method for controlled drug release. The potential of both natural 

and synthetic biopolymers, including chitosan, alginate, cellulose derivatives, and xanthan gum, to alter drug dissolving rates 

and improve patient compliance has been extensively studied. Achieving the intended release kinetics and enhancing drug 

stability depend heavily on the choice of biopolymer, either alone or in combination. Apart from their potential, issues with 

scalability, batch-to-batch consistency, and polymer variability continue to be major difficulties in pharmaceutical 

formulation. To improve accuracy in matrix tablet design, future studies should concentrate on refining polymer blends, 

investigating new biopolymer modifications, and incorporating cutting-edge technologies like 3D printing. All things 

considered, biopolymeric matrix tablets have a lot of potential to further regulated drug delivery and enhance therapeutic 

results. 
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