Journal of Neonatal Surgery
ISSN(Online): 2226-0439

Vol. 14, Issue 29s (2025)
https://www.jneonatalsurg.com OPEN /=) ACCESS

Laplacian Operators for Scientific Computing: A Comparative Analysis of CPU and GPU
Implementations

Dr. Aswini J*, Mr. Marinto Richee J?, Dr. M. G. Dinesh?, Dr. A. Gayathri*

125aveetha Engineering College, Chennai, Tamil Nadu, India.
3Easa College of Engineering and Technology, Coimbatore, Tamil Nadu, India

“Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences (SIMATS), Saveetha University,
Chennai, Tamil Nadu, India

L2Email 1D: aswinijmarintorichee.student@saveetha.ac.in, Email 1D: dineshbabu.mg@gmail.com
“Email ID: gayathribala.sse@saveetha.com

Cite this paper as: Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri, (2025) Laplacian Operators for
Scientific Computing: A Comparative Analysis of CPU and GPU Implementations. Journal of Neonatal Surgery, 14 (29s),
75-84.

ABSTRACT

This paper presents a comprehensive bench-marking study of a 2D Laplacian filter implemented on both CPU and GPU
architectures for image processing applications. The Laplacian filter serves as a fundamental tool in edge detection and
feature extraction, playing a crucial role in various computer vision tasks

Keywords: Image Processing - GPU Acceleration - Performance Benchmarking.

1. INTRODUCTION

Numerical algorithms play a pivotal role in scientific computing, providing solutions to complex mathematical problems that
may lack analytical solutions. These algorithms leverage computational methods to approximate solutions, enabling the
modelling and simulation of real-world phenomena. One such class of numerical algorithms involves the use of Laplacian
operators, which are fundamental in solving differential equations and are ubiquitous in various scientific and engineering
disciplines.

Laplacian operators, denoted by V2 or A, are differential operators that arise in the study of second-order partial differential
equations (PDEs). These operators are instrumental in characterizing diffusion processes, heat conduction, and potential
fields. In scientific computing, Laplacian operators are employed for tasks ranging from image processing to fluid dynamics
simulations. Their ability to capture spatial variations and gradients makes them indispensable in modelling physical
phenomena. The versatility of Laplacian operators extends to a myriad of real-world applications. In image processing,
Laplacian filters are utilized for edge detection and 2 Dr. Aswini J. et al. sharpening. In physics, Laplacian operators describe
the distribution of gravitational and electric potentials. Laplacian smoothing is applied in mesh generation for finite element
analysis. Understanding and optimizing the computation of Laplacian operators are critical for enhancing the efficiency of
these

applications.

This research paper delves into the implementation and optimization of Laplacian operators, with a focus on achieving
superior performance through parallel computing on Graphics Processing Units (GPUs). The subsequent sections will
explore the methodology, benchmarking results, speedup factor analysis, and comparisons with existing approaches. The
paper concludes with insights into potential optimizations, challenges faced, and future directions for advancing Laplacian
algorithms in scientific computing.

2. METHODOLOGY

In this research, we embarked on the analysis of Laplacian operators, aiming to enhance computational efficiency on both
CPU and GPU architectures. The methodology involved a series of steps, including algorithmic analysis, GPU acceleration,
parallel computing techniques, benchmarking, and performance evaluation.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s
pg. 75


mailto:aswinijmarintorichee.student@saveetha.ac.in
mailto:dineshbabu.mg@gmail.com
mailto:gayathribala.sse@saveetha.com

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

Algorithmic Analysis:

Baseline Implementation: We initially implemented the Laplacian operator algorithms for both CPU and GPU using standard
approaches.

Analysis and Identification: Through extensive analysis, we identified computational bottlenecks and areas for improvement
within the algorithms.

GPU Acceleration:

CUDA Integration: Leveraging NVIDIA’s CUDA platform, we parallelized the Laplacian computations for GPU
acceleration.

GPU Kernels: We developed and executed GPU kernels to leverage the highly parallel architecture, ensuring optimal
utilization of GPU resources.

Parallel Computing Techniques:

CPU Parallelization: For CPU architecture, we employed multi-threading techniques to parallelize Laplacian computations,
optimizing for modern multi-core processors.

GPU Parallelization: The parallelization strategy for GPUs focused on breaking down the Laplacian computations into
parallelizable tasks, aligning with the architecture of the GPU.

Benchmarking Methodology:

Hardware and Software Configuration: We conducted benchmarking on diverse hardware configurations, including CPUs
and GPUs. The software environment, including programming languages (Python, CUDA), libraries (NumPy, CuPy), and
tools (Numba, NVIDIA Nsight), was carefully configured for consistency.

Array Size Selection: Benchmarking involves systematically varying the array sizes to cover a spectrum of computational
loads, allowing for a comprehensive performance assessment.

Performance Evaluation Criteria:

Key Metrics: The primary metrics for performance evaluation included execution time, throughput (operations per second),
and memory usage.

Comparison with Baseline: Results were compared against the baseline implementation to quantify the improvements
achieved through optimization.

Experimental Setup:

Hardware Platforms: We performed experiments on a range of CPUs and GPUs, detailing the specifications of each hardware
platform.

Software Configuration: The software stack, including operating systems and versions of relevant libraries, was documented
to ensure transparency and reproducibility.

Data Collection:

Systematic Testing: Rigorous testing procedures were applied to collect data under varying conditions. Multiple runs were
conducted for each configuration to ensure reliable results. Data Logging: Detailed logs were maintained, recording
execution times, throughput, and memory usage for subsequent analysis.

Statistical Analysis:

Speedup Calculation: Speedup factors were calculated based on the ratio of execution times between optimized and baseline
implementations.

Statistical Significance: Statistical methods were applied to assess the significance of observed speedup factors, ensuring the
reliability of the optimization results.

Ethical Considerations:

Data Privacy: As the research focused on algorithm optimization and benchmarking, no human subjects or sensitive data
were involved, minimizing ethical concerns. Adherence to Ethical Standards: The research adhered to ethical standards,
promoting responsible conduct in experimentation.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s
pg. 76



Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

3. LITERATURE REVIEW

TABLE I: LITERATURE REVIEW TABLE 1

Title Methodology Fasults Conchision
Presents results of Summarizes kev
A Snrve om Presents frameworks for qualitativa and findings, emphasizes
i acceleration of transformer ftativ i . :
Hardw quantitative companson rtancs of hardw
A ‘rm: ; natworks for LLMs and NLP of different hardware :;:Pecllmto:-ofer e
L{:{:E Ta o= o using hardware accelerators, accelerators for LLMs, chanci ) o
h::z:]s e parforms gualitative and highlights performance  * da.ucmg p;:?mmcef
o " metrics and enersy and enarzy efficiency o
guantrtative comparizon. efficiency LLMs
Presents findmgzrelated  Summanz
. Infroduces imJtensor algorithm . S2 peate . = o .
Computing Large . ) to performancs achievements, suggests
l for efficient computation of . ) .
1D Convolutions . . improvements achieved  futura directions for
- large 2D convolutions on GP1s, . L .
on GPU _ . through im2tensor optimizing computation
. details approach and technigues - o - e
Efficianthy dto throushout algorithm, axammes oflarge 2D convolutions
us e e enhanced throughput on GPUs.
and efficiency
TABLE 2: LITERATURE REVIEW TABLE 2
Title Methodology Feamnltz Conchizion
Compares with FEmCS,  Presents performance
GPU Support for Background on Davito, OPS, Firedrake, YASK, evaluation on WVIDIA

Automatic
(reneration of
Finite-Dhiffarences

Stencil Kernsls

A stencil-based
implamentation of
Pararsal in the
C++ domain
spacific embedded
languags
STELLA
Block-Felaxation
Methods for 3D
Constant-Coeaffici
ant Stencils on
GPUz and
Multicore CEUs

A Generic Library
for Stencil
Computations

AMNSD:
Automated Stencil
Framswrork for
High-Dagraa
Tamporal
Blocking on GFUs

A Synergy
batween On- and
Off-Chip Data
Feuse for
GPU-based
Out-of-Core
Steneil
Computation

acoustic wave propagation
modsal, DSLs, stancil code
Zeneration.

Overview of Parareal,
time-parallel methods, STELLA
langnage, staneil computations,
PDE-=.

Backeround on block iterative
methods, CUDA programming,
stencil operations.

Backeround on stencil
computations, challanges in
programmahility and
performance, related work.

Background on stencil
computation, spatial‘temperal
blocking, limitations of existing
tachniquaz.

Feview of out-of-core stencil
computation, GPU performance
factors, previous optimization
methods.

CTADEL, discuszas
D2Ls and code
generation for stencil
computations.

Compares with PITA,
EIDC, PFASST,
dizenzsez space-timsa
multignd, reviews
implementation
strategies of Parareal.

Compares with Feng et
al., Anztetal Adamszet
al., discusszes
block-bazad smoothers
and stencil operations.

Compares with
auto-funing technigues,
cache oblivious
algorithms, grid
computing libraries.

Dhscuszes existing
techniques for temporal
blocking, spatial
blocking, compares with
proposad framewark.

Eeviews previous work
on out-of-core stencil
computation,
compression techmgues,

1dentifies research gaps.

devices, measures
operational intensity,
compares with
hand-optimized coda.

Feports: razults on Cray
50 system, measures
spaadup, parallel
afficiancy, anargy
consumphon.

Prazents experimental
rasults on ANDVIVIDIA
hardwars, benchmarks
block

Jacoby Ganzs-Seaidel
relaxations, meazures
wall time, speedup.

Prazents exparimeantal
rezults on different
architectures, compares
performance with C
implementations, shows
scalability.

Prazents performance
avaluation on Tezla V100
GPU, compares with
axisting methods,

analyzes scalability.

Feport: speedup and
memory reduction
achieved by 202DE,
compares with
competitors, analyzes
impact of confizurations.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

pg. 77



Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

Surveys pravious work

Bhows speedup and

Accalerating Introduction to fractal gecometry, - memery reduction
Compact Fractals dizcrate fractals, WNBE class, on GEL th:rea_d achisved by compact
with Tenzor Cora tenzor cores, compact fractal TRAFPINE: ten.:har sore fractal approach,
. uzaga, identifies novalty . .
GPU: represantation. of proposed approach comparas with bounding
’ box approach.
Analytical Builds on analytical Feviews axisting cods Evzluates: accuracy and
Performance . . e
. B performance modeling, code generation frameworks, uzafulness of Warpspaad,
Estimation during . . ) - .
. generation, GPU cache performance modeling, applies to 3D-25pt stencil
Code Generation - . B . )
on Modern GPs behavior. mistric estimation. and LEM solver.
Casper:
Accalarating Background on GFTT Citas works on Feports performance
Stenecil architecture, roofline model, comprassion fior improvements with
Computations metric estimation, cods stencil TLBM, comparas Casper on 3D0-25pt
uzing Mear-Cache  zenaration. with proposad approach.  stencil and LBM solver.
Processing
TABLE 3: LITERATURE REVIEW TABLE 3
Title Methodology Fasult= Conchizion
Compares with FEmCS,  Presents performance
GFU Support for Background on Devito, OFS, Frredrake, YASE, evaluation on WVIDIA
Automatic acoustic wave propagation CTADEL, discussas devices, measures
Genaration of modsal, DSLs, stancil cods D2L: and code operational intensity,
Fmite-Differences  zensration. generation for steneil comparas with
Stencil Kernals computations. hand-optimized cods.
A stencil-bazed Compares with PITA,
implamentation of  Overview of Parareal, RIDC, PFASST, i?;ﬁﬁih;:ai::
Pararsal in the time-parallel metheds, STELLA  discusses space-time - B
C4+ domam language, stencil computations, — multizrid, reviews 9’PEE{_iuP= parallel
specific embedded  PDEs. iraplernentation EH’IC]E:MT.: SnerEY
lanzuags strategies of Parareal. eemsumphon.
STELLA

Block-Relaxation
Methods for 3D
Constant-Coaffici
ent Stencils on
GPUz= and
MMulticore CPUz

A Generic Library
for Stencil
Computations

AN3D:
Automated Stencil
Frameawork for
High-Dagras
Tampaoral
Blecking on GPUs

A Synergy
batween On- and
Off-Chip Data
Reuse for
GPU-based
Dut-of-Core
Stencil
Computation

Apcalarating
Compact Fractals
with Tenzor Cora
GPUsz

Backsround on block iterative
methods, CUDA programming,
steneil operations.

Backsround on stencil
computations, challanges in
programmahility and
performance, related work.

Background on stencil
computation, spatial temperal
blocking, limitations of existing
tachniquas.

Feview of out-of-core stencil
computation, GPU parformance
factors, previous optimization
methods.

Introduction to fractal geomeatry,
dizcrate fractals, MBE class,
tenzor cores, compact fractal
represantation.

Compares with Fang et
al., Anztetal, Adams et
al., discusses
block-bazad smoothers
and stencil operations.

Compares with
auto-fuming techniques,
cache oblivious
algorithms, grid
computng libraries.

Discuszes existing
techniques for temporal
blocking, spatial
blocking, comparss with
proposaed framework.

Feviews previous work
on out-of-core stencil
computation,
compressien technigues,
identifies research zaps.

Survevs pravious work
on GPU thread
mapping, tenser core
uzage, identifies novelty
of proposzad approach.

Prazents exparimental
results on AMDVINVIDLA
hardwars, benchmarks
block
JacobiGauss-Seidel
relaxations, measures
wall time, speedup.

Prasents experimental
rezults on diffarent
architectures, comparss
performance with C
implementations, shows
scalabality.

Prezents performance
evaluation on Tezla V100
GPU, compares with
axizting methods,
analyzes zcalability.

Eeports speedup and
meamery reduction
achisved by B02DE,
comparas with
competiters, analyzes
impact of confizurations.

Shows speedup and
mamery reduction
achisved by compact
fractal approach,
comparas with bounding
box approach.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

pg. 78



Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

;fé?rﬁe Builds on analytical Feviews axiztmg coda Evaluates accuracy and
S : performance modeling, code generation frameworks, uzefulness of Warpspead,
Estimation during . . X - E
. generation, GPL cache parformance modeling, applies to 3D-25pt stencil
Cede Genaration behavior meatric astimation. and LEM solver
on Modsm GPUs ’ ) ) ’
Casper:
Accalarating Backeround on GPU Citas works on Feports performance
Stencil architecture, rocfline model, comprassion for improvements with
Computations metric eztimation, coda stenctl TEM, comparas Caszper on 3D-25pt
using Mear-Cache  zenaration. with propozad approach.  stencil and LBM zolver.
Processing
TABLE 4: LITERATURE REVIEW TABLE 4
Tile Methodology Resulis Conclusion
Comprassion-Bas Demonstrates speedup

ad Optimizations
for Dut-of-Core
GPU Staneil
Computation

Distributed
Parallelization of
*PU Steneil
Computations m
Julia

Employing
polyhedral
mathods to
optimizs stencils
on FPGAs

Exploiting
Scratchpad
Memory for Dasp
Tamporal
Blocking

Fortran
performancs
optimization and
auto-parallelizatic
n by leveraging
MLIR -bazed
domain spacifie
abstractions in
Flang

Graph-basad
Neural Metwork
hadel far
Scientific Paper
Summarization
GPFU
Mathodologias for
Numearical Partial
Differantial
Equations

High-performanca
*PU Steneil
Computations m
Juliz

Fevisiting
Tamporal
Blocking Stencil
Optimizations

Addreszes out-of-core stancil
computation, GPU memory
constraints, compression

tachnigues.

Feviews Julia packagss for
diziributed parzllahization,
dizeusses requirements for HPC
softwara.

Background on stencil codas,
FPGAs, high-level synthesis,
loop tiling, pelvhedral methods.

Backeround on stencil
computations, temporal

blocking, seratchpad memery.

Background on Fortran
performance optimization,
auto-parallelization, MLIE.

Background on scisntific paper
summarization, graph-bazed
neural networks.

Introduces culSten library for
applying finte-difference
steneils, davelops batchad
tridiagonal and pantadiagonal
solvers for GPUs.

Diazeribes desipn and
mmplementation of
ParallelStencil jl, highlighting
itz uze of Julia's features for
parallelism.

Introduces EBIZT method,
consisting of four components
for deep tempaoral blocking on
GPU=.

Feviews studissz on
compreszion techniques,
compares with proposed

methods.

hentions related Juliz
packages for MPL GFU
programming, and
stencil computation.

Discuszes existing work
on stencil optimization
on FPGAs, comparas
tachnigues.

Compares with
state-of-tha-art temporal
blockinz

implementations on

GPU=.

Surveys previeus work
on Fortran performance
optimization and
auto-parallelization.

Surveys exizting
methods for scientific
paper summarization.

Demonstrates
significant performanca
improvements over
existing matheds,
enablez exploration of
batches of PDE=.

Shows performance
cloze to theoretical
upper bound on GPUs,
significant speedup over
traditional array
programming on CFUs.

Achisves spaadups up to
233z over
state-of-the-art methods
n steneil beanchmarks.

and memery reduction
with comprazsion,
appliss to acoustic wave
propagation.

Eeportsz parallel weak
zcalmg of zolverz on
Nvidia P100 GPUs with
ImplicitGlobal Grid jl.

Evaluates performanca
on 10 stencil codas,
reports significant
speadups over basaline.

Evaluates performance
on 20 Tacobian 3-point
iterative stancil kernel,
compares with

StencilGen and ANID.

Evaluates performance
on Fortran codaz,
demonstratas
Improvements.

Evaluates on ar¥iv and
Publled datasets,
achieves state-of-the-art
results.

Concludes GPU methods
are efficient and rauzabla,
=uggests futurs
axtensions.

Concludes
ParallelStencil jl is
sffective and widely
applicable, suzgests
future improvements.

Concludes EBISU is
affective and scalable,
suggests extanding o
other architectures.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

pg.- 79



Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

TABLE 5: LITERATURE REVIEW TABLE 5

Title Methodology Results Conclusion
Scalable
commumcauan Describes amethod forscalable  Provides analysis of Conclpdes method is
for high-order . . . N effective for
e T communication using practical performance communication in
stenet CUDA-aware MPl in high-order  and factors affectingit, .. :
computations . . high-order stencil
. stencil computations. reports speedups up to }
using 1.40% over baseline computations, suggests
CUDA-aware ' ’ future work.
MPI
_— Summarizes previous studies on  Describes FPGA Analyzes advantages and
Scientific . . . . N
Computing FPGA implementations of implementations of challenges of using
= scientific kernels and compares ~ BLAS, sparse matrix FPGAs for scientific
Beyond CPUs: . . : X :
FPGA with their approach. operations, and FFTs computing, discusses use
. . using SEC MAPstation.  of high-level languages.
implementations

TensorFlow asa
DSL for
stencil-based
computation on

Cites previous work on using
WSE for machine learning and
computational kemels,
highlights differences in
methodology.

Uses TensorFlow
constructs like dense
and convolution layers
to encode stencil-based

Discusses limitations and
challenges of using
TensorFlow for
programming WSE,
suggests potential

the Cerebras WSE algorithms on the WSE.  improvements with

Cerebras SDE.S

4. RELATED WORK

Understanding the performance disparities between Laplacian operators on CPUs and GPUs necessitates a comprehensive
review of related literature. Studies such as [9] delve into the intricacies of numerical PDE solving on GPUSs, offering insights
into the parallel processing capabilities crucial for Laplacian operator computations. Additionally, [10] provides a thorough
investigation into stencil computations across diverse architectures, including GPUs, offering methodologies applicable to
comparative analyses of Laplacian operators. The significance of efficient communication mechanisms is underscored in
[11], which introduces a scalable communication approach using CUDA-aware MPI, crucial for evaluating CPU and GPU
Laplacian operator implementations. Moreover, [12] offers insights into GPU performance characteristics, including tensor
core functionalities, vital for understanding GPU computational capabilities relative to CPUs in Laplacian operator
computations.

Diving deeper into hardware acceleration and automatic code generation, studies like [13] explore optimizing finite-
difference stencils on FPGAs, offering insights into alternative hardware acceleration options for Laplacian operators.
Meanwhile, [14] explores compression-based optimizations to enhance efficiency in out-of-core GPU stencil computations,
offering insights into memory efficiency and data transfer overheads in Laplacian operator computations. Leveraging these
works alongside others in GPU methodologies and high-performance computing enables a detailed comparative analysis.
For instance, [15] presents methods for efficiently solving numerical PDEs on NVIDIA GPUs, crucial for benchmarking
Laplacian operator performance. Additionally, [16] presents a scalable communication approach for high-order stencil
computations using CUDA-aware MPI. This framework aids in evaluating communication overheads in Laplacian operator
implementations across both CPUs and GPUSs.

By synthesizing insights from these studies, researchers can conduct a detailed comparative analysis of Laplacian operator
implementations on CPUs and GPUs. Key factors to consider include computational performance, memory efficiency,
communication overheads, and architectural features. Additionally, exploring methodologies from automatic code generation
and hardware acceleration studies provides avenues for optimizing Laplacian operator performance across different
computing platforms.

1. Analysis of Computational Device Performance

This study's analysis primarily compares the performance characteristics of central processing units (CPUs) and graphics
processing units (GPUs) across different computational tasks. The dataset used in this research offers insights into execution
time, memory usage, and throughput for various array sizes and types of computational devices.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s
pg. 80



Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

10°

Execution Time (ms)

g

2000

1750

1500

5
g

Memory Usage (MB)

Execution Time vs Array Size (Log Scale)

—— i5-10300H CPU G
—— i5-10300H CPU ¢
— Intel(R) Core(TM
—— Intel(R) Core(TM
—— 17-10750H CPU ¢
—— 17-10750H CPU ¢
~— 12th Gen Intel(R
—— 11th Gen Intel(R
Intel(R) Xeon(R)

8000 10000 12000

Amay size
Memory Usage vs Array Size

—— i5-10300H CPU @ 2.50GHz with GTX 1650

~— i5-10300H CPU @ 2.50GHz with GTX 1650 Ti

—— Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz

—— Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz

~—— i7-10750H CPU @ 2.60GHz with GeForce RTX 2060

~— 12th Gen Intel(R) Core(TM) i7-12700H
—— 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz
Intel(R) Xeon(R) CPU @ 2.30GHz

—— 17-10750H CPU @ 2.60GHz with GeForce RTX 2070 with Max-Q Design

4000

6000 8000 10000 12000

Amay Size

Throughput vs Array Size

—— i5-10300H CPU @ 2.50GHz with GTX 1650

—— i5-10300H CPU @ 2.50GH2 with GTX 1650 Ti

—— Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz

—— Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz

—— i7-10750H CPU @ 2.60GHz with GeForce RTX 2060

—— i7-10750H CPU @ 2.60GHz with GeForce RTX 2070 with Max-Q Design

Our investigation reveals a consistent trend wherein GPUs demonstrate significantly lower execution times compared to
CPUs across all array sizes. As the array size increases, this performance gap becomes more pronounced, highlighting the
superior processing capabilities of GPUSs, particularly for parallel computations. Additionally, GPUs consistently exhibit
higher throughput compared to CPUs, indicating their suitability for tasks requiring high computational efficiency and

parallel processing.

12th Gen Intel(R) Core(TM) i7-12700H
—— 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz

[ ™

Fig. 1. CPU Performance

Execution Time vs Array Size (Log Scale)

—— NVIDIA GeForce GTX 1650
—— NVIDIA Geforce GTX 1650 Ti
i —— NVIDIA GeForce MX230
—— NVIDIA GeForce MX350
—— NVIDIA GeForce RTX 2060
—— NVIDIA GeForce RTX 2070 with Max-Q Design /
7 NVIDIA GeForce RTX 3050 Ti Laptop GPU /
£ —— NVIDIA GeForce RTX 3060 Laptop GPU
g Tesla T4
£
5
2
2
5
a
10t
2000 4000 6000 8000 10000 12000
Array size
Memory Usage vs Array Size
20001 __ NvIDIA GeForce GTX 1650
—— NVIDIA GeForce GTX 1650 Ti
1750 { — NVIDIA GeForce MX230
—— NVIDIA GeForce MX350
1500 | — NVIDIA GeForce RTX 2060
—— NVIDIA GeForce RTX 2070 with Max-Q Design -
& 1550 | — NVIDIA GeForce RTX 3050 Ti Laptop GPU it
Z 12501 \vIDIA GeForce RTX 3060 Laptop GPU ™ i
5 Tesla T4 e
£ 1000 s
5 o
—
E 750 —
= o
500 i
250 I s
. T
2000 4000 6000 8000 10000 12000
Array size
167 Throughput vs Array Size
71 — nviDiA GeForce GTx 1650
—— NVIDIA GeForce GTX 1650 Ti
5{ — NVIDIA GeForce MX230
—— NVIDIA GeForce MX350
—— NVIDIA GeForce RTX 2060
51 — NVIDIA GeForce RTX 2070 with Max-Q Design
—— NVIDIA GeForce RTX 3050 Ti Laptop GPU /\
. | — NVIDIA GeForce RTX 3060 Laptop GPU

Fig.

2. GPU Performance

Journal of Neonatal Surgery | Year:

2025 | Volume: 14 | Issue: 29s

pg. 81



Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

Surprisingly, our analysis finds no significant difference in memory usage between CPUs and GPUs across all array sizes.
Both CPU and GPU exhibit similar memory utilization patterns, suggesting that memory usage may not be a distinguishing
factor when choosing between these computational devices. These finding challenges conventional assumptions and
underscores the need for comprehensive performance evaluations beyond execution time alone.

5. IMPLICATIONS AND CONCLUSION

TABLE 6: Device IDs and Configurations

D CPU GPU

1 15-10300H CPU @ 2.50GHz with GTX 1650  NVIDIA GeForce GTX 1650

\ i5-10300H CPU @ 2.50GHz with GTX 1650 . oo

2 T NVIDIA GeForce GTX 1650 Ti
Intel(R) Core(TM) i7-1065G7 CPU @

3 « ;
1 30GHz NVIDIA GeForce MX230
Intel(R) Core(TM) i5-10210U CPU @ A

4 1 60GHz NVIDIA GeForce MX350

5 i7-10750H CPU @ 2.60GHz with GeForce
RTX 2060 NVIDIA GeForce RTX 2060

6 17-10750H CPU @ 2.60GHz with GeForce NVIDIA GeForce RTX 2070 with
KX 2040 with Max-Q Design Max-Q Design

7 12th Gen Intel(R) Core(TM) i7-12700H NVIDIA GeForce RTX 3050 T4

Lapiop wru

g 11th Gen Intel(R) Core(TM) i7-11800H@  NVIDIA GeForce RTX 3060
2350GHz Laptop GFU

0 Intel(R) Xeon(R) CPU @ 2.30GHz Tesla T4

The findings of this analysis have significant implications for computational tasks requiring high-performance computing.
GPU acceleration emerges as a compelling solution for optimizing computational performance and achieving faster
execution times, particularly for parallelizable tasks. While memory usage appears comparable between CPUs and GPUSs,
the superior processing capabilities of GPUs make them an attractive choice for various application domains, including
machine learning, scientific simulations, and data analytics.

Speed-up Factor vs Array Size

D1
D2
25 D3

D4

ID5

D6
20 D7

D8

D9
15 1

Fig. 3. Speed Up Factor

Speed-up Factor
(RERRERE

w

In conclusion, our analysis underscores the importance of considering GPU acceleration as a viable approach to enhance
computational performance and meet the demands of modern computing tasks. Further research is warranted to explore
additional factors influencing the choice between CPUs and GPUs, such as power consumption, cost-effectiveness, and
hardware compatibility, to inform optimal decision-making in computational device selection.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s
pg. 82



Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

REFERENCES

[1] Arteaga, A., Ruprecht, D., & Krause, R. (2014). A stencil-based implementation of Parareal in the C++ domain
specific embedded language STELLA. *ArXiv.* https://doi.org/10.1016/j.amc.2014.12.055

[2] Bianco, M., & Varetto, U. (2012). A Generic Library for Stencil Computations. *ArXiv.*
https://arxiv.org/abs/1207.1746

[3] Birke, M., Philip, B., Wang, Z., & Berrill, M. (2012). Block-Relaxation Methods for 3D Constant-Coefficient
Stencils on GPUs and Multicore CPUs. *ArXiv.* https://arxiv.org/abs/1208.1975

[4] Brown, N., Echols, B., Zarins, J., & Grosser, T. (2022). TensorFlow as a DSL for stencil-based computation on
the Cerebras Wafer Scale Engine. *ArXiv.* https://arxiv.org/abs/2210.04795

[5] Brown, N., Jamieson, M., Lydike, A., Bauer, E., & Grosser, T. (2023). Towards Accelerating high-order stencil
computations on modern GPUs and emerging architectures using a portable framework.

[6] *ArXiv.* https://doi.org/10.1145/3624062.3624167

[7] Denzler, A., Bera, R., Hajinazar, N., Singh, G., Oliveira, G. F., & Mutlu, O. (2021). Casper: Accelerating Stencil
Computation using Near-cache Processing. *ArXiv.* https://arxiv.org/abs/2112.14216

[8] Ernst, D., Holzer, M., Hager, G., Knorr, M., & Wellein, G. (2022). Analytical Performance Estimation during
Code Generation on Modern GPUs. *ArXiv.* https://arxiv.org/abs/2204.14242

[9] Gloster, A. (2021). GPU Methodologies for Numerical Partial Differential Equations. *ArXiv.*
https://arxiv.org/abs/2101.06550

[10] Kachris, C. (2024). A Survey on Hardware Accelerators for Large Language Models. *ArXiv.*
https://arxiv.org/abs/2401.09890

[11] Kerzner, Ethan, and Timothy Urness. "GPU Programming for Mathematical and Scientific Computing."
[12] *Drake University* (2010).

[13] Luo, W., Fan, R., Li, Z., Du, D., Wang, Q., & Chu, X. (2024). Benchmarking and Dissecting the Nvidia Hopper
GPU Architecture. *ArXiv.* https://arxiv.org/abs/2402.13499

[14] Matsumura, K., Zohouri, H. R., Wahib, M., Endo, T., & Matsuoka, S. (2020). AN5D: Automated Stencil
Framework for High-Degree Temporal Blocking on GPUs. *ArXiv.* https://doi.org/10.1145/3368826.3377904

[15] Mayer, F., Brandner, J., & Philippsen, M. (2024). Utilizing polyhedral methods to optimize stencil computations
on FPGAs, incorporating stencil-specific caches, data reuse strategies, and wide data bursts. *ArXiv.*
https://arxiv.org/abs/2401.13645

[16]Omlin, S., & Ré&ss, L. (2022). High-performance xPU Stencil Computations in Julia. *ArXiv.*
https://arxiv.org/abs/2211.15634

[17]1Omlin, S., Réss, L., & Utkin, 1. (2022). Distributed Parallelization of xPU Stencil Computations in Julia.
[18] *ArXiv.* https://arxiv.org/abs/2211.15716

[19] Paredes, E. G., Groner, L., Ubbiali, S., Vogt, H., Madonna, A., Mariotti, K., Cruz, F., Benedicic, L., Bianco,
M., VandeVondele, J.,, & Schulthess, T. C. (2023). GT4Py: Python-based high-performance stencil
computations tailored for weather and climate applications. *ArXiv.* https://arxiv.org/abs/2311.08322

[20] Pekkild, J., Vaisédla, M. S., Kéapyla, M. J., Rheinhardt, M., & Lappi, O. (2021). Implementing scalable
communication techniques for high-order stencil computations by leveraging CUDA-aware MPI.

[21] *ArXiv.* https://doi.org/10.1016/j.parco.2022.102904
[22] Quezada, F. A., & Navarro, C. A. (2021). Accelerating Compact Fractals with Tensor Core GPUs.
[23] *ArXiv.* https://arxiv.org/abs/2110.12952

]

[24] Reguly, 1. Z., Mudalige, G. R., & Giles, M. B. (2017). Exploring out-of-core stencil computations beyond the
limitations of 16GB memory. *ArXiv.* https://arxiv.org/abs/1709.02125

[25] Rodrigues, V. H., Cavalcante, L., Pereira, M. B., Luporini, F., Reguly, I., Gorman, G., & De Souza, S. X.
(2019). GPU Support for Automatic Generation of Finite-Differences Stencil Kernels. *ArXiv.*
$https://doi.org/10.1007/978-3-030-41005-6_16%

[26]Sai, R., & Xu, J. (2023). Towards Accelerating High-Order Stencils on Modern GPUs and Emerging
Architectures with a Portable Framework. *ArXiv.* https://arxiv.org/abs/2309.04671

[27] Seznec, Mickael, et al. "Computing large 2D convolutions on GPU efficiently with the im2tensor algorithm."
*Journal of Real-Time Image Processing* 19.6 (2022): 1035-1047.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s
pg. 83



Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

[28] Shen, J., Deng, X., Wu, Y., Okita, M., & Ino, F. (2022). Compression-Based Optimizations for Out-of-Core
GPU Stencil Computation. *ArXiv.* https://arxiv.org/abs/2204.11315

[29] Shen, J., Long, L., Zhang, J., Shen, W., Okita, M., & Ino, F. (2023). A Synergy between On- and Off-Chip Data
Reuse for GPU-based Out-of-Core Stencil Computation. *ArXiv.* https://arxiv.org/abs/2309.08864

[30] Shen, J., Wu, Y., Okita, M., & Ino, F. (2021). Accelerating GPU

[31] 26.-Based Out-of-Core Stencil Computation  with  On-the-Fly Compression.  *ArXiv.*
https://arxiv.org/abs/2109.05410

[32] Smith, Melissa C., Jeffery S. Vetter, and Sadaf R. Alam. "Scientific computing beyond CPUs: FPGA
implementations of common scientific kernels."” *2005 MAPLD International Conference.* 2005.

[33] Yang, J., Giannoula, C., Wu, J., Elhoushi, M., Gleeson, J., & Pekhimenko, G. (2023). Minuet: Accelerating 3D
Sparse Convolutions on GPUs. *ArXiv.* https://arxiv.org/abs/2401.06145

[34] Zhang, L., M., Wabhib, P., Chen, J., Meng, X., Wang, T., Endo, & Matsuoka, S. (2023). Exploiting Scratchpad
Memory for Deep Temporal Blocking: A case study for 2D Jacobian 5-point iterative stencil kernel (j2d5pt).
*ArXiv.* https://doi.org/10.1145/3589236.3589242

[35] Zhang, L., M., Wahib, P., Chen, J., Meng, X., Wang, T., Endo, & Matsuoka, S. (2023). Revisiting Temporal
Blocking Stencil Optimizations. *ArXiv.* https://doi.org/10.1145/3577193.3593716

[36] Zohouri, H. R., Podobas, A., & Matsuoka, S. (2020). High-Performance High-Order Stencil Computation on
FPGAs Using OpenCL. *ArXiv.* https://doi.org/10.1109/IPDPSW.2018.00027

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s
pg. 84



