
Journal of Neonatal Surgery

ISSN(Online): 2226-0439
Vol. 14, Issue 29s (2025)
https://www.jneonatalsurg.com

pg. 75

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

Laplacian Operators for Scientific Computing: A Comparative Analysis of CPU and GPU

Implementations

Dr. Aswini J1, Mr. Marinto Richee J2, Dr. M. G. Dinesh3, Dr. A. Gayathri4

1,2Saveetha Engineering College, Chennai, Tamil Nadu, India.
3Easa College of Engineering and Technology, Coimbatore, Tamil Nadu, India
4Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences (SIMATS), Saveetha University,

Chennai, Tamil Nadu, India
1,2Email ID: aswinijmarintorichee.student@saveetha.ac.in, 3Email ID: dineshbabu.mg@gmail.com
4Email ID: gayathribala.sse@saveetha.com

00Cite this paper as: Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri, (2025) Laplacian Operators for

Scientific Computing: A Comparative Analysis of CPU and GPU Implementations. Journal of Neonatal Surgery, 14 (29s),

75-84.

ABSTRACT

This paper presents a comprehensive bench-marking study of a 2D Laplacian filter implemented on both CPU and GPU

architectures for image processing applications. The Laplacian filter serves as a fundamental tool in edge detection and

feature extraction, playing a crucial role in various computer vision tasks

Keywords: Image Processing · GPU Acceleration · Performance Benchmarking.

1. INTRODUCTION

Numerical algorithms play a pivotal role in scientific computing, providing solutions to complex mathematical problems that

may lack analytical solutions. These algorithms leverage computational methods to approximate solutions, enabling the

modelling and simulation of real-world phenomena. One such class of numerical algorithms involves the use of Laplacian

operators, which are fundamental in solving differential equations and are ubiquitous in various scientific and engineering

disciplines.

Laplacian operators, denoted by ∇² or ∆, are differential operators that arise in the study of second-order partial differential

equations (PDEs). These operators are instrumental in characterizing diffusion processes, heat conduction, and potential

fields. In scientific computing, Laplacian operators are employed for tasks ranging from image processing to fluid dynamics

simulations. Their ability to capture spatial variations and gradients makes them indispensable in modelling physical

phenomena. The versatility of Laplacian operators extends to a myriad of real-world applications. In image processing,

Laplacian filters are utilized for edge detection and 2 Dr. Aswini J. et al. sharpening. In physics, Laplacian operators describe

the distribution of gravitational and electric potentials. Laplacian smoothing is applied in mesh generation for finite element

analysis. Understanding and optimizing the computation of Laplacian operators are critical for enhancing the efficiency of

these

applications.

This research paper delves into the implementation and optimization of Laplacian operators, with a focus on achieving

superior performance through parallel computing on Graphics Processing Units (GPUs). The subsequent sections will

explore the methodology, benchmarking results, speedup factor analysis, and comparisons with existing approaches. The

paper concludes with insights into potential optimizations, challenges faced, and future directions for advancing Laplacian

algorithms in scientific computing.

2. METHODOLOGY

In this research, we embarked on the analysis of Laplacian operators, aiming to enhance computational efficiency on both

CPU and GPU architectures. The methodology involved a series of steps, including algorithmic analysis, GPU acceleration,

parallel computing techniques, benchmarking, and performance evaluation.

mailto:aswinijmarintorichee.student@saveetha.ac.in
mailto:dineshbabu.mg@gmail.com
mailto:gayathribala.sse@saveetha.com

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

pg. 76

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

Algorithmic Analysis:

Baseline Implementation: We initially implemented the Laplacian operator algorithms for both CPU and GPU using standard

approaches.

Analysis and Identification: Through extensive analysis, we identified computational bottlenecks and areas for improvement

within the algorithms.

GPU Acceleration:

CUDA Integration: Leveraging NVIDIA’s CUDA platform, we parallelized the Laplacian computations for GPU

acceleration.

GPU Kernels: We developed and executed GPU kernels to leverage the highly parallel architecture, ensuring optimal

utilization of GPU resources.

Parallel Computing Techniques:

CPU Parallelization: For CPU architecture, we employed multi-threading techniques to parallelize Laplacian computations,

optimizing for modern multi-core processors.

GPU Parallelization: The parallelization strategy for GPUs focused on breaking down the Laplacian computations into

parallelizable tasks, aligning with the architecture of the GPU.

Benchmarking Methodology:

Hardware and Software Configuration: We conducted benchmarking on diverse hardware configurations, including CPUs

and GPUs. The software environment, including programming languages (Python, CUDA), libraries (NumPy, CuPy), and

tools (Numba, NVIDIA Nsight), was carefully configured for consistency.

Array Size Selection: Benchmarking involves systematically varying the array sizes to cover a spectrum of computational

loads, allowing for a comprehensive performance assessment.

Performance Evaluation Criteria:

Key Metrics: The primary metrics for performance evaluation included execution time, throughput (operations per second),

and memory usage.

Comparison with Baseline: Results were compared against the baseline implementation to quantify the improvements

achieved through optimization.

Experimental Setup:

Hardware Platforms: We performed experiments on a range of CPUs and GPUs, detailing the specifications of each hardware

platform.

Software Configuration: The software stack, including operating systems and versions of relevant libraries, was documented

to ensure transparency and reproducibility.

Data Collection:

Systematic Testing: Rigorous testing procedures were applied to collect data under varying conditions. Multiple runs were

conducted for each configuration to ensure reliable results. Data Logging: Detailed logs were maintained, recording

execution times, throughput, and memory usage for subsequent analysis.

Statistical Analysis:

Speedup Calculation: Speedup factors were calculated based on the ratio of execution times between optimized and baseline

implementations.

Statistical Significance: Statistical methods were applied to assess the significance of observed speedup factors, ensuring the

reliability of the optimization results.

Ethical Considerations:

Data Privacy: As the research focused on algorithm optimization and benchmarking, no human subjects or sensitive data

were involved, minimizing ethical concerns. Adherence to Ethical Standards: The research adhered to ethical standards,

promoting responsible conduct in experimentation.

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

pg. 77

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

3. LITERATURE REVIEW

TABLE I: LITERATURE REVIEW TABLE 1

TABLE 2: LITERATURE REVIEW TABLE 2

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

pg. 78

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

TABLE 3: LITERATURE REVIEW TABLE 3

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

pg. 79

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

TABLE 4: LITERATURE REVIEW TABLE 4

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

pg. 80

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

TABLE 5: LITERATURE REVIEW TABLE 5

4. RELATED WORK

Understanding the performance disparities between Laplacian operators on CPUs and GPUs necessitates a comprehensive

review of related literature. Studies such as [9] delve into the intricacies of numerical PDE solving on GPUs, offering insights

into the parallel processing capabilities crucial for Laplacian operator computations. Additionally, [10] provides a thorough

investigation into stencil computations across diverse architectures, including GPUs, offering methodologies applicable to

comparative analyses of Laplacian operators. The significance of efficient communication mechanisms is underscored in

[11], which introduces a scalable communication approach using CUDA-aware MPI, crucial for evaluating CPU and GPU

Laplacian operator implementations. Moreover, [12] offers insights into GPU performance characteristics, including tensor

core functionalities, vital for understanding GPU computational capabilities relative to CPUs in Laplacian operator

computations.

Diving deeper into hardware acceleration and automatic code generation, studies like [13] explore optimizing finite-

difference stencils on FPGAs, offering insights into alternative hardware acceleration options for Laplacian operators.

Meanwhile, [14] explores compression-based optimizations to enhance efficiency in out-of-core GPU stencil computations,

offering insights into memory efficiency and data transfer overheads in Laplacian operator computations. Leveraging these

works alongside others in GPU methodologies and high-performance computing enables a detailed comparative analysis.

For instance, [15] presents methods for efficiently solving numerical PDEs on NVIDIA GPUs, crucial for benchmarking

Laplacian operator performance. Additionally, [16] presents a scalable communication approach for high-order stencil

computations using CUDA-aware MPI. This framework aids in evaluating communication overheads in Laplacian operator

implementations across both CPUs and GPUs.

By synthesizing insights from these studies, researchers can conduct a detailed comparative analysis of Laplacian operator

implementations on CPUs and GPUs. Key factors to consider include computational performance, memory efficiency,

communication overheads, and architectural features. Additionally, exploring methodologies from automatic code generation

and hardware acceleration studies provides avenues for optimizing Laplacian operator performance across different

computing platforms.

I. Analysis of Computational Device Performance

This study's analysis primarily compares the performance characteristics of central processing units (CPUs) and graphics

processing units (GPUs) across different computational tasks. The dataset used in this research offers insights into execution

time, memory usage, and throughput for various array sizes and types of computational devices.

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

pg. 81

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

Fig. 1. CPU Performance

Our investigation reveals a consistent trend wherein GPUs demonstrate significantly lower execution times compared to

CPUs across all array sizes. As the array size increases, this performance gap becomes more pronounced, highlighting the

superior processing capabilities of GPUs, particularly for parallel computations. Additionally, GPUs consistently exhibit

higher throughput compared to CPUs, indicating their suitability for tasks requiring high computational efficiency and

parallel processing.

Fig. 2. GPU Performance

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

pg. 82

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

Surprisingly, our analysis finds no significant difference in memory usage between CPUs and GPUs across all array sizes.

Both CPU and GPU exhibit similar memory utilization patterns, suggesting that memory usage may not be a distinguishing

factor when choosing between these computational devices. These finding challenges conventional assumptions and

underscores the need for comprehensive performance evaluations beyond execution time alone.

5. IMPLICATIONS AND CONCLUSION

TABLE 6: Device IDs and Configurations

The findings of this analysis have significant implications for computational tasks requiring high-performance computing.

GPU acceleration emerges as a compelling solution for optimizing computational performance and achieving faster

execution times, particularly for parallelizable tasks. While memory usage appears comparable between CPUs and GPUs,

the superior processing capabilities of GPUs make them an attractive choice for various application domains, including

machine learning, scientific simulations, and data analytics.

Fig. 3. Speed Up Factor

In conclusion, our analysis underscores the importance of considering GPU acceleration as a viable approach to enhance

computational performance and meet the demands of modern computing tasks. Further research is warranted to explore

additional factors influencing the choice between CPUs and GPUs, such as power consumption, cost-effectiveness, and

hardware compatibility, to inform optimal decision-making in computational device selection.

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

pg. 83

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

REFERENCES

[1] Arteaga, A., Ruprecht, D., & Krause, R. (2014). A stencil-based implementation of Parareal in the C++ domain

specific embedded language STELLA. *ArXiv.* https://doi.org/10.1016/j.amc.2014.12.055

[2] Bianco, M., & Varetto, U. (2012). A Generic Library for Stencil Computations. *ArXiv.*

https://arxiv.org/abs/1207.1746

[3] Birke, M., Philip, B., Wang, Z., & Berrill, M. (2012). Block-Relaxation Methods for 3D Constant-Coefficient

Stencils on GPUs and Multicore CPUs. *ArXiv.* https://arxiv.org/abs/1208.1975

[4] Brown, N., Echols, B., Zarins, J., & Grosser, T. (2022). TensorFlow as a DSL for stencil-based computation on

the Cerebras Wafer Scale Engine. *ArXiv.* https://arxiv.org/abs/2210.04795

[5] Brown, N., Jamieson, M., Lydike, A., Bauer, E., & Grosser, T. (2023). Towards Accelerating high-order stencil

computations on modern GPUs and emerging architectures using a portable framework.

[6] *ArXiv.* https://doi.org/10.1145/3624062.3624167

[7] Denzler, A., Bera, R., Hajinazar, N., Singh, G., Oliveira, G. F., & Mutlu, O. (2021). Casper: Accelerating Stencil

Computation using Near-cache Processing. *ArXiv.* https://arxiv.org/abs/2112.14216

[8] Ernst, D., Holzer, M., Hager, G., Knorr, M., & Wellein, G. (2022). Analytical Performance Estimation during

Code Generation on Modern GPUs. *ArXiv.* https://arxiv.org/abs/2204.14242

[9] Gloster, A. (2021). GPU Methodologies for Numerical Partial Differential Equations. *ArXiv.*

https://arxiv.org/abs/2101.06550

[10] Kachris, C. (2024). A Survey on Hardware Accelerators for Large Language Models. *ArXiv.*

https://arxiv.org/abs/2401.09890

[11] Kerzner, Ethan, and Timothy Urness. "GPU Programming for Mathematical and Scientific Computing."

[12] *Drake University* (2010).

[13] Luo, W., Fan, R., Li, Z., Du, D., Wang, Q., & Chu, X. (2024). Benchmarking and Dissecting the Nvidia Hopper

GPU Architecture. *ArXiv.* https://arxiv.org/abs/2402.13499

[14] Matsumura, K., Zohouri, H. R., Wahib, M., Endo, T., & Matsuoka, S. (2020). AN5D: Automated Stencil

Framework for High-Degree Temporal Blocking on GPUs. *ArXiv.* https://doi.org/10.1145/3368826.3377904

[15] Mayer, F., Brandner, J., & Philippsen, M. (2024). Utilizing polyhedral methods to optimize stencil computations

on FPGAs, incorporating stencil-specific caches, data reuse strategies, and wide data bursts. *ArXiv.*

https://arxiv.org/abs/2401.13645

[16] Omlin, S., & Räss, L. (2022). High-performance xPU Stencil Computations in Julia. *ArXiv.*

https://arxiv.org/abs/2211.15634

[17] Omlin, S., Räss, L., & Utkin, I. (2022). Distributed Parallelization of xPU Stencil Computations in Julia.

[18] *ArXiv.* https://arxiv.org/abs/2211.15716

[19] Paredes, E. G., Groner, L., Ubbiali, S., Vogt, H., Madonna, A., Mariotti, K., Cruz, F., Benedicic, L., Bianco,

M., VandeVondele, J., & Schulthess, T. C. (2023). GT4Py: Python-based high-performance stencil

computations tailored for weather and climate applications. *ArXiv.* https://arxiv.org/abs/2311.08322

[20] Pekkilä, J., Väisälä, M. S., Käpylä, M. J., Rheinhardt, M., & Lappi, O. (2021). Implementing scalable

communication techniques for high-order stencil computations by leveraging CUDA-aware MPI.

[21] *ArXiv.* https://doi.org/10.1016/j.parco.2022.102904

[22] Quezada, F. A., & Navarro, C. A. (2021). Accelerating Compact Fractals with Tensor Core GPUs.

[23] *ArXiv.* https://arxiv.org/abs/2110.12952

[24] Reguly, I. Z., Mudalige, G. R., & Giles, M. B. (2017). Exploring out-of-core stencil computations beyond the

limitations of 16GB memory. *ArXiv.* https://arxiv.org/abs/1709.02125

[25] Rodrigues, V. H., Cavalcante, L., Pereira, M. B., Luporini, F., Reguly, I., Gorman, G., & De Souza, S. X.

(2019). GPU Support for Automatic Generation of Finite-Differences Stencil Kernels. *ArXiv.*

$https://doi.org/10.1007/978-3-030-41005-6_16$

[26] Sai, R., & Xu, J. (2023). Towards Accelerating High-Order Stencils on Modern GPUs and Emerging

Architectures with a Portable Framework. *ArXiv.* https://arxiv.org/abs/2309.04671

[27] Seznec, Mickael, et al. "Computing large 2D convolutions on GPU efficiently with the im2tensor algorithm."

Journal of Real-Time Image Processing 19.6 (2022): 1035-1047.

Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri

pg. 84

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s

[28] Shen, J., Deng, X., Wu, Y., Okita, M., & Ino, F. (2022). Compression-Based Optimizations for Out-of-Core

GPU Stencil Computation. *ArXiv.* https://arxiv.org/abs/2204.11315

[29] Shen, J., Long, L., Zhang, J., Shen, W., Okita, M., & Ino, F. (2023). A Synergy between On- and Off-Chip Data

Reuse for GPU-based Out-of-Core Stencil Computation. *ArXiv.* https://arxiv.org/abs/2309.08864

[30] Shen, J., Wu, Y., Okita, M., & Ino, F. (2021). Accelerating GPU

[31] 26.-Based Out-of-Core Stencil Computation with On-the-Fly Compression. *ArXiv.*

https://arxiv.org/abs/2109.05410

[32] Smith, Melissa C., Jeffery S. Vetter, and Sadaf R. Alam. "Scientific computing beyond CPUs: FPGA

implementations of common scientific kernels." *2005 MAPLD International Conference.* 2005.

[33] Yang, J., Giannoula, C., Wu, J., Elhoushi, M., Gleeson, J., & Pekhimenko, G. (2023). Minuet: Accelerating 3D

Sparse Convolutions on GPUs. *ArXiv.* https://arxiv.org/abs/2401.06145

[34] Zhang, L., M., Wahib, P., Chen, J., Meng, X., Wang, T., Endo, & Matsuoka, S. (2023). Exploiting Scratchpad

Memory for Deep Temporal Blocking: A case study for 2D Jacobian 5-point iterative stencil kernel (j2d5pt).

ArXiv. https://doi.org/10.1145/3589236.3589242

[35] Zhang, L., M., Wahib, P., Chen, J., Meng, X., Wang, T., Endo, & Matsuoka, S. (2023). Revisiting Temporal

Blocking Stencil Optimizations. *ArXiv.* https://doi.org/10.1145/3577193.3593716

[36] Zohouri, H. R., Podobas, A., & Matsuoka, S. (2020). High-Performance High-Order Stencil Computation on

FPGAs Using OpenCL. *ArXiv.* https://doi.org/10.1109/IPDPSW.2018.00027

