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ABSTRACT 

This paper presents a comprehensive bench-marking study of a 2D Laplacian filter implemented on both CPU and GPU 

architectures for image processing applications. The Laplacian filter serves as a fundamental tool in edge detection and 

feature extraction, playing a crucial role in various computer vision tasks 
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1. INTRODUCTION 

Numerical algorithms play a pivotal role in scientific computing, providing solutions to complex mathematical problems that 

may lack analytical solutions. These algorithms leverage computational methods to approximate solutions, enabling the 

modelling and simulation of real-world phenomena. One such class of numerical algorithms involves the use of Laplacian 

operators, which are fundamental in solving differential equations and are ubiquitous in various scientific and engineering 

disciplines. 

Laplacian operators, denoted by ∇² or ∆, are differential operators that arise in the study of second-order partial differential 

equations (PDEs). These operators are instrumental in characterizing diffusion processes, heat conduction, and potential 

fields. In scientific computing, Laplacian operators are employed for tasks ranging from image processing to fluid dynamics 

simulations. Their ability to capture spatial variations and gradients makes them indispensable in modelling physical 

phenomena. The versatility of Laplacian operators extends to a myriad of real-world applications. In image processing, 

Laplacian filters are utilized for edge detection and 2 Dr. Aswini J. et al. sharpening. In physics, Laplacian operators describe 

the distribution of gravitational and electric potentials. Laplacian smoothing is applied in mesh generation for finite element 

analysis. Understanding and optimizing the computation of Laplacian operators are critical for enhancing the efficiency of 

these 

applications. 

This research paper delves into the implementation and optimization of Laplacian operators, with a focus on achieving 

superior performance through parallel computing on Graphics Processing Units (GPUs). The subsequent sections will 

explore the methodology, benchmarking results, speedup factor analysis, and comparisons with existing approaches. The 

paper concludes with insights into potential optimizations, challenges faced, and future directions for advancing Laplacian 

algorithms in scientific computing. 

2. METHODOLOGY 

In this research, we embarked on the analysis of Laplacian operators, aiming to enhance computational efficiency on both 

CPU and GPU architectures. The methodology involved a series of steps, including algorithmic analysis, GPU acceleration, 

parallel computing techniques, benchmarking, and performance evaluation. 
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Algorithmic Analysis: 

Baseline Implementation: We initially implemented the Laplacian operator algorithms for both CPU and GPU using standard 

approaches. 

Analysis and Identification: Through extensive analysis, we identified computational bottlenecks and areas for improvement 

within the algorithms. 

GPU Acceleration: 

CUDA Integration: Leveraging NVIDIA’s CUDA platform, we parallelized the Laplacian computations for GPU 

acceleration. 

GPU Kernels: We developed and executed GPU kernels to leverage the highly parallel architecture, ensuring optimal 

utilization of GPU resources. 

Parallel Computing Techniques: 

CPU Parallelization: For CPU architecture, we employed multi-threading techniques to parallelize Laplacian computations, 

optimizing for modern multi-core processors. 

GPU Parallelization: The parallelization strategy for GPUs focused on breaking down the Laplacian computations into 

parallelizable tasks, aligning with the architecture of the GPU. 

Benchmarking Methodology: 

Hardware and Software Configuration: We conducted benchmarking on diverse hardware configurations, including CPUs 

and GPUs. The software environment, including programming languages (Python, CUDA), libraries (NumPy, CuPy), and 

tools (Numba, NVIDIA Nsight), was carefully configured for consistency. 

Array Size Selection: Benchmarking involves systematically varying the array sizes to cover a spectrum of computational 

loads, allowing for a comprehensive performance assessment. 

Performance Evaluation Criteria: 

Key Metrics: The primary metrics for performance evaluation included execution time, throughput (operations per second), 

and memory usage. 

Comparison with Baseline: Results were compared against the baseline implementation to quantify the improvements 

achieved through optimization. 

Experimental Setup: 

Hardware Platforms: We performed experiments on a range of CPUs and GPUs, detailing the specifications of each hardware 

platform. 

Software Configuration: The software stack, including operating systems and versions of relevant libraries, was documented 

to ensure transparency and reproducibility. 

Data Collection: 

Systematic Testing: Rigorous testing procedures were applied to collect data under varying conditions. Multiple runs were 

conducted for each configuration to ensure reliable results. Data Logging: Detailed logs were maintained, recording 

execution times, throughput, and memory usage for subsequent analysis. 

Statistical Analysis: 

Speedup Calculation: Speedup factors were calculated based on the ratio of execution times between optimized and baseline 

implementations. 

Statistical Significance: Statistical methods were applied to assess the significance of observed speedup factors, ensuring the 

reliability of the optimization results. 

Ethical Considerations: 

Data Privacy: As the research focused on algorithm optimization and benchmarking, no human subjects or sensitive data 

were involved, minimizing ethical concerns. Adherence to Ethical Standards: The research adhered to ethical standards, 

promoting responsible conduct in experimentation. 
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3. LITERATURE REVIEW 

TABLE I: LITERATURE REVIEW TABLE 1 

 

TABLE 2: LITERATURE REVIEW TABLE 2 
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TABLE 3: LITERATURE REVIEW TABLE 3 
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TABLE 4: LITERATURE REVIEW TABLE 4 
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TABLE 5: LITERATURE REVIEW TABLE 5 

 

4. RELATED WORK 

Understanding the performance disparities between Laplacian operators on CPUs and GPUs necessitates a comprehensive 

review of related literature. Studies such as [9] delve into the intricacies of numerical PDE solving on GPUs, offering insights 

into the parallel processing capabilities crucial for Laplacian operator computations. Additionally, [10] provides a thorough 

investigation into stencil computations across diverse architectures, including GPUs, offering methodologies applicable to 

comparative analyses of Laplacian operators. The significance of efficient communication mechanisms is underscored in 

[11], which introduces a scalable communication approach using CUDA-aware MPI, crucial for evaluating CPU and GPU 

Laplacian operator implementations. Moreover, [12] offers insights into GPU performance characteristics, including tensor 

core functionalities, vital for understanding GPU computational capabilities relative to CPUs in Laplacian operator 

computations. 

Diving deeper into hardware acceleration and automatic code generation, studies like [13] explore optimizing finite-

difference stencils on FPGAs, offering insights into alternative hardware acceleration options for Laplacian operators. 

Meanwhile, [14] explores compression-based optimizations to enhance efficiency in out-of-core GPU stencil computations, 

offering insights into memory efficiency and data transfer overheads in Laplacian operator computations. Leveraging these 

works alongside others in GPU methodologies and high-performance computing enables a detailed comparative analysis. 

For instance, [15] presents methods for efficiently solving numerical PDEs on NVIDIA GPUs, crucial for benchmarking 

Laplacian operator performance. Additionally, [16] presents a scalable communication approach for high-order stencil 

computations using CUDA-aware MPI. This framework aids in evaluating communication overheads in Laplacian operator 

implementations across both CPUs and GPUs. 

By synthesizing insights from these studies, researchers can conduct a detailed comparative analysis of Laplacian operator 

implementations on CPUs and GPUs. Key factors to consider include computational performance, memory efficiency, 

communication overheads, and architectural features. Additionally, exploring methodologies from automatic code generation 

and hardware acceleration studies provides avenues for optimizing Laplacian operator performance across different 

computing platforms. 

I. Analysis of Computational Device Performance 

This study's analysis primarily compares the performance characteristics of central processing units (CPUs) and graphics 

processing units (GPUs) across different computational tasks. The dataset used in this research offers insights into execution 

time, memory usage, and throughput for various array sizes and types of computational devices. 
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Fig. 1. CPU Performance 

Our investigation reveals a consistent trend wherein GPUs demonstrate significantly lower execution times compared to 

CPUs across all array sizes. As the array size increases, this performance gap becomes more pronounced, highlighting the 

superior processing capabilities of GPUs, particularly for parallel computations. Additionally, GPUs consistently exhibit 

higher throughput compared to CPUs, indicating their suitability for tasks requiring high computational efficiency and 

parallel processing. 

 

Fig. 2. GPU Performance 
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Surprisingly, our analysis finds no significant difference in memory usage between CPUs and GPUs across all array sizes. 

Both CPU and GPU exhibit similar memory utilization patterns, suggesting that memory usage may not be a distinguishing 

factor when choosing between these computational devices. These finding challenges conventional assumptions and 

underscores the need for comprehensive performance evaluations beyond execution time alone. 

5. IMPLICATIONS AND CONCLUSION 

TABLE 6: Device IDs and Configurations 

 

 

The findings of this analysis have significant implications for computational tasks requiring high-performance computing. 

GPU acceleration emerges as a compelling solution for optimizing computational performance and achieving faster 

execution times, particularly for parallelizable tasks. While memory usage appears comparable between CPUs and GPUs, 

the superior processing capabilities of GPUs make them an attractive choice for various application domains, including 

machine learning, scientific simulations, and data analytics. 

 

Fig. 3. Speed Up Factor 

In conclusion, our analysis underscores the importance of considering GPU acceleration as a viable approach to enhance 

computational performance and meet the demands of modern computing tasks. Further research is warranted to explore 

additional factors influencing the choice between CPUs and GPUs, such as power consumption, cost-effectiveness, and 

hardware compatibility, to inform optimal decision-making in computational device selection. 
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