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ABSTRACT

This paper presents a comprehensive bench-marking study of a 2D Laplacian filter implemented on both CPU and GPU
architectures for image processing applications. The Laplacian filter serves as a fundamental tool in edge detection and
feature extraction, playing a crucial role in various computer vision tasks

Keywords: Image Processing - GPU Acceleration - Performance Benchmarking.

1. INTRODUCTION

Numerical algorithms play a pivotal role in scientific computing, providing solutions to complex mathematical problems that
may lack analytical solutions. These algorithms leverage computational methods to approximate solutions, enabling the
modelling and simulation of real-world phenomena. One such class of numerical algorithms involves the use of Laplacian
operators, which are fundamental in solving differential equations and are ubiquitous in various scientific and engineering
disciplines.

Laplacian operators, denoted by V2 or A, are differential operators that arise in the study of second-order partial differential
equations (PDEs). These operators are instrumental in characterizing diffusion processes, heat conduction, and potential
fields. In scientific computing, Laplacian operators are employed for tasks ranging from image processing to fluid dynamics
simulations. Their ability to capture spatial variations and gradients makes them indispensable in modelling physical
phenomena. The versatility of Laplacian operators extends to a myriad of real-world applications. In image processing,
Laplacian filters are utilized for edge detection and 2 Dr. Aswini J. et al. sharpening. In physics, Laplacian operators describe
the distribution of gravitational and electric potentials. Laplacian smoothing is applied in mesh generation for finite element
analysis. Understanding and optimizing the computation of Laplacian operators are critical for enhancing the efficiency of
these

applications.

This research paper delves into the implementation and optimization of Laplacian operators, with a focus on achieving
superior performance through parallel computing on Graphics Processing Units (GPUs). The subsequent sections will
explore the methodology, benchmarking results, speedup factor analysis, and comparisons with existing approaches. The
paper concludes with insights into potential optimizations, challenges faced, and future directions for advancing Laplacian
algorithms in scientific computing.

2. METHODOLOGY

In this research, we embarked on the analysis of Laplacian operators, aiming to enhance computational efficiency on both
CPU and GPU architectures. The methodology involved a series of steps, including algorithmic analysis, GPU acceleration,
parallel computing techniques, benchmarking, and performance evaluation.
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Algorithmic Analysis:

Baseline Implementation: We initially implemented the Laplacian operator algorithms for both CPU and GPU using standard
approaches.

Analysis and Identification: Through extensive analysis, we identified computational bottlenecks and areas for improvement
within the algorithms.

GPU Acceleration:

CUDA Integration: Leveraging NVIDIA’s CUDA platform, we parallelized the Laplacian computations for GPU
acceleration.

GPU Kernels: We developed and executed GPU kernels to leverage the highly parallel architecture, ensuring optimal
utilization of GPU resources.

Parallel Computing Techniques:

CPU Parallelization: For CPU architecture, we employed multi-threading techniques to parallelize Laplacian computations,
optimizing for modern multi-core processors.

GPU Parallelization: The parallelization strategy for GPUs focused on breaking down the Laplacian computations into
parallelizable tasks, aligning with the architecture of the GPU.

Benchmarking Methodology:

Hardware and Software Configuration: We conducted benchmarking on diverse hardware configurations, including CPUs
and GPUs. The software environment, including programming languages (Python, CUDA), libraries (NumPy, CuPy), and
tools (Numba, NVIDIA Nsight), was carefully configured for consistency.

Array Size Selection: Benchmarking involves systematically varying the array sizes to cover a spectrum of computational
loads, allowing for a comprehensive performance assessment.

Performance Evaluation Criteria:

Key Metrics: The primary metrics for performance evaluation included execution time, throughput (operations per second),
and memory usage.

Comparison with Baseline: Results were compared against the baseline implementation to quantify the improvements
achieved through optimization.

Experimental Setup:

Hardware Platforms: We performed experiments on a range of CPUs and GPUs, detailing the specifications of each hardware
platform.

Software Configuration: The software stack, including operating systems and versions of relevant libraries, was documented
to ensure transparency and reproducibility.

Data Collection:

Systematic Testing: Rigorous testing procedures were applied to collect data under varying conditions. Multiple runs were
conducted for each configuration to ensure reliable results. Data Logging: Detailed logs were maintained, recording
execution times, throughput, and memory usage for subsequent analysis.

Statistical Analysis:

Speedup Calculation: Speedup factors were calculated based on the ratio of execution times between optimized and baseline
implementations.

Statistical Significance: Statistical methods were applied to assess the significance of observed speedup factors, ensuring the
reliability of the optimization results.

Ethical Considerations:

Data Privacy: As the research focused on algorithm optimization and benchmarking, no human subjects or sensitive data
were involved, minimizing ethical concerns. Adherence to Ethical Standards: The research adhered to ethical standards,
promoting responsible conduct in experimentation.
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4. RELATED WORK

Understanding the performance disparities between Laplacian operators on CPUs and GPUs necessitates a comprehensive
review of related literature. Studies such as [9] delve into the intricacies of numerical PDE solving on GPUSs, offering insights
into the parallel processing capabilities crucial for Laplacian operator computations. Additionally, [10] provides a thorough
investigation into stencil computations across diverse architectures, including GPUs, offering methodologies applicable to
comparative analyses of Laplacian operators. The significance of efficient communication mechanisms is underscored in
[11], which introduces a scalable communication approach using CUDA-aware MPI, crucial for evaluating CPU and GPU
Laplacian operator implementations. Moreover, [12] offers insights into GPU performance characteristics, including tensor
core functionalities, vital for understanding GPU computational capabilities relative to CPUs in Laplacian operator
computations.

Diving deeper into hardware acceleration and automatic code generation, studies like [13] explore optimizing finite-
difference stencils on FPGAs, offering insights into alternative hardware acceleration options for Laplacian operators.
Meanwhile, [14] explores compression-based optimizations to enhance efficiency in out-of-core GPU stencil computations,
offering insights into memory efficiency and data transfer overheads in Laplacian operator computations. Leveraging these
works alongside others in GPU methodologies and high-performance computing enables a detailed comparative analysis.
For instance, [15] presents methods for efficiently solving numerical PDEs on NVIDIA GPUs, crucial for benchmarking
Laplacian operator performance. Additionally, [16] presents a scalable communication approach for high-order stencil
computations using CUDA-aware MPI. This framework aids in evaluating communication overheads in Laplacian operator
implementations across both CPUs and GPUSs.

By synthesizing insights from these studies, researchers can conduct a detailed comparative analysis of Laplacian operator
implementations on CPUs and GPUs. Key factors to consider include computational performance, memory efficiency,
communication overheads, and architectural features. Additionally, exploring methodologies from automatic code generation
and hardware acceleration studies provides avenues for optimizing Laplacian operator performance across different
computing platforms.

1. Analysis of Computational Device Performance

This study's analysis primarily compares the performance characteristics of central processing units (CPUs) and graphics
processing units (GPUs) across different computational tasks. The dataset used in this research offers insights into execution
time, memory usage, and throughput for various array sizes and types of computational devices.
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Our investigation reveals a consistent trend wherein GPUs demonstrate significantly lower execution times compared to
CPUs across all array sizes. As the array size increases, this performance gap becomes more pronounced, highlighting the
superior processing capabilities of GPUSs, particularly for parallel computations. Additionally, GPUs consistently exhibit
higher throughput compared to CPUs, indicating their suitability for tasks requiring high computational efficiency and

parallel processing.
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Surprisingly, our analysis finds no significant difference in memory usage between CPUs and GPUs across all array sizes.
Both CPU and GPU exhibit similar memory utilization patterns, suggesting that memory usage may not be a distinguishing
factor when choosing between these computational devices. These finding challenges conventional assumptions and
underscores the need for comprehensive performance evaluations beyond execution time alone.

5. IMPLICATIONS AND CONCLUSION

TABLE 6: Device IDs and Configurations

D CPU GPU

1 15-10300H CPU @ 2.50GHz with GTX 1650  NVIDIA GeForce GTX 1650
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RTX 2060 NVIDIA GeForce RTX 2060

6 17-10750H CPU @ 2.60GHz with GeForce NVIDIA GeForce RTX 2070 with
KX 2040 with Max-Q Design Max-Q Design
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Lapiop wru

g 11th Gen Intel(R) Core(TM) i7-11800H@  NVIDIA GeForce RTX 3060
2350GHz Laptop GFU

0 Intel(R) Xeon(R) CPU @ 2.30GHz Tesla T4

The findings of this analysis have significant implications for computational tasks requiring high-performance computing.
GPU acceleration emerges as a compelling solution for optimizing computational performance and achieving faster
execution times, particularly for parallelizable tasks. While memory usage appears comparable between CPUs and GPUSs,
the superior processing capabilities of GPUs make them an attractive choice for various application domains, including
machine learning, scientific simulations, and data analytics.
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In conclusion, our analysis underscores the importance of considering GPU acceleration as a viable approach to enhance
computational performance and meet the demands of modern computing tasks. Further research is warranted to explore
additional factors influencing the choice between CPUs and GPUs, such as power consumption, cost-effectiveness, and
hardware compatibility, to inform optimal decision-making in computational device selection.
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