https://www.jneonatalsurg.com # Laplacian Operators for Scientific Computing: A Comparative Analysis of CPU and GPU Implementations # Dr. Aswini J¹, Mr. Marinto Richee J², Dr. M. G. Dinesh³, Dr. A. Gayathri⁴ ^{1,2}Saveetha Engineering College, Chennai, Tamil Nadu, India. Cite this paper as: Dr. Aswini J, Mr. Marinto Richee J, Dr. M. G. Dinesh, Dr. A. Gayathri, (2025) Laplacian Operators for Scientific Computing: A Comparative Analysis of CPU and GPU Implementations. *Journal of Neonatal Surgery*, 14 (29s), 75-84. #### **ABSTRACT** This paper presents a comprehensive bench-marking study of a 2D Laplacian filter implemented on both CPU and GPU architectures for image processing applications. The Laplacian filter serves as a fundamental tool in edge detection and feature extraction, playing a crucial role in various computer vision tasks **Keywords:** Image Processing · GPU Acceleration · Performance Benchmarking. #### 1. INTRODUCTION Numerical algorithms play a pivotal role in scientific computing, providing solutions to complex mathematical problems that may lack analytical solutions. These algorithms leverage computational methods to approximate solutions, enabling the modelling and simulation of real-world phenomena. One such class of numerical algorithms involves the use of Laplacian operators, which are fundamental in solving differential equations and are ubiquitous in various scientific and engineering disciplines. Laplacian operators, denoted by ∇^2 or Δ , are differential operators that arise in the study of second-order partial differential equations (PDEs). These operators are instrumental in characterizing diffusion processes, heat conduction, and potential fields. In scientific computing, Laplacian operators are employed for tasks ranging from image processing to fluid dynamics simulations. Their ability to capture spatial variations and gradients makes them indispensable in modelling physical phenomena. The versatility of Laplacian operators extends to a myriad of real-world applications. In image processing, Laplacian filters are utilized for edge detection and 2 Dr. Aswini J. et al. sharpening. In physics, Laplacian operators describe the distribution of gravitational and electric potentials. Laplacian smoothing is applied in mesh generation for finite element analysis. Understanding and optimizing the computation of Laplacian operators are critical for enhancing the efficiency of these applications. This research paper delves into the implementation and optimization of Laplacian operators, with a focus on achieving superior performance through parallel computing on Graphics Processing Units (GPUs). The subsequent sections will explore the methodology, benchmarking results, speedup factor analysis, and comparisons with existing approaches. The paper concludes with insights into potential optimizations, challenges faced, and future directions for advancing Laplacian algorithms in scientific computing. #### 2. METHODOLOGY In this research, we embarked on the analysis of Laplacian operators, aiming to enhance computational efficiency on both CPU and GPU architectures. The methodology involved a series of steps, including algorithmic analysis, GPU acceleration, parallel computing techniques, benchmarking, and performance evaluation. ³Easa College of Engineering and Technology, Coimbatore, Tamil Nadu, India ⁴Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India ^{1,2}Email ID: aswinijmarintorichee.student@saveetha.ac.in, ³Email ID: dineshbabu.mg@gmail.com ⁴Email ID: gayathribala.sse@saveetha.com #### **Algorithmic Analysis:** Baseline Implementation: We initially implemented the Laplacian operator algorithms for both CPU and GPU using standard approaches. Analysis and Identification: Through extensive analysis, we identified computational bottlenecks and areas for improvement within the algorithms. #### **GPU Acceleration:** CUDA Integration: Leveraging NVIDIA's CUDA platform, we parallelized the Laplacian computations for GPU acceleration. GPU Kernels: We developed and executed GPU kernels to leverage the highly parallel architecture, ensuring optimal utilization of GPU resources. ### **Parallel Computing Techniques:** CPU Parallelization: For CPU architecture, we employed multi-threading techniques to parallelize Laplacian computations, optimizing for modern multi-core processors. GPU Parallelization: The parallelization strategy for GPUs focused on breaking down the Laplacian computations into parallelizable tasks, aligning with the architecture of the GPU. #### **Benchmarking Methodology:** Hardware and Software Configuration: We conducted benchmarking on diverse hardware configurations, including CPUs and GPUs. The software environment, including programming languages (Python, CUDA), libraries (NumPy, CuPy), and tools (Numba, NVIDIA Nsight), was carefully configured for consistency. Array Size Selection: Benchmarking involves systematically varying the array sizes to cover a spectrum of computational loads, allowing for a comprehensive performance assessment. #### **Performance Evaluation Criteria:** Key Metrics: The primary metrics for performance evaluation included execution time, throughput (operations per second), and memory usage. Comparison with Baseline: Results were compared against the baseline implementation to quantify the improvements achieved through optimization. # **Experimental Setup:** Hardware Platforms: We performed experiments on a range of CPUs and GPUs, detailing the specifications of each hardware platform. Software Configuration: The software stack, including operating systems and versions of relevant libraries, was documented to ensure transparency and reproducibility. #### **Data Collection:** Systematic Testing: Rigorous testing procedures were applied to collect data under varying conditions. Multiple runs were conducted for each configuration to ensure reliable results. Data Logging: Detailed logs were maintained, recording execution times, throughput, and memory usage for subsequent analysis. #### **Statistical Analysis:** Speedup Calculation: Speedup factors were calculated based on the ratio of execution times between optimized and baseline implementations. Statistical Significance: Statistical methods were applied to assess the significance of observed speedup factors, ensuring the reliability of the optimization results. #### **Ethical Considerations:** Data Privacy: As the research focused on algorithm optimization and benchmarking, no human subjects or sensitive data were involved, minimizing ethical concerns. Adherence to Ethical Standards: The research adhered to ethical standards, promoting responsible conduct in experimentation. # 3. LITERATURE REVIEW TABLE I: LITERATURE REVIEW TABLE 1 | Title | Methodology | Results | Conclusion | |---|---|--|---| | A Survey on
Hardware
Accelerators for
Large Language
Models | Presents frameworks for acceleration of transformer networks for LLMs and NLP using hardware accelerators, performs qualitative and quantitative comparison. | Presents results of
qualitative and
quantitative comparison
of different hardware
accelerators for LLMs,
highlights performance
metrics and energy
efficiency | Summarizes key
findings, emphasizes
importance of hardware
accelerators for
enhancing performance
and energy efficiency of
LLMs | | Computing Large
2D Convolutions
on GPU
Efficiently | Introduces im2tensor algorithm
for efficient computation of
large 2D convolutions on GPUs,
details approach and techniques
used to enhance throughput | Presents findings related
to performance
improvements achieved
through im2tensor
algorithm, examines
enhanced throughput
and efficiency | Summarizes
achievements, suggests
future directions for
optimizing computation
of large 2D convolutions
on GPUs. | TABLE 2: LITERATURE REVIEW TABLE 2 | Title | Methodology | Results | Conclusion | |--|---|---|--| | GPU Support for
Automatic
Generation of
Finite-Differences
Stencil Kernels | Background on Devito, OPS,
acoustic wave propagation
model, DSLs, stencil code
generation. | Compares with FEniCS,
Firedrake, YASK,
CTADEL, discusses
DSLs and code
generation for stencil
computations. | Presents performance
evaluation on NVIDIA
devices, measures
operational intensity,
compares with
hand-optimized code. | | A stencil-based
implementation of
Parareal in the
C++ domain
specific embedded
language
STELLA | Overview of Parareal,
time-parallel methods, STELLA
language, stencil computations,
PDEs. | Compares with PITA,
RIDC, PFASST,
discusses space-time
multigrid, reviews
implementation
strategies of Parareal. | Reports results on Cray
XC30 system, measures
speedup, parallel
efficiency, energy
consumption. | | Block-Relaxation
Methods for 3D
Constant-Coeffici
ent Stencils on
GPUs and
Multicore CPUs | Background on block iterative
methods, CUDA programming,
stencil operations. | Compares with Feng et
al., Anzt et al., Adams et
al., discusses
block-based smoothers
and stencil operations. | Presents experimental
results on AMD/NVIDIA
hardware, benchmarks
block
Jacobi/Gauss-Seidel
relaxations, measures
wall time, speedup. | | A Generic Library
for Stencil
Computations | Background on stencil
computations, challenges in
programmability and
performance, related work. | Compares with
auto-tuning techniques,
cache oblivious
algorithms, grid
computing libraries. | Presents experimental
results on different
architectures, compares
performance with C
implementations, shows
scalability. | | AN5D:
Automated Stencil
Framework for
High-Degree
Temporal
Blocking on GPUs | Background on stencil
computation, spatial/temporal
blocking, limitations of existing
techniques. | Discusses existing
techniques for temporal
blocking, spatial
blocking, compares with
proposed framework. | Presents performance
evaluation on Tesla V100
GPU, compares with
existing methods,
analyzes scalability. | | A Synergy
between On- and
Off-Chip Data
Reuse for
GPU-based
Out-of-Core
Stencil
Computation | Review of out-of-core stencil
computation, GPU performance
factors, previous optimization
methods. | Reviews previous work
on out-of-core stencil
computation,
compression techniques,
identifies research gaps. | Reports speedup and
memory reduction
achieved by SO2DR,
compares with
competitors, analyzes
impact of configurations. | Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s Accelerating Compact Fractals **GPUs** with Tensor Core Analytical Performance on Modern GPUs Casper: Accelerating Stencil Computations using Near-Cache Processing Estimation during Code Generation Introduction to fractal geometry, discrete fractals, NBB class, tensor cores, compact fractal representation. Builds on analytical performance modeling, code generation, GPU cache behavior. Background on GPU architecture, roofline model, metric estimation, code generation. Surveys previous work on GPU thread mapping, tensor core usage, identifies novelty of proposed approach. Reviews existing code generation frameworks, performance modeling, metric estimation. Cites works on compression for stencil/LBM, compares with proposed approach. Shows speedup and memory reduction achieved by compact fractal approach, compares with bounding box approach. Evaluates accuracy and usefulness of Warpspeed, applies to 3D-25pt stencil and LBM solver. Reports performance improvements with Casper on 3D-25pt stencil and LBM solver. #### **TABLE 3: LITERATURE REVIEW TABLE 3** | Title | Methodology | Results | Conclusion | |--|--|---|--| | GPU Support for
Automatic
Generation of
Finite-Differences
Stencil Kernels | Background on Devito, OPS,
acoustic wave propagation
model, DSLs, stencil code
generation. | Compares with FEniCS,
Firedrake, YASK,
CTADEL, discusses
DSLs and code
generation for stencil
computations. | Presents performance
evaluation on NVIDIA
devices, measures
operational intensity,
compares with
hand-optimized code. | | A stencil-based
implementation of
Parareal in the
C++ domain
specific embedded
language
STELLA | Overview of Parareal,
time-parallel methods, STELLA
language, stencil computations,
PDEs. | Compares with PITA,
RIDC, PFASST,
discusses space-time
multigrid, reviews
implementation
strategies of Parareal. | Reports results on Cray
XC30 system, measures
speedup, parallel
efficiency, energy
consumption. | | Block-Relaxation
Methods for 3D
Constant-Coeffici
ent Stencils on
GPUs and
Multicore CPUs | Background on block iterative
methods, CUDA programming,
stencil operations. | Compares with Feng et
al., Anzt et al., Adams et
al., discusses
block-based smoothers
and stencil operations. | Presents experimental
results on AMD/NVIDIA
hardware, benchmarks
block
Jacobi/Gauss-Seidel
relaxations, measures
wall time, speedup. | | A Generic Library
for Stencil
Computations | Background on stencil
computations, challenges in
programmability and
performance, related work. | Compares with
auto-tuning techniques,
cache oblivious
algorithms, grid
computing libraries. | Presents experimental
results on different
architectures, compares
performance with C
implementations, shows
scalability. | | AN5D:
Automated Stencil
Framework for
High-Degree
Temporal
Blocking on GPUs | Background on stencil
computation, spatial/temporal
blocking, limitations of existing
techniques. | Discusses existing
techniques for temporal
blocking, spatial
blocking, compares with
proposed framework. | Presents performance
evaluation on Tesla V100
GPU, compares with
existing methods,
analyzes scalability. | | A Synergy
between On- and
Off-Chip Data
Reuse for
GPU-based
Out-of-Core
Stencil
Computation | Review of out-of-core stencil
computation, GPU performance
factors, previous optimization
methods. | Reviews previous work
on out-of-core stencil
computation,
compression techniques,
identifies research gaps. | Reports speedup and
memory reduction
achieved by SO2DR,
compares with
competitors, analyzes
impact of configurations. | | Accelerating
Compact Fractals
with Tensor Core
GPUs | Introduction to fractal geometry,
discrete fractals, NBB class,
tensor cores, compact fractal
representation. | Surveys previous work
on GPU thread
mapping, tensor core
usage, identifies novelty
of proposed approach. | Shows speedup and
memory reduction
achieved by compact
fractal approach,
compares with bounding
box approach. | Analytical Performance Estimation during Code Generation on Modern GPUs Casper: Accelerating Stencil Computations using Near-Cache Processing Builds on analytical performance modeling, code generation, GPU cache behavior. Background on GPU architecture, roofline model, metric estimation, code generation. Reviews existing code generation frameworks, performance modeling, metric estimation. Cites works on compression for stencil/LBM, compares with proposed approach. Evaluates accuracy and usefulness of Warpspeed, applies to 3D-25pt stencil and LBM solver. Reports performance improvements with Casper on 3D-25pt stencil and LBM solver. # **TABLE 4: LITERATURE REVIEW TABLE 4** | Title | Methodology | Results | Conclusion | |---|---|--|---| | Compression-Bas
ed Optimizations
for Out-of-Core
GPU Stencil
Computation | Addresses out-of-core stencil
computation, GPU memory
constraints, compression
techniques. | Reviews studies on
compression techniques,
compares with proposed
methods. | Demonstrates speedup
and memory reduction
with compression,
applies to acoustic wave
propagation. | | Distributed
Parallelization of
xPU Stencil
Computations in
Julia | Reviews Julia packages for
distributed parallelization,
discusses requirements for HPC
software. | Mentions related Julia
packages for MPI, GPU
programming, and
stencil computation. | Reports parallel weak
scaling of solvers on
Nvidia P100 GPUs with
ImplicitGlobalGrid.jl. | | Employing
polyhedral
methods to
optimize stencils
on FPGAs | Background on stencil codes,
FPGAs, high-level synthesis,
loop tiling, polyhedral methods. | Discusses existing work
on stencil optimization
on FPGAs, compares
techniques. | Evaluates performance
on 10 stencil codes,
reports significant
speedups over baseline. | | Exploiting
Scratchpad
Memory for Deep
Temporal
Blocking | Background on stencil
computations, temporal
blocking, scratchpad memory. | Compares with
state-of-the-art temporal
blocking
implementations on
GPUs. | Evaluates performance
on 2D Jacobian 5-point
iterative stencil kernel,
compares with
StencilGen and AN5D. | | Fortran performance optimisation and auto-parallelisatio n by leveraging MLIR-based domain specific abstractions in Flang | Background on Fortran
performance optimization,
auto-parallelization, MLIR. | Surveys previous work
on Fortran performance
optimization and
auto-parallelization. | Evaluates performance
on Fortran codes,
demonstrates
improvements. | | Graph-based
Neural Network
Model for
Scientific Paper
Summarization | Background on scientific paper
summarization, graph-based
neural networks. | Surveys existing
methods for scientific
paper summarization. | Evaluates on arXiv and
PubMed datasets,
achieves state-of-the-art
results. | | GPU
Methodologies for
Numerical Partial
Differential
Equations | Introduces cuSten library for
applying finite-difference
stencils, develops batched
tridiagonal and pentadiagonal
solvers for GPUs. | Demonstrates
significant performance
improvements over
existing methods,
enables exploration of
batches of PDEs. | Concludes GPU methods
are efficient and reusable,
suggests future
extensions. | | High-performance
xPU Stencil
Computations in
Julia | Describes design and
implementation of
ParallelStencil.jl, highlighting
its use of Julia's features for
parallelism. | Shows performance
close to theoretical
upper bound on GPUs,
significant speedup over
traditional array
programming on CPUs. | Concludes ParallelStencil.jl is effective and widely applicable, suggests future improvements. | | Revisiting
Temporal
Blocking Stencil
Optimizations | Introduces EBISU method,
consisting of four components
for deep temporal blocking on
GPUs. | Achieves speedups up to
2.53x over
state-of-the-art methods
in stencil benchmarks. | Concludes EBISU is
effective and scalable,
suggests extending to
other architectures. | **TABLE 5: LITERATURE REVIEW TABLE 5** | Title | Methodology | Results | Conclusion | |--|---|---|---| | Scalable
communication
for high-order
stencil
computations
using
CUDA-aware
MPI | Describes a method for scalable
communication using
CUDA-aware MPI in high-order
stencil computations. | Provides analysis of practical performance and factors affecting it, reports speedups up to 1.49x over baseline. | Concludes method is effective for communication in high-order stencil computations, suggests future work. | | Scientific
Computing
Beyond CPUs:
FPGA
implementations | Summarizes previous studies on FPGA implementations of scientific kernels and compares with their approach. | Describes FPGA
implementations of
BLAS, sparse matrix
operations, and FFTs
using SRC MAPstation. | Analyzes advantages and challenges of using FPGAs for scientific computing, discusses use of high-level languages. | | TensorFlow as a
DSL for
stencil-based
computation on
the Cerebras WSE | Cites previous work on using WSE for machine learning and computational kernels, highlights differences in methodology. | Uses TensorFlow
constructs like dense
and convolution layers
to encode stencil-based
algorithms on the WSE. | Discusses limitations and
challenges of using
TensorFlow for
programming WSE,
suggests potential
improvements with
Cerebras SDK.S | #### 4. RELATED WORK Understanding the performance disparities between Laplacian operators on CPUs and GPUs necessitates a comprehensive review of related literature. Studies such as [9] delve into the intricacies of numerical PDE solving on GPUs, offering insights into the parallel processing capabilities crucial for Laplacian operator computations. Additionally, [10] provides a thorough investigation into stencil computations across diverse architectures, including GPUs, offering methodologies applicable to comparative analyses of Laplacian operators. The significance of efficient communication mechanisms is underscored in [11], which introduces a scalable communication approach using CUDA-aware MPI, crucial for evaluating CPU and GPU Laplacian operator implementations. Moreover, [12] offers insights into GPU performance characteristics, including tensor core functionalities, vital for understanding GPU computational capabilities relative to CPUs in Laplacian operator computations. Diving deeper into hardware acceleration and automatic code generation, studies like [13] explore optimizing finite-difference stencils on FPGAs, offering insights into alternative hardware acceleration options for Laplacian operators. Meanwhile, [14] explores compression-based optimizations to enhance efficiency in out-of-core GPU stencil computations, offering insights into memory efficiency and data transfer overheads in Laplacian operator computations. Leveraging these works alongside others in GPU methodologies and high-performance computing enables a detailed comparative analysis. For instance, [15] presents methods for efficiently solving numerical PDEs on NVIDIA GPUs, crucial for benchmarking Laplacian operator performance. Additionally, [16] presents a scalable communication approach for high-order stencil computations using CUDA-aware MPI. This framework aids in evaluating communication overheads in Laplacian operator implementations across both CPUs and GPUs. By synthesizing insights from these studies, researchers can conduct a detailed comparative analysis of Laplacian operator implementations on CPUs and GPUs. Key factors to consider include computational performance, memory efficiency, communication overheads, and architectural features. Additionally, exploring methodologies from automatic code generation and hardware acceleration studies provides avenues for optimizing Laplacian operator performance across different computing platforms. # I. Analysis of Computational Device Performance This study's analysis primarily compares the performance characteristics of central processing units (CPUs) and graphics processing units (GPUs) across different computational tasks. The dataset used in this research offers insights into execution time, memory usage, and throughput for various array sizes and types of computational devices. Fig. 1. CPU Performance Our investigation reveals a consistent trend wherein GPUs demonstrate significantly lower execution times compared to CPUs across all array sizes. As the array size increases, this performance gap becomes more pronounced, highlighting the superior processing capabilities of GPUs, particularly for parallel computations. Additionally, GPUs consistently exhibit higher throughput compared to CPUs, indicating their suitability for tasks requiring high computational efficiency and parallel processing. Fig. 2. GPU Performance Surprisingly, our analysis finds no significant difference in memory usage between CPUs and GPUs across all array sizes. Both CPU and GPU exhibit similar memory utilization patterns, suggesting that memory usage may not be a distinguishing factor when choosing between these computational devices. These finding challenges conventional assumptions and underscores the need for comprehensive performance evaluations beyond execution time alone. #### 5. IMPLICATIONS AND CONCLUSION **TABLE 6: Device IDs and Configurations** | ID | CPU | GPU | |----|--|--| | | | | | 1 | i5-10300H CPU @ 2.50GHz with GTX 1650 | NVIDIA GeForce GTX 1650 | | 2 | i5-10300H CPU @ 2.50GHz with GTX 1650
Ti | NVIDIA GeForce GTX 1650 Ti | | 3 | Intel(R) Core(TM) i7-1065G7 CPU @
1.30GHz | NVIDIA GeForce MX230 | | 4 | Intel(R) Core(TM) i5-10210U CPU @
1.60GHz | NVIDIA GeForce MX350 | | 5 | i7-10750H CPU @ 2.60GHz with GeForce
RTX 2060 | NVIDIA GeForce RTX 2060 | | 6 | i7-10750H CPU @ 2.60GHz with GeForce
RTX 20/0 with Max-Q Design | NVIDIA GeForce RTX 2070 with
Max-Q Design | | 7 | 12th Gen Intel(R) Core(TM) i7-12700H | NVIDIA GeForce RTX 3050 Ti
Laptop GPU | | 8 | 11th Gen Intel(R) Core(TM) i7-11800H @
2.30GHz | NVIDIA GeForce RTX 3060
Laptop GPU | | 9 | Intel(R) Xeon(R) CPU @ 2.30GHz | Tesla T4 | | | | | The findings of this analysis have significant implications for computational tasks requiring high-performance computing. GPU acceleration emerges as a compelling solution for optimizing computational performance and achieving faster execution times, particularly for parallelizable tasks. While memory usage appears comparable between CPUs and GPUs, the superior processing capabilities of GPUs make them an attractive choice for various application domains, including machine learning, scientific simulations, and data analytics. In conclusion, our analysis underscores the importance of considering GPU acceleration as a viable approach to enhance computational performance and meet the demands of modern computing tasks. Further research is warranted to explore additional factors influencing the choice between CPUs and GPUs, such as power consumption, cost-effectiveness, and hardware compatibility, to inform optimal decision-making in computational device selection. #### REFERENCES - [1] Arteaga, A., Ruprecht, D., & Krause, R. (2014). A stencil-based implementation of Parareal in the C++ domain specific embedded language STELLA. *ArXiv.* https://doi.org/10.1016/j.amc.2014.12.055 - [2] Bianco, M., & Varetto, U. (2012). A Generic Library for Stencil Computations. *ArXiv.* https://arxiv.org/abs/1207.1746 - [3] Birke, M., Philip, B., Wang, Z., & Berrill, M. (2012). Block-Relaxation Methods for 3D Constant-Coefficient Stencils on GPUs and Multicore CPUs. *ArXiv.* https://arxiv.org/abs/1208.1975 - [4] Brown, N., Echols, B., Zarins, J., & Grosser, T. (2022). TensorFlow as a DSL for stencil-based computation on the Cerebras Wafer Scale Engine. *ArXiv.* https://arxiv.org/abs/2210.04795 - [5] Brown, N., Jamieson, M., Lydike, A., Bauer, E., & Grosser, T. (2023). Towards Accelerating high-order stencil computations on modern GPUs and emerging architectures using a portable framework. - [6] *ArXiv.* https://doi.org/10.1145/3624062.3624167 - [7] Denzler, A., Bera, R., Hajinazar, N., Singh, G., Oliveira, G. F., & Mutlu, O. (2021). Casper: Accelerating Stencil Computation using Near-cache Processing. *ArXiv.* https://arxiv.org/abs/2112.14216 - [8] Ernst, D., Holzer, M., Hager, G., Knorr, M., & Wellein, G. (2022). Analytical Performance Estimation during Code Generation on Modern GPUs. *ArXiv.* https://arxiv.org/abs/2204.14242 - [9] Gloster, A. (2021). GPU Methodologies for Numerical Partial Differential Equations. *ArXiv.* https://arxiv.org/abs/2101.06550 - [10] Kachris, C. (2024). A Survey on Hardware Accelerators for Large Language Models. *ArXiv.* https://arxiv.org/abs/2401.09890 - [11] Kerzner, Ethan, and Timothy Urness. "GPU Programming for Mathematical and Scientific Computing." - [12] *Drake University* (2010). - [13] Luo, W., Fan, R., Li, Z., Du, D., Wang, Q., & Chu, X. (2024). Benchmarking and Dissecting the Nvidia Hopper GPU Architecture. *ArXiv.* https://arxiv.org/abs/2402.13499 - [14] Matsumura, K., Zohouri, H. R., Wahib, M., Endo, T., & Matsuoka, S. (2020). AN5D: Automated Stencil Framework for High-Degree Temporal Blocking on GPUs. *ArXiv.* https://doi.org/10.1145/3368826.3377904 - [15] Mayer, F., Brandner, J., & Philippsen, M. (2024). Utilizing polyhedral methods to optimize stencil computations on FPGAs, incorporating stencil-specific caches, data reuse strategies, and wide data bursts. *ArXiv.* https://arxiv.org/abs/2401.13645 - [16] Omlin, S., & Räss, L. (2022). High-performance xPU Stencil Computations in Julia. *ArXiv.* https://arxiv.org/abs/2211.15634 - [17] Omlin, S., Räss, L., & Utkin, I. (2022). Distributed Parallelization of xPU Stencil Computations in Julia. - [18] *ArXiv.* https://arxiv.org/abs/2211.15716 - [19] Paredes, E. G., Groner, L., Ubbiali, S., Vogt, H., Madonna, A., Mariotti, K., Cruz, F., Benedicic, L., Bianco, M., VandeVondele, J., & Schulthess, T. C. (2023). GT4Py: Python-based high-performance stencil computations tailored for weather and climate applications. *ArXiv.* https://arxiv.org/abs/2311.08322 - [20] Pekkilä, J., Väisälä, M. S., Käpylä, M. J., Rheinhardt, M., & Lappi, O. (2021). Implementing scalable communication techniques for high-order stencil computations by leveraging CUDA-aware MPI. - [21] *ArXiv.* https://doi.org/10.1016/j.parco.2022.102904 - [22] Quezada, F. A., & Navarro, C. A. (2021). Accelerating Compact Fractals with Tensor Core GPUs. - [23] *ArXiv.* https://arxiv.org/abs/2110.12952 - [24] Reguly, I. Z., Mudalige, G. R., & Giles, M. B. (2017). Exploring out-of-core stencil computations beyond the limitations of 16GB memory. *ArXiv.* https://arxiv.org/abs/1709.02125 - [25] Rodrigues, V. H., Cavalcante, L., Pereira, M. B., Luporini, F., Reguly, I., Gorman, G., & De Souza, S. X. (2019). GPU Support for Automatic Generation of Finite-Differences Stencil Kernels. *ArXiv.* \$https://doi.org/10.1007/978-3-030-41005-6_16\$ - [26] Sai, R., & Xu, J. (2023). Towards Accelerating High-Order Stencils on Modern GPUs and Emerging Architectures with a Portable Framework. *ArXiv.* https://arxiv.org/abs/2309.04671 - [27] Seznec, Mickael, et al. "Computing large 2D convolutions on GPU efficiently with the im2tensor algorithm." *Journal of Real-Time Image Processing* 19.6 (2022): 1035-1047. - [28] Shen, J., Deng, X., Wu, Y., Okita, M., & Ino, F. (2022). Compression-Based Optimizations for Out-of-Core GPU Stencil Computation. *ArXiv.* https://arxiv.org/abs/2204.11315 - [29] Shen, J., Long, L., Zhang, J., Shen, W., Okita, M., & Ino, F. (2023). A Synergy between On- and Off-Chip Data Reuse for GPU-based Out-of-Core Stencil Computation. *ArXiv.* https://arxiv.org/abs/2309.08864 - [30] Shen, J., Wu, Y., Okita, M., & Ino, F. (2021). Accelerating GPU - [31] 26.-Based Out-of-Core Stencil Computation with On-the-Fly Compression. *ArXiv.* https://arxiv.org/abs/2109.05410 - [32] Smith, Melissa C., Jeffery S. Vetter, and Sadaf R. Alam. "Scientific computing beyond CPUs: FPGA implementations of common scientific kernels." *2005 MAPLD International Conference. * 2005. - [33] Yang, J., Giannoula, C., Wu, J., Elhoushi, M., Gleeson, J., & Pekhimenko, G. (2023). Minuet: Accelerating 3D Sparse Convolutions on GPUs. *ArXiv.* https://arxiv.org/abs/2401.06145 - [34] Zhang, L., M., Wahib, P., Chen, J., Meng, X., Wang, T., Endo, & Matsuoka, S. (2023). Exploiting Scratchpad Memory for Deep Temporal Blocking: A case study for 2D Jacobian 5-point iterative stencil kernel (j2d5pt). *ArXiv.* https://doi.org/10.1145/3589236.3589242 - [35] Zhang, L., M., Wahib, P., Chen, J., Meng, X., Wang, T., Endo, & Matsuoka, S. (2023). Revisiting Temporal Blocking Stencil Optimizations. *ArXiv.* https://doi.org/10.1145/3577193.3593716 - [36] Zohouri, H. R., Podobas, A., & Matsuoka, S. (2020). High-Performance High-Order Stencil Computation on FPGAs Using OpenCL. *ArXiv.* https://doi.org/10.1109/IPDPSW.2018.00027