

$I\xi$ irresolute functions ideal topological spaces

V. Ananthi¹, B. Mallaiyasamy²

^{1, 2}Department of Mathematics, Nadar Sraswathi College of Engineering and Technology,

Email ID: ananthiramesh06@gmail.com Email ID: bmskprraja@gmail.com.

Cite this paper as: V. Ananthi, B. Mallaiyasamy, (2025) $I\xi$ irresolute functions ideal topological spaces. *Journal of Neonatal Surgery*, 14 (29s), 195-198.

ABSTRACT

In this paper, we introduce and study a new class of function called $I\xi$ irresolute function in Ideal topological spaces.

Keywords: Ideal topological space, $I_{\bar{\epsilon}}$ open set, $I_{\bar{\epsilon}}$ continues function and $I_{\bar{\epsilon}}$ irresolute function.

1. INTRODUCTION

In point set topology continuous properties are the essential part. In the year 1982 Hdeib [3] introduced the new type of open set namely ω -open set and ω -closed function and after seven years in 1989 Hdeib [3] studied ω -continuous function. A subset A belonging to an ideal topological space (X,τ,I) is said to be ω -open if for every $x \in A$, there exists an open set U_x containing x such that $U_x - A$ is countable. A function $f:(X,\tau) \to (Y,\sigma)$ where (X,τ) and (Y,σ) are topological spaces is ω - continuous if for every $x \in X$ and for every open set G in G containing G in the year 2009 Noiri and Noorani [7] gave the pre-G-open using G-open. A subset G belonging to the topological space is said to be pre-G-open if G in the year 2009 Noiri and Noorani [7] gave the pre-G-open using G-open. A subset G in the space G in the topological space is said to be pre-G-open if G in the year 2009 Noiri and Noorani [7] gave the pre-G-open using G-open. A subset G in the space G in the topological space is said to be pre-G-open if G in the year 2009 Noiri and Noorani [7] gave the pre-G-open using G-open. A subset G in the space G in the topological space is said to be pre-G-open if G in the space G in

Term ideal in topological space was first coined by Kuratowski and Vaidyanathaswamy [5,10]. Jankovic and Hamlett [3] were given the concept of I open sets in ideal topological spaces. An ideal I on a non empty collection of subsets of X which satisfies the following axioms:

- (i) $S_1 \in I$ and $S_2 \subseteq S_1 \Rightarrow S_2 \in I$,
- (ii) $S_1 \in I$ and $S_2 \in I \Rightarrow S_1 \cup S_2 \in I$ [5,8]. Applications of ideal into various fields examined by Jankovic and Hamlett [4]. A topological space (X,) together with an ideal *I* on X and if P(X) is the power set of X, a set operator (.)*: $P(X) \to P(X)$, is said to be a local function [5] of S with respect to an τ and ideal I is defined as follows:

For $S \subseteq X$, $S^*(I,\tau) = \{s \in X | U \cap S \notin I \text{ for every } U \in \tau(s), \text{ where } \tau(s) = \{U \in \tau | s \in U\}.$

Further more $cl^*(S) = S \cup S^*(I,\tau)$ defines a Kuratowski [5] closure operator for the topology

 τ *is finer than τ .

Definition 1.1 [8]

Let(X,τ,I) be an ideal topological space and $S\subseteq X$.

- (i) The I_{ξ} closure operator of is denoted by $I_{\xi} c(S)$ and it is defined as the intersection of all I_{ξ} closed sets containing S. That is, $1(S) = {\xi \cap \{P \subseteq X | S \subseteq P \text{ and } S \in \tau^{int} * C\}}$.
- (ii) The I_{ξ} interior operator of S is denoted by $I_{\xi}(S)$ and it is defined as the union of all

 I_{ξ} open sets contained in S. That is, int $(S) = \bigcup \{P \subseteq X | P \subseteq S \text{ and } S \in \tau^{int} * \}$.

Definition 1.2 [9]

Let (X,τ,I) be an ideal topological space and (Y,σ) be a topological space. Then the function $f:(X,\tau,I) \to (Y,\sigma)$ is said to be $I_{\xi\xi}$ continuous if for each open set T in Y, $f^{-1}(T)$ is I_{ξ} open set in X.

Remark 1.3 [9]

Every open set is I_{ξ} open set, so every continuous function is I_{ξ} continuous.

2. IE IRRESOLUTE FUNCTION IN IDEAL TOPOLOGICAL SPACE

In this section, we present and study I_{ξ} irresolute function and also investigate its characteristics.

Definition 2.1

Let X and Y be two ideal topological spaces. Then the function $f: X \to Y$ is said to be I_{ξ} irresolute if for each J_{ξ} open set T in Y, $f^{-1}(T)$ is I_{ξ} open set in X.

Example 2.2

Let(X, τ, I) and (Y, σ, J) be two ideal topological spaces, $X = Y = \{s_1, s_2, s_3\}, \ \tau = \sigma = \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, Y\},$ with ideals $I = \{\emptyset, \{s_1\}\}$ and $J = \{\emptyset, \{s_2\}\}.$ Then $\tau^{int} *= \{\emptyset, \{s\}, \{s, s\}, \{s, s\}, Y\}$ and $\sigma^{int} *= \{\emptyset, \{s\}, \{s, s\}, \{s, s\}, Y\}.$

We define an identity function f from (X,τ,I) into (Y,σ,J) by $f(s_1)=s_1$, $f(s_2)=s_2$ and $f(s_3)=s_3$ and inverse function f is defined by $f^{-1}(s_1)=s_1$, $f^{-1}(s_2)=s_2$ and $f^{-1}(s_3)=s_3$. Here inverse image each $J_{\xi\xi}$ open set is $I_{\xi\xi}$ open set in X. Hence f is $I_{\xi\xi}$ irresolute function.

Theorem 2.3

Let a function $f:(X,\tau,I)\to (Y,\sigma,J)$ be $I_{\xi\xi}$ irresolute if and only if $f^{-1}(S)$ is $I_{\xi\xi}$ closed in X for each $J_{\xi\xi}$ closed set in Y.

Proof.

Let f be $I_{\xi\xi}$ irresolute function. If T is $J_{\xi\xi}$ closed set in Y, then $f^{-1}(T)$ is $I_{\xi\xi}$ closed set in

X. By definition 2.1, $f^{-1}(Y-T)$ is $I_{\xi\xi}$ open set in X which implies $Y-f^{-1}(T)$ is $J_{\xi\xi}$ open in Y, therefore $f^{-1}(T)$ is $J_{\xi\xi}$ closed in Y.

Conversely, suppose $f^{-1}(T)$ is $I_{\xi\xi}$ closed in X for each $J_{\xi\xi}$ closed set in Y. Let S be $I_{\xi\xi}$ open in X. Then X –S is $I_{\xi\xi}$ closed in X. By our assumption, $f^{-1}(X-S)$ is $I_{\xi\xi}$ closed in X this implies that $X-f^{-1}(S)$ is $I_{\xi\xi}$ closed in X, therefore $f^{-1}(S)$ is $I_{\xi\xi}$ open in X. Hence f is $I_{\xi\xi}$ irresolute function.

Theorem 2.4

Every $I_{\xi\xi}$ irresolute function is $I_{\xi\xi}$ continuous function.

Proof.

Let $f:(X,\tau,I) \to (Y,\sigma,J)$ be $I_{\xi\xi}$ irresolute function. If T is $J_{\xi\xi}$ open in Y, then $f^{-1}(T)$ is $I_{\xi\xi}$ open in X. By definition f is $I_{\xi\xi}$ continuous function.

In the above theorem, if we take domain and co domain are both (X,τ,I) and (Y,σ,J) or same then we get, every $I_{\xi\xi}$ irresolute function is $I_{\xi\xi}$ continuous function or if we take (X,τ,I) and (Y,σ) are domain and co domain, in this case we get only f is $I_{\xi\xi}$ continuous function and we will never get f is $I_{\xi\xi}$ irresolute function.

Theorem 2.7

Let $f:(X,\tau,I)\to (Y,\sigma,J)$ and $g:(Y,\sigma,J)\to (Z,\rho,K)$ be two $I_{\xi\xi}$ irresolute and $J_{\xi\xi}$ irresolute functions. Then gof is a $I_{\xi\xi}$ irresolute function if for each $K_{\xi\xi}$ open set in Z.

Proof.

Let *S* be $K_{\xi\xi}$ open in *Z*. Since *f* and *g* are $I_{\xi\xi}$ irresolute and $J_{\xi\xi}$ irresolute functions, by definition 2.1, $f^{-1}(S)$ is $J_{\xi\xi}$ open in *Y* and so $f^{-1}(g^{-1}(S))$ is $I_{\xi\xi}$ open in *X*. That is, $(g \circ f)^{-1}(S)$ is $I_{\xi\xi}$ open in *X* which gives $g \circ f$ is $I_{\xi\xi}$ irresolute function.

Theorem 2.8

If a function $f:(X,\tau,I) \rightarrow (Y,\sigma,J)$ is $I_{\xi\xi}$ irresolute if and only if for each $s \in X$ and each $J_{\xi\xi}$ open set V in Y with $f(s) \in V$, there exists $I_{\xi\xi}$ open set U in (X,τ,I) such that $s \in U$ and $(U) \subseteq V$.

Proof.

Assume that f is $I_{\xi\xi}$ irresolute function. Let $s \in X$ and V be any $J_{\xi\xi}$ open set in Y containing (s). Put $U=f^{-1}(V)$. Since f is $I_{\xi\xi}$ irresolute function, then U is $I_{\xi\xi}$ open set in (X,τ,I) such that $s\in U$ and $f(U)\subseteq V$.

Conversely, Let V be any $I_{\xi\xi}$ open set in Y. For each $s \in f^{-1}(V)$, $f(s) \in V$. Then by hypothesis, there exists $J_{\xi\xi}$ open set U_x in (X,τ,I) such that $s \in U_x$ and $f(U) \subseteq V$. This implies that $U_x \in f^{-1}(V)$ and so $f^{-1}(V) = \bigcup x \in f^{-1}(V)U_x$. Hence by theorem 3.11[1], $f^{-1}(V) = \bigcup x \in f^{-1}(V)U_x$ is $I_{\xi\xi}$ open set in (X,τ,I) . Therefore, f is $I_{\xi\xi}$ irresolute function.

Definition 2.9

A function $f:(X,\tau,I)\to (Y,\sigma,J)$ is said to be $I_{\xi\xi^*}$ open if the image of each $I_{\xi\xi}$ open set in X is a $J_{\xi\xi}$ open set in Y. A function $f:(X,\tau,I)\to (Y,\sigma,J)$ is said to be $I_{\xi\xi^*}$ closed if the image of each $I_{\xi\xi}$ closed set in X is a $J_{\xi\xi}$ closed set in Y.

Example 2.10

In example 2.1

- (1) The $I_{\xi\xi}$ open sets $\{s_1\}$, $\{s_2\}$, $\{s_1,s_2\}$ and $\{s_1,s_3\}$ are having $J_{\xi\xi}$ open images $\{s_3\}$, $\{s_2\}$, $\{s_{1,3}\}$ and $\{s_2,s_3\}$.
- (2) The $I_{\xi\xi}$ closed sets $\{s_2,s_3\},\{s_1,s_3\},\{s_3\}$ and $\{s_2\}$ are having $J_{\xi\xi}$ closed images $\{s_1,s_2\},\{s_1,s_3\},\{s_1\}$ and $\{s_2\}$.

Theorem 2.11

If a one - one onto $I_{\xi\xi}$ irresolute function $f:(X,\tau,I)\to(Y,\sigma,J)$, then the following are equivalent:

- 1. $f^{-1}:(Y,\sigma,I) \rightarrow (X,\tau,I)$ is $I_{\xi\xi}$ irresolute,
- 2. f is $I_{\xi\xi^*}$ open,
- 3. f is $I_{\xi\xi^*}$ closed.

Proof.

 $(1)\Rightarrow(2).$

Let f^{-1} be $I_{\xi\xi}$ irresolute function. Let S be $I_{\xi\xi}$ open in X. By definition 2.1, $(f^{-1})^{-1}(S) = f(S)$ is $J_{\xi\xi}$ open in Y. By definition 2.9, f is $I_{\xi\xi}$ * open.

 $(2) \Rightarrow (3).$

Assume f is $I_{\xi\xi}$ open. If T is $J_{\xi\xi}$ closed in Y, then Y-T is $J_{\xi\xi}$ open in Y. By definition 2.9, (Y-T)=Y-f(T) is $J_{\xi\xi}$ open in Y and so f(T) is $J_{\xi\xi}$ closed in Y. By definition 2.9, f is $I_{\xi\xi}$ closed.

 $(3) \Rightarrow (1).$

Let f be $I_{\xi\xi}$ closed. If S is $I_{\xi\xi}$ closed in X, then by definition 2.9, f(S) is $J_{\xi\xi}$ closed in Y and so $(f^{-1})^{-1}(S)$ is $J_{\xi\xi}$ closed in Y. By theorem 2.3, f^{-1} is $I_{\xi\xi}$ irresolute function.

Theorem 2.12

Let $f:(X,\tau,I) \to (Y,\sigma,J)$ and $g:(Y,\sigma,J) \to (Z,\rho,K)$ be two functions such that Then, if

 $g \circ f : (X,\tau,I) \rightarrow (Z, \rho,K) \text{ is } I_{\xi\xi^*} \text{ open.}$

- 1. f is $I_{\xi\xi}$ irresolute function and onto, then g is $I_{\xi\xi}$ * open.
- 2. g is $I_{\xi\xi}$ irresolute and one-one, then f is $I_{\xi\xi}^*$ open.

Proof.

 $(1) \Rightarrow (2)$.

Let T be $I_{\xi\xi}$ open in Y. Since f is $I_{\xi\xi}$ irresolute, by definition 2.1, $f^{-1}(T)$ is $I_{\xi\xi}$ closed in

X. Since gof is $I_{\xi\xi^*}$ open, by definition 2.10, $(gof)f^{-1}(T)$ is $K_{\xi\xi}$ open in Z. Since f is onto, $(gof)f^{-1}((T))=g(f(f^{-1}(T))=g(T))$ which gives g(T) is $K_{\xi\xi}$ open in Z. Therefore g is $I_{\xi\xi^*}$ open.

 $(2) \Rightarrow (3)$.

Let S be $I_{\xi\xi}$ open in X. Since (gof)(S) is $K_{\xi\xi}$ open in Z, by definition 2.10. Again, since g is $J_{\xi\xi}$ irresolute and one-one, by definition $2.1, g^{-1}(g(f(S))) = f(S)$ is $J_{\xi\xi}$ open in Y. Therefore f is $I_{\xi\xi}^*$ open.

Theorem 2.13

Let $f:(X,\tau,I) \rightarrow (Y,\sigma,J)$ and $g:(Y,\sigma,J) \rightarrow (Z,\rho,K)$ be two functions such that if

 $gof:(X,\tau,I) \rightarrow (Z,\rho,K)$ is $I_{\xi\xi}$ closed. Then,

- 1. f is $I_{\xi\xi}$ irresolute function and onto, then g is $I_{\xi\xi}$ * closed.
- 2. g is $I_{\xi\xi}$ irresolute and one-one, then f is $I_{\xi\xi}$ * closed.

Proof.

The proof is similar to that of the theorem 2.12 by changing $I_{\xi\xi}$ open to $I_{\xi\xi}$ closed.

V. Ananthi, B. Mallaiyasamy

REFERENCES

- [1] Amin Saif, Alasly. K. A, On *I*^ω-openness property in ideal topological spaces, Int. J. Adv. Appl. Math. and Mech. 8(3) (2021) 62–69.
- [2] Ekici.E and Noiri.T, On subsets and decomposition of continuity in ideal topological spaces, Arab. J. Sci. Eng. Sec. Sci. 34 (2009), 165-177
- [3] Hdeib.Z. H,-closed mappings, Revista ColombianadeMathematics, 16(1982), 65-78.
- [4] Jankovic. D and Hamlett. T. R., New topologies from old via ideals, Amer. Mat. Monthly 97 (1990), 295-310.
- [5] Jankovic. D and Hamlett. T. R., Compatible extension of ideals, Boll. Un. Mat. Ital., (7)6-B (1992), 453-465.
- [6] Kuratowski. K., Topology Vol. I. NewYork: Academic Press(1966).
- [7] Noiri. T, Al-omari . A and Noorani. M, Weak forms of ω -open sets and decompositions of continuity, European Journal of Pure and Applied Mathematics 1, (2009), 73-84.
- [8] Sankili.T and Asokan.R, On $I_{\xi\xi}$ open sets in ideal topological spaces, Ind.J. Nat. Sci., Vol.14 (2023), 55289-55293.
- [9] Sankili.T and Asokan. R, Properties of *I*_{ξξ} continuous function in ideal topological spaces, Ind.J.Nat.Sci., Vol.14(2023),60969-60972.
- [10] Vaidyanathaswamy. R., The localization theory in set topology. Proc. Indian Acad. Sci. 20 (1945), 51-61.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s