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ABSTRACT 

The equation of motion for a driven fractional oscillator is formulated by replacing the classical second-order time derivative 

with a Caputo fractional derivative of order 1 < 𝛼 ≤ 2. In this study, the Sumudu transform method is employed to obtain 

an analytical solution of the fractional differential equation. By utilizing the integral properties of the Sumudu transform, 

which are adapted for Caputo fractional derivatives, the system’s response is explicitly derived in the time domain. The 

dynamic characteristics and phase plane trajectories of the fractional oscillator are analyzed for various values of 𝛼. The 

results demonstrate that the Sumudu transform provides an effective and accurate framework for analyzing the complex 

behavior of fractional oscillatory systems. 
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1. INTRODUCTION 

Recently, fractional calculus has emerged as a sophisticated and versatile branch of mathematics, garnering significant 

interest across various scientific disciplines. This field extends the traditional concepts of differentiation and integration to 

non-integer and arbitrary orders, enabling more flexible and accurate modeling of complex phenomena. Its wide-ranging 

applications in physics, engineering, and natural sciences—particularly in the analysis of intricate and fractal-like systems—

have elevated its importance considerably[1]. Numerous studies have thoroughly explored the role of fractional calculus in 

continuum mechanics and statistical mechanics, highlighting its theoretical and practical relevance. 

A key model in this context is the driven fractional oscillator, in which the traditional second-order time derivative of the 

simple harmonic oscillator equation is substituted by a fractional derivative of order 𝛼, where 1 < 𝛼 ≤ 2. These fractional 

derivatives are defined using the Caputo approach, which allows the system to display a variety of dynamic behaviors 

depending on the parameter αα. Notably, when αα equals 2, the model simplifies to the classical harmonic oscillator([2], 

[3],[4], [5]). 

A range of analytical and numerical methods, including the Laplace transform and Adomian decomposition, have been 

developed to address fractional differential equations. However, the Sumudu transform has recently attracted interest as an 

effective and innovative approach, notable for maintaining physical units, simplifying calculations, and lowering 

computational effort. These features make it a compelling alternative to the Laplace transform for tackling fractional 

differential equations ([6], [7]). The Sumudu transform has demonstrated effectiveness in solving both linear and nonlinear 

fractional differential equations, as well as fractional partial differential equations, widely applied with success in engineering 

and applied science fields([8],[9]). 

Recent investigations reveal that employing the Sumudu transform not only enhances computational efficiency but also 

yields accurate analytical and approximate solutions for fractional equations [7].Furthermore, integrating the Sumudu 

transform with modern iterative methods facilitates semi-analytical solutions to nonlinear fractional differential equations, 

expanding its utility in complex problem-solving [10]. 

The practical applications of fractional calculus and the Sumudu transform extend well beyond pure mathematics. These 

methods have found use in various domains including linear and nonlinear control, fractional filter development, modeling 

of batteries and supercapacitors, seismic event prediction, nuclear interaction analysis, and modeling of epidemics..For 

instance, in particle physics, the interplay between fractional oscillators and q-deformed models underscores the significant 

role of fractional calculus in elucidating nuclear interactions [11].Additionally, due to the fractal characteristics inherent in 

geological formations, earthquake forecasting has become feasible through fractional calculus methodologies. 

In the present study, the equation governing the driven fractional oscillator is transformed into the Sumudu domain, enabling 

the derivation of an analytical solution expressed in terms of system parameters. Subsequently, applying the inverse Sumudu  
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transform retrieves the time-domain response of the system. This approach facilitates precise and efficient analysis of 

fractional oscillators and holds considerable promise for modeling complex systems in engineering and physics. 

This paper is structured in the following manner. Section 1 offers an overview of fractional calculus theory. Section 2 outlines 

the fundamental definitions and preliminaries. Section 3 employs the Sumudu transform technique to obtain analytical 

solutions for the driven fractional oscillator. 

2. DEFINITIONS AND PRELIMINARIES 

Definition 2. 1([[12],[13]]). For a causal function 𝑓(𝑡), the fractional derivative is given by. 

𝑑𝛽

𝑑𝑡𝛽
𝑓(𝑡) = {

1

Γ(𝑛 − 𝛽)
∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝛽−𝑛+1
𝑑𝜏 , 𝑖𝑓  𝑛 − 1 < 𝛽 < 𝑛,

𝑡

0

𝑓(𝑛)(𝑥)                              ,          𝑖𝑓  𝛽 = 𝑛 ∈ 𝑁,

 

where 𝛤(⋅) denotes the Euler gamma function, defined by 

Γ(x) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0

   (ℝ(𝑥) > 0). 

Definition 2. 2([14],[15]).The Sumudu transform operates on the set of functions 

𝐴 = {𝜑(𝜏)  /∃𝑀, 𝜔1, 𝜔2 > 0, |𝜑(𝜏)| < 𝑀𝑒
|𝜏|
𝜔𝑗 , 𝑖𝑓  𝜏 ∈ (−1)𝑗 × [0, ∞) 

by the following formula 

𝑆[𝜑(𝜏)](𝜔) = ∫ 𝑒−𝑡
∞

0

𝜑(𝜔𝜏)𝑑𝜏, 𝜔 ∈ (𝜔1, 𝜔2). 

Definition 2. 3 [16]. If 𝑝(𝑡) and 𝑞(𝑡) are exponential order and 𝑃(𝑢) and 𝑄(𝑢) are the Sumudu transform of 𝑝(𝑡) and 𝑞(𝑡) 

respectively, then  

𝑆[𝑝(𝑡) ∗ 𝑞(𝑡)](𝑢) = 𝑆 [∫ 𝑞(𝜏)𝑝(𝑡 − 𝜏)
𝑡

0

𝑑𝜏] (𝑢) = 𝑢𝑄(𝑢)𝑃(𝑢) 

Definition 2. 4[16]. If 𝑔(𝑛)(𝑡) is of exponential order then the Sumudu transform of the n’th derivative of 𝑔 is given by 

𝑆[𝑔𝑛(𝑡)] =
1

𝑢𝑛
[𝐺(𝑢) − ∑ 𝑢𝑘𝑓𝑘(0)

𝑚−1

𝑘=0

] 

Definition 2. 5 ([17],[18]). The Mittag-Leffler functions 𝐸𝜇(. ) and 𝐸𝜇,𝑣(. ) Are respectively defined by the following series 

pair 

𝐸𝜇(𝑧) = ∑
𝑧𝑛

Γ(𝑛𝜇 + 1)

∞

𝑛=0

  , 𝑧 ∈ ℂ, ℝ (𝜇 > 0) 

and  

𝐸𝜇,𝑣(𝑧) = ∑
𝑧𝑛

Γ(𝑛𝜇 + 𝑣)

∞

𝑛=0

  , 𝑧, 𝑣 ∈ ℂ, ℝ (𝜇 > 0). 

Definition2.5[19]. The Beta function, also termed Euler’s first kind integral 

𝛽(𝑥, 𝑦) = ∫ 𝑠𝑥−1(1 − 𝑠)𝑦−1𝑑𝑠,
1

0

    𝑅𝑒(𝑥) > 0 ,    𝑅𝑒(𝑦) > 0.      

Here, the Sumudu transform of the Caputo fractional derivative is derived 

Lemma2.1([20],[21]). 

𝑆[𝐷𝑡
𝛽

𝑓(𝑡)] = 𝑢−𝛽 [𝐹(𝑢) − ∑ 𝑢𝑘𝑓𝑘(0)

𝑛−1

𝑘=0

] 

Proof: Employing Definitions 3 and 4, we find 
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𝑆[𝐷𝑡
𝛽

𝑓(𝑡)] = 𝑆[
1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑚−𝛽−1𝑓(𝑛)(𝜏)𝑑𝜏,

𝑡

0

     

=
𝑢

Γ(𝑛 − 𝛼)
𝑆[𝑓(𝑛)(𝑡)𝑆[𝑡𝑛−𝛽−1] 

                                        =
1

Γ(𝑛 − 𝛼)
⋅

1

𝑢𝑛−1
[𝐹(𝑢) − ∑ 𝑢𝑘𝑓𝑘(0)

𝑚−1

𝑘=0

] ⋅
𝑢𝑛−1 ⋅ 𝑢−𝛽

Γ(𝑛 − 𝛼)
 

= 𝑢−𝛽 [𝐹(𝑢) − ∑ 𝑢𝑘𝑓𝑘(0)

𝑛−1

𝑘=0

]  .      

Lemma2.2[17]. Considering any element of the complex plane C for any 𝑅{𝛼} >  0, 𝑅{𝛽} > 0 and 𝐵 ∈  ℂ𝑛×𝑛. 

𝑆[𝑡𝛽−1𝐸𝛼,𝛽(𝐵𝑡𝛼)] =
𝑢𝛽−1

1 − 𝐵𝑢𝛼
 

holds for ℝ[𝑢] > 1  /  ||𝐵||
1/𝛼

. 

Proof.  For ℝ[𝑢] > 1  /  ||𝐵||
1/𝛼

 we have 

𝑆[𝑡𝛽−1𝐸𝛼,𝛽(𝐵𝑡𝛼)] = ∫ 𝑒−𝑡(𝑢𝑡)𝛽−1
∞

0

∑
(𝐵(𝑢𝑡)𝛼)𝑘

Γ(𝛼𝑘 + 𝛽)

∞

𝑘=0

𝑑𝑡 

                                          = 𝑢𝛽−1 ∑
𝐵𝑘𝑢𝛼𝑘

Γ(𝛼𝑘 + 𝛽)

∞

𝑘=0

∫ 𝑒−𝑡𝑡𝛼𝑘+𝛽−1
∞

0

𝑑𝑡 

                            = 𝑢𝛽−1 ∑
𝐵𝑘𝑢𝛼𝑘

Γ(𝛼𝑘 + 𝛽)

∞

𝑘=0

Γ(𝛼𝑘 + 𝛽) 

=
𝑢𝛽−1

1 − 𝐵𝑢𝛼
  .    

Now we consider for real 𝛽 > 0 (later only for 1 < 𝛽 ≤ 2), the fractional differential equation 

𝑑𝛼𝑦

𝑑𝑡𝛼
+ 𝜔𝛼𝑦(𝑡) = 𝑓(𝑡),            𝑛 − 1 < 𝛽 ≤ 𝑛                                                     (2.1) 

subject to the initial conditions 

𝑦(𝑘)(0) = 𝑐𝑘  ,     𝑘 = 0,1, … , 𝑛 − 1.                                                     (2.2) 

In equation (2.1), 𝜔 is an arbitrary constant, and 𝑓(𝑡) is a continuous function. The integer mm is uniquely determined by 

the inequality 𝑛 − 1 < 𝛼 ≤ 𝑛, which specifies the number of initial conditions 𝑦𝑘(0) = 𝑐𝑘 𝑓𝑜𝑟 𝑘 = 0,1, … , 𝑛 − 1. 
Depending on the value of 𝛼, this equation is classified as follows: for 1 < 𝛼 ≤ 2, it is known as the fractional oscillation 

equation, for 0 < 𝛼 < 1, it corresponds to the fractional relaxation equation; and for 2 < 𝛼 ≤ 3, it is referred to as the 

fractional growing oscillation equation. 

The fractional derivative in this equation is defined using the Caputo formulation, which ensures the existence of a unique 

solution under the given initial conditions. Unlike the Riemann–Liouville definition—which requires initial conditions 

expressed via fractional integrals and derivatives that often lack clear physical interpretation—the Caputo derivative employs 

initial conditions in terms of integer-order derivatives. This feature makes the Caputo definition generally more suitable and 

widely preferred for modeling physical systems([22],[23]). For a comprehensive discussion on the existence and uniqueness 

of solutions to fractional differential equations, see . 

3. EVALUATION OF THE ANALYTICAL METHOD 

Our focus in this section is the development of an efficient algorithm designed for solving a general system of driven 

fractional oscillators 

𝑑𝛼𝑥

𝑑𝑡𝛼
+ 𝜔𝛼𝑥(𝑡) = 𝑓(𝑡),       1 < 𝛼 ≤ 2                                                        (3.1) 

Assuming initial values 
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𝑥(0) = 𝑎     𝑥 ′(0) = 𝑏,                                                                                          (3.2) 

where 𝜔 is the natural frequency and 𝑓(𝑡) is the forcing function. 

From Lemma 2.1 we have 

𝑆 [
𝑑𝛼𝑥

𝑑𝑡𝛼
] + 𝜔𝛼𝑆[𝑥(𝑡)] = 𝑆[𝑓(𝑡)]                                                                 (3.3)  

𝑢−𝛼[𝑋(𝑢) − 𝑎 − 𝑏𝑢] + 𝜔𝛼𝑋(𝑢) = 𝐹(𝑢) 

𝑋(𝑢) [
1

𝑢𝛼
+ 𝜔𝛼] = 𝐹(𝑢) + 𝑎𝑢𝛼 + 𝑏𝑢𝛼+1 

𝑋(𝑢) =
𝐹(𝑢) + 𝑎𝑢𝛼 + 𝑏𝑢𝛼+1

1
𝑢𝛼 + 𝜔𝛼

 

=
𝑎 + 𝑏𝑢 + 𝐹(𝑢)𝑢𝛼

1 + 𝜔𝛼𝑢𝛼
 

Or 

𝑋(𝑢) =
𝑎

1 + 𝜔𝛼𝑢𝛼
+ +

𝑏𝑢

1 + 𝜔𝛼𝑢𝛼
+

𝐹(𝑢)𝑢𝛼

1 + 𝜔𝛼𝑢𝛼
                                               (3.4) 

From Lemma 2.2 and Definition 2.3, it follows that 

𝑥(𝑡) = 𝑎𝐸𝛼,1(−𝜔𝛼𝑡𝛼) + 𝑏𝑡𝐸𝛼,2(−𝜔𝛼𝑡𝛼) + ∫ (𝑡 − 𝑢)𝛼−1
𝑡

0

𝐸𝛼,𝛼(−𝜔𝛼(𝑡 − 𝑢)𝛼)𝑓(𝑢)𝑑𝑢.               (3.5) 

Example 3.1 Let’s study the following fractional differential equation 

𝑑𝛼𝑥

𝑑𝑡𝛼
+ 𝜔𝛼𝑥(𝑡) = 0  , 1 < 𝛼 ≤ 2                                                              (3.6) 

using initial values 

𝑥(0) = 1   , 𝑥′(0) = 0.                                                                                 (3.7) 

This equation describes a simple harmonic fractional oscillator where the forcing function in this case is𝑓(𝑡)  =  0. 

From Theorem 2.2 we get 

𝑆[
𝑑𝛼𝑥

𝑑𝑡𝛼
] + 𝜔𝛼𝑆[𝑥(𝑡)] = 0 

𝑢−𝛼[𝑋(𝑢) − 𝑎] + 𝜔𝛼𝑋(𝑢) = 0 

or 

𝑋(𝑢) =
𝑎

1 + 𝜔𝛼𝑢𝛼
 

From Definiton 2.5  and Lemma 2.2 we have 

𝑥(𝑡) = 𝐸𝛼,1(−𝜔𝛼𝑡𝛼). 
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Figure 1. Response function ofequation (3.6) for different values of 𝜶 

 

Figure 2. Response function ofequation (3.6)  of  𝜶 =1.75 

 

Figure 1 depicts the system’s evolution for various values of αα, highlighting how the displacement of the fractional oscillator 

changes over time and how this behavior depends on the parameter αα. The results show that the driven fractional oscillator 

exhibits characteristics similar to a damped harmonic oscillator: the motion remains oscillatory, but the total energy 

decreases over time. Additionally, the phase plane trajectory no longer forms a closed loop; instead, it traces a logarithmic 

spiral, reflecting the intrinsic damping and memory effects typical of fractional dynamics. This aligns with the understanding 

that fractional oscillators generalize classical harmonic oscillators by incorporating algebraic decay and nonlocal memory 

effects, resulting in a gradual energy loss and altered phase-space behavior. 

Figures 2 and 3 depict the phase plane trajectories for 𝛼 =  1.7, where a comparable behavior to that of the damped 

oscillator is also observed. 

Example 3.2 Now, we examine the fractional differential system describing oscillations in the following form: 

𝑑𝛼𝑦

𝑑𝑡𝛼
+ 𝜔𝛼𝑥(𝑡) = 𝑔(𝑡) , 1 < 𝛼 ≤ 2                                                                     (3.8) 

Assuming initial conditions 

𝑦(0) = 𝑎   , 𝑦′(0) = 0,                                                                                            (3.9) 

in this case  the forcing term is represented by the step function 

𝑔(𝑡) = {
𝐵,              𝑡 > 0,
0,               𝑡 < 0.

  

From Theorem 2.2 we get 

𝑆[
𝑑𝛼𝑦

𝑑𝑡𝛼
] + 𝜔𝛼𝑆[𝑦(𝑡)] = 𝑆[𝑔(𝑡)] 

𝑢−𝛼[𝑌(𝑢) − 𝑎] + 𝜔𝛼𝑌(𝑢) = 𝐵 

𝑌(𝑢) [
1

𝑢𝛼
+ 𝜔𝛼] = 𝐵 + 𝑎𝑢−𝛼 

or 

 𝑋(𝑢) =
𝑎

1 + 𝜔𝛼𝑢𝛼
+ 𝐵

𝑢𝛼

1 + 𝜔𝛼𝑢𝛼
 

From Lemma 2.2 and Definition 2.3 we have 

𝑥(𝑡) = 𝑎𝐸𝛼,1(−𝜔𝛼 𝑡𝛼) + 𝐵 ∫ (𝑡 − 𝑢)𝛼−1
𝑡

0

𝐸𝛼,𝛼((−𝜔𝛼(𝑡 − 𝑢)𝛼)𝑑𝑢 

or 

𝑦(𝑡) = ∑(−𝜔)𝛼𝑘

∞

𝑘=0

[𝑎 ∑
𝑡𝛼𝑘

𝛤(𝛼𝑘 + 1)

∞

𝑘=0

+ 𝐵 ∑
𝑡𝛼(𝑘+1)

𝛤(𝛼𝑘 + 𝛼 + 1)

∞

𝑘=0

] .                                (3.10) 
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Figure 3.Response function ofequation (3.8)  for different value of  α 

 

 

Figure 4.Response function ofequation (3.8)  for different value of  α 

 

Example 3.3 In this example, we select the forcing function as the sinusoidal function 𝑓(𝑡)  =  𝑠𝑖𝑛(𝜆𝑡)  and express equation 

(3.1) accordingly. 

𝑑𝛼𝑦

𝑑𝑡𝛼
+ 𝜆𝛼𝑦(𝑡) = 𝑠𝑖𝑛(𝜔𝑡)  , 1 < 𝛼 ≤ 2                                                 (3.11) 

using initial conditions 

𝑦(0) = 0   ,        𝑦′(0) = 0.                                                                                 (3.12) 

Above mentioned, from Theorem 2.2 we get 

𝑆[
𝑑𝛼𝑦

𝑑𝑡𝛼
] + 𝜆𝛼𝑆[𝑦(𝑡)] = 𝑆[𝑠𝑖𝑛(𝜆𝑡)]   

𝑢−𝛼𝑌(𝑢) + 𝜆𝛼𝑌(𝑢) =
𝜆𝑢

1 + 𝜆2𝑢2
 

𝑌(𝑢) [
1

𝑢𝛼
+ 𝜆𝛼] =

𝜆𝑢

1 + 𝜆2𝑢2
 

or 

𝑌(𝑢) =
𝜆𝑢

(1 + 𝜆𝛼𝑢𝛼)(1 + 𝜔2𝑢2)
. 

By using Lemma 2.2 and Definition 2.3 we have 
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𝑦(𝑡) = ∫ (𝑡 − 𝑢)𝛼−1
𝑡

0

𝐸𝛼,𝛼(−𝜆𝛼(𝑡 − 𝑢)𝛼) 𝑠𝑖𝑛(𝜆𝑢) 𝑑𝑢.                                               (3.3) 

Hence we get 

𝑦(𝑡) = ∫ (𝑡 − 𝑢)𝛼−1
𝑡

0

∑
(−1)𝑘𝜆𝛼𝑘(𝑡 − 𝑢)𝛼𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

𝑠𝑖𝑛(𝜆𝑢) 𝑑𝑢                     

= ∑
(−1)𝑘𝜆𝛼𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

∫ (𝑡 − 𝑢)𝛼𝑘+𝛼−1
𝑡

0

𝑠𝑖𝑛(𝜆𝑢) 𝑑𝑢                         

= ∑
(−1)𝑘𝜆𝛼𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

∑
(−1)𝑗𝜆2𝑗+1

𝛤(2𝑗 + 2)

∞

𝑘=0

∫ (𝑡 − 𝑢)𝛼𝑘+𝛼−1
𝑡

0

𝜏2𝑗+1𝑑𝑢, 

from Definition 2.5 we get 

                    = ∑
(−1)𝑘𝜆𝛼𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

∑
(−1)𝑗𝜔2𝑗+1

𝛤(2𝑗 + 2)

∞

𝑘=0

⋅
𝛤(𝛼𝑘 + 𝛼)𝛤(2𝑗 + 2)

𝛤(𝛼(𝑘 + 1) + 2𝑗 + 2))
𝑡𝛼(𝑘+1)+2𝑗+1. 

        = ∑(−1)𝑘𝜔𝛼𝑘

∞

𝑘=0

∑
(−1)𝑗

𝛤(𝛼(𝑘 + 1) + 2𝑗 + 2))

∞

𝑗=0

(𝜆𝑡)2𝑗+1+𝛼(𝑘+1)                               (3.4) 

 

Figure 5.Response function ofequation (3.8)  for different value of  α 

 

Figure 6.Response function ofequation (3.8)  for different value of  α 

This paper introduces the Sumudu transform method as an effective and efficient technique for solving systems of fractional 

oscillators subjected to external forces. The method yields solutions expressed as infinite series with easily computable terms. 

The examples provided demonstrate strong agreement between these results and those obtained via Mittag-Leffler functions. 

Analytical expressions for the response functions under various forcing types and for values of 𝛼 within the interval (1 <
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𝛼 ≤ 2) have been derived. The findings indicate that the behavior of the driven fractional oscillator closely parallels that of 

a damped harmonic oscillator. Consequently, the displacement functions effectively characterize dynamics that interpolate 

between exponential decay when 𝛼 = 1 and pure sinusoidal oscillation when 𝛼 = 2. 
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