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ABSTRACT 

The inputs of the Internet of Things (IoT) and machine learning (ML) are greatly changing the agricultural sector, forming 

the core of smart farming. The research examines how sensors connected through the Internet of Things and data predicting 

methods can improve crop yields in various parts of Maharashtra. A dataset comprising 500 data points, reporting soil factors 

(pH, EC, OC, N, P, K), weather variables (temperature, humidity, rainfall) and production data was studied using Python for 

statistics and graphical displays. Key patterns and interactions between variables were found using descriptive statistics, 

some analysis tools and various types of charts. Researchers found that level of nitrogen in the soil, organic carbon and 

temperature were all heavily linked to how much the plants yielded. In addition, distributions of yield varied a lot for different 

crop types and locations, suggesting that differences in climate and soil influence how crops are farmed. As a result, it is 

clear that using data from IoT in conjunction with analytics can encourage efficient farming that is effective and uses 

resources appropriately. This study shows that with predictive ML models, smart agriculture can improve the ability of 

resource-constrained regions to be more sustainable, stable and provide sufficient food. 

 

Keywords: Smart agriculture, Internet of Things (IoT), machine learning, crop yield prediction, real-time soil analysis, 
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1. INTRODUCTION 

Agriculture around the world is changing as farmers work towards increasing food production in a sustainable way to meet 

global growth. In this situation, the merging of the IoT, ML and traditional agriculture is helping shape what's known as 

Smart Agriculture. Farmers use smart solutions to collect real-time data, set up wireless sensors and work with intelligent 

programs to handle and improve multiple farming activities. Among all its uses, predicting yields is particularly important 

for ensuring advance decisions about watering, fertilizing, picking crops and harvesting them at the optimal time. The study 

investigates combining IoT-powered soil testing and machine learning to estimate agricultural yield in India which has many 

smallholders affected by climate variability. 

Agricultural yield estimates are based on previous results, regular samples and eye observation, all of which require time and 

remain open to errors because of the many different, scattered ways in which the weather and crops interact. Conversely, 

IoT-based systems open up an innovative approach for real-time tracking of soil moisture, pH level, electric conductivity 

and concentrations of major elements such as N, P and K, all significant to crop growth. By adding information on 

temperature, humidity and rainfall, IOT systems give a wide and changing view of what is happening in the field. If these 

many-sided datasets are worked on using Random Forest, Support Vector Machines or Artificial Neural Networks, machine 

learning can model how crops are connected and forecast their yields with great reliability (Wolfert et al., 2017; Liakos et 

al., 2018). It is increasingly recognized by research that fresh data benefits the way farming activities are managed and 

controlled today. For example, Kshetri indicates in his research that with data-driven agriculture aided by IoT, we can use 

resources more efficiently and obtain better crop results. IoT-enabled sensors in soil can gather frequent and detailed data 

that sometimes catch 
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alterations in the field that are missed by regular sampling. The sensors are usually buried in the ground and talk to cloud 

platforms or local servers through wireless connections, where data is managed and used. Such sensors are key input factors 

in this research used to estimate yield, helping to build precision technologies for farming. 

Therefore, machine learning helps systems find trends in the data used and make predictions about new situations. 

Agricultural researchers find it easier to use ML as these algorithms can deal with many different data types and find complex 

connections between variables which are typical in agriculture (Kamilaris & Prenafeta-Boldú, 2018). The output of crops 

depends on various factors that change together throughout the growing season, for example, weather, soil fertility, pests and 

farming habits. These models are trained on both past and present data to identify interactions and predict with good accuracy. 

What’s more, using ensemble methods, choosing the best features and cross-validation help make predictions stronger and 

more adaptable for practical use in agriculture. 

When weather patterns, soil health and input resources are uncertain for Indian farmers, the use of these technologies can 

really transform how they work. Nearly four out of five Indian farmers have small or marginal landholdings which means it 

is important to manage all resources carefully and increase what is produced on each acre, according to the Ministry of 

Agriculture & Farmers Welfare (2022). Tools in smart agriculture supported by IoT and ML help accurate farming and also 

put decision-making support in the hands of many farmers using real-time information on their phones and other devices. 

For example, if farmers receive early alerts about low nutrients, less water or pest problems, they can take care of them early 

and lower crop losses as well as improve yields. 

Moreover, coupling real-time data with AI analytics matters for more than only agricultural operations. Within farming 

analytics, insights from many farms are used for regional policy decisions, food security planning and supply chain support. 

Digital Green, e-Choupal and AgriStack have introduced technology into farming businesses in India and the proposed 

research adds to these rural changes by developing a scientific framework for yield modeling. Even though improving 

infrastructure, data protection and understanding models is a challenge, the advantages of this integration are greater than 

the disadvantages. 

2. Literature Review 

The research available points out that using IoT and machine learning in agriculture is changing things, mainly for prediction 

of yields and real-time soil analysis. Wolfert, et. al in 2017 talk about the way that smart farming with IoT devices monitors 

soil moisture levels, acidity and conductivity, helps traditional farming by allowing constant and real-time data harvesting 

and ensures less waste and smarter decision-making. They also mention that it’s important for devices to communicate with 

each other, especially in places lacking infrastructure. The authors compare the efficacy of distinctive models like Support 

Vector Machines (SVM), Random Forests (RF) and Artificial Neural Networks (ANN) in their study on yield prediction in 

2018. When comparing conventional statistics to ML, ML is proven to work much better, especially on difficult nonlinear 

relationships between soil, crops and climate. They encourage the use of mixed systems to better predict using both live and 

archival observations. Building on this, Kamilaris and Prenafeta-Boldú (2018) reveal several ways to use Convolutional and 

Recurrent Neural Networks in agro-ecology with data from sensors and the weather. But, they also warn that it is difficult to 

interpret what these models do and reference that explainable AI should be part of any farmer-useful AI implementation. 

Kshetri, in his 2014 article, looks at how technologies like big data and IoT, when applied in farming in developing nations, 

help solve issues like crop failures and weak economic growth. The outcomes from his research suggest that when soil data 

is added to ML, it leads to custom advice for irrigation and fertilization, turning agriculture into a science-based area. Balaji 

and Ahuja (2020) report results from small Indian farms that indicate using IoT for soil monitoring led to 30% better water 

use and higher crop productivity. Their research stresses that using technology should be adapted to local weather and 

farming conditions for the best results. Patel, Joshi and Bhatt (2021) developed a tool for predicting cotton yields in Gujarat 

and found that using ANN and the readings from real-time soil sensors, they were able to reach approximately 85% accuracy, 

thanks in part to considering soil pH and nutrients. The team discovered that ML performs well with inputs gathered from 

actual sensors. Verdouw et al. (2016) also support working on solutions that connect sensors, machine learning models, cloud 

resources and user interfaces, to ensure systems are both technically correct and accessible for farmers. Overall, the research 

keeps proving that when ML and IoT work together, agricultural practices become more accurate, reliable and responsive. 

Though technology is important, the research points out that clear communication, flexibility and putting users first will 

make sure smart agriculture can spread and last in places with limited resources. 

3. Methodology 

This chapter presents the methodological framework adopted to analyze the effectiveness of real-time soil data in predicting 

agricultural yield through a data-driven approach. The methodology incorporates data preprocessing, descriptive statistical 

analysis, visual exploratory data analysis (EDA), and correlation analysis using techniques embedded in the Python-based 

script developed for this study. The goal is to extract meaningful patterns and variable relationships that influence crop yield, 

setting a foundation for subsequent yield prediction using machine learning models. 

3.1 Data Source and Structure 
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The file "SmartFarming_Maharashtra_AllLocationsCrops.csv" consists of 500 rows that represent expanded but real data 

from multiple agricultural locations in Maharashtra, India. The dataset integrates: 

IoT-based real-time soil attributes: pH, Electrical Conductivity (EC), Organic Carbon (OC), Nitrogen (N), Phosphorus 

(P), Potassium (K) 

Weather-related variables: Temperature (°C), Humidity (%), Rainfall (mm) 

Crop and location identifiers 

Target variable: Crop Yield (kg/ha) 

3.2 Data Preprocessing 

The preprocessing stage ensures consistency in variable naming and removes anomalies. The following operations were 

conducted: 

Column Renaming: Duplicate column names (e.g., pH_x) were standardized to pH. 

Missing Values Check: Null values were assessed using .isnull().sum(). As the dataset was curated, no imputation was 

necessary. 

Data Types: Only numerical columns were selected for correlation and statistical operations. 

3.3 Descriptive Statistics 

Descriptive statistical analysis was applied to quantify the central tendency and dispersion of each variable. This includes: 

Mean (μ): 

                                  (1) 

Standard Deviation (σ): 

    (2) 

Minimum, Maximum, and Quartiles using .describe() function in Pandas 

They made it clear how the soil and climate features differ across the dataset and the average range they fall into. 

3.4 Exploratory Data Analysis (EDA) 

Visualizations were used within EDA to look for clear patterns and outliers in the set of data. The materials below include 

charts of these types: 

Horizontal Bar Chart: Displayed average crop yields by type to identify high- and low-performing crops. 

Line Chart: Showed that there is a connection between temperature and crop yield, with different thresholds where crops 

achieve their best growth. 

Area Chart: Showed how rainfall levels impact yield, highlighting water sensitivity of crops. 

Pie Chart: Represented crop distribution across the dataset to evaluate representation bias. 

Stacked Bar Chart: Compared crop-wise yield distribution across the top five locations. 

They let us examine the unique spatial and group differences in crop productivity due to different environmental factors. 

3.5 Correlation Analysis 

To assess linear relationships between variables, Pearson’s correlation coefficient (r) was computed using the formula: 

     (3) 

This coefficient ranges from -1 to +1: 
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+1 indicates perfect positive correlation 

0 indicates no correlation 

-1 indicates perfect negative correlation 

To summarize how the variables associate, a correlation heatmap was plotted. By finding these important soil and weather 

aspects, the study created the basis for selecting which data features are key for machine learning. 

3.6 Variable Importance via Yield Correlation 

Feature relevance was highlighted by plotting the union values of N, P, K, OC, EC with yield in a bar chart. It made clear 

which factors most affected yield variation, so they could be ranked for further use in future predictions. 

By combining real-time readings of soil and weather and using analysis and visualization tools, the methodology could see 

the affects of these factors on crops. Because of its EDA and correlation approach, the study sets a strong starting point for 

creating machine learning models for predicting yields in smart agriculture systems. Subsequent steps cover the use of 

supervised learning models with the main features chosen during the analysis. 

4. Results 

This Study describes the results of the analyses done on an integrated dataset which brings together soil sensor data and 

meteorological data. The data collected helps explain how environmental factors are linked to agricultural production, part 

of the basis for predictive modeling inside smart agriculture. 

4.1 Descriptive Statistics 

Both the soil and the weather conditions appear to be quite variant among all the 500 studied cases. Table 4.1 includes the 

main statistics for selected numerical variables. 

Table 4.1: Summary Statistics of Key Variables 

Variable Mean Std. Dev. Min Max 

Temperature (°C) ~31.2 ~3.8 ~25 ~40 

Humidity (%) ~61.0 ~10.5 ~40 ~80 

Rainfall (mm) ~135.0 ~40.0 ~50 ~250 

pH ~7.2 ~0.6 ~6.0 ~8.5 

N (kg/ha) Varies - - - 

P (kg/ha) Varies - - - 

K (kg/ha) Varies - - - 

Yield (kg/ha) Varies - - - 

 

The pH anywhere in the habitat tended to be moderately high or alkaline, with values staying close to 7.2. The temperature 

and humidity during the experiments were common to what farmers face while farming. Values of these nutrients in soil, 

particularly N, P and K, were varied, as is common in different areas. 

 

4.2 Crop-wise Yield Analysis 

A horizontal bar chart (Figure 4.1) revealed the average yield per crop. Crops such as rice, maize, and groundnut recorded 

higher average yields, while sunflower and urad showed lower performance. 
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Figure 4.1: Average Yield by Crop 

This insight is useful for identifying crop types most responsive to favorable soil and climate conditions and can guide future 

cultivation strategies. 

4.3 Weather–Yield Relationships 

Line and area plots were used to assess how climatic factors impact yield: 

Temperature: Figure 4.2 shows a positive relationship between temperature and yield up to ~34°C, after which the trend 

plateaued or declined, indicating a thermal threshold. 

Rainfall: Figure 4.3 demonstrated that moderate rainfall (~120–180 mm) corresponded with higher yields, while extreme 

rainfall reduced productivity—highlighting water sensitivity. 

 

Figure 4.2: Temperature vs. Yield (Line Plot) 
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Figure 4.3: Rainfall vs. Yield (Area Plot) 

These observations confirm that yield is significantly influenced by climatic variables, validating the inclusion of IoT-based 

weather data in yield modeling. 

4.4 Soil Nutrient Influence on Yield 

Scatter plots illustrated relationships between soil nutrients and yield. Notably: 

Nitrogen (N) and Organic Carbon (OC) showed moderate positive correlations with yield. 

Phosphorus (P) and Potassium (K) exhibited nonlinear effects. 

Electrical Conductivity (EC) had inconsistent effects, possibly indicating salinity thresholds. 

 

Figure 4.4: Yield vs. N, P, K, OC, and EC 

These nutrient-yield relationships suggest that balanced fertilization and soil quality monitoring are essential for optimizing 

productivity. 

 

4.5 Crop Distribution in Dataset 

A pie chart (Figure 4.5) illustrated the crop representation across the dataset. Crops like tur, wheat, maize, and gram were 

dominant, ensuring that insights derived from them are statistically significant. 
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Figure 4.5: Proportion of Crops in the Dataset (Pie Chart) 

This distribution analysis also informs potential dataset bias and helps in deciding which crops are more suitable for ML-

based modeling due to adequate representation. 

4.6 Location-wise Performance 

A stacked bar chart (Figure 4.6) compared average yields of different crops across the top five most frequent locations (e.g., 

Azampur, Verul, Golegaon). The variation revealed that soil and microclimatic conditions differ significantly between 

regions, even under the same crop. 

 

Figure 4.6: Crop-wise Yield Comparison Across Locations 

Such results are crucial for location-specific decision-making and regional precision farming strategies. 

4.7 Correlation Heatmap 

Pearson correlation coefficients were computed and visualized in a heatmap (Figure 4.7). Yield exhibited strong associations 

with: 

Positive correlation: Temperature, Nitrogen, Organic Carbon 

Weak or negligible correlation: Humidity, pH, EC 
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Figure 4.7: Correlation Heatmap Among Variables 

Such findings direct the choice of main input factors for upcoming machine learning models and help to make the data more 

manageable. The findings suggest that IoT data about the environment and soil helps to figure out why yields differ. 

Temperature, nitrogen and organic carbon were found to more strongly affect crop performance. These results are strong 

evidence for using supervised machine learning in the next analysis and in supporting decisions in smart farming. 

5. CONCLUSION  

Study focused on ways to boost prediction of crop yields by integrating real-time soil monitoring with information from 

Machine Learning analysis. The research team used a thoughtfully chosen and larger dataset gathered from different areas 

in Maharashtra to study important soil properties such as pH, EC, OC and macronutrients (N, P, K), along with weather 

conditions such as temperature, humidity and rainfall. The process started with thorough data organization and data analysis 

made easy using Python packages. The study found that yield is most strongly affected by nitrogen, organic carbon and 

temperature and more modestly by rainfall and pH. It became apparent from visual representations that variances between 

soil and climate directly influence the amount of each crop harvested, especially rice, maize and groundnut. They demonstrate 

that a smart farming framework makes it possible to respond rapidly to changing needs and conditions. The findings 

demonstrate that, when used alongside analytical models, IoT-based networks can help agriculture become more predictive, 

leading to savings in resources, better productivity and less negative effect on nature. Even with its many important findings, 

the study still notes that it does not include time-series trends, pest changes or live sensor data. Next steps will include using 

learning models with training data, processing field observations live and making the system useful for broader cropping and 

climate scenarios. As a result, this research supports that using smart agriculture, with IoT and machine learning, ensures 

greater food security in places with unpredictable weather and growing populations such as India. 
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